organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-amino-4-methyl­pyridinium) terephthalate tetra­hydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 28 June 2010; accepted 30 June 2010; online 7 July 2010)

In the crystal structure of the title salt, 2C6H9N2+·C8H4O42−·4H2O, the terephthalate carboxyl­ate groups inter­acts with the 2-amino-4-methyl­pyridinium cations via a pair of N—H⋯O hydrogen bonds, forming an R22(8) ring motif. The water mol­ecules form an R66(12) ring motif through O—H⋯O hydrogen bonds and these motifs are fused, forming a supra­molecular chain along the c axis. The R22(8) and R66(12) ring motifs are connected via O—H⋯O hydrogen bonds. In addition, ππ stacking inter­actions are observed between the pyridinium rings [centroid–centroid distance = 3.522 (12) Å].

Related literature

For details of non-covalent inter­actions, see: Desiraju (2007[Desiraju, G. R. (2007). Angew. Chem. Int. Ed. 46, 8342-8356.]); Corna et al. (2004[Corna, A., Rey, F., Rius, J., Sabater, M. J. & Valencla, S. (2004). Nature (London), 431, 287-290.]); Aakeröy & Seddon (1993[Aakeröy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev. 22, 397-407.]). For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997[Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.]); Katritzky et al. (1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.]). For the applications of terephthalic acid, see: Serre et al. (2007[Serre, C., Mellot-Draznieks, C., Surblé, S., Audebrand, N., Filinchuk, Y. & Férey, G. (2007). Science, 315, 1828-1831.]); Mukherjee et al. (2004[Mukherjee, P. S., Das, N., Kryschenko, Y. K., Arif, A. M. & Stang, P. J. (2004). J. Am. Chem. Soc. 126, 2464-2473.]); Sun et al. (2000[Sun, D., Cao, R., Liang, Y., Hong, M., Su, W. & Weng, J. (2000). Acta Cryst. C56, e240-e241.]); Lynch & Jones (2004[Lynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748-754.]); Spencer et al. (2004[Spencer, E. C., Baby Mariyatra, M., Howard, J. A. K. & Panchanatheswaran, K. (2004). Acta Cryst. C60, o839-o842.]); Devi & Muthiah (2007[Devi, P. & Muthiah, P. T. (2007). Acta Cryst. E63, o4822-o4823.]). For details of hydrogen bonding, see: Jeffrey & Saenger (1991[Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.]); Jeffrey (1997[Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.]); Scheiner (1997[Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • 2C6H9N2+·C8H4O42−·4H2O

  • Mr = 454.48

  • Monoclinic, C c

  • a = 17.6290 (16) Å

  • b = 13.8091 (13) Å

  • c = 9.2518 (9) Å

  • β = 93.940 (2)°

  • V = 2246.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.45 × 0.27 × 0.07 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.955, Tmax = 0.992

  • 12651 measured reflections

  • 3275 independent reflections

  • 3004 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.101

  • S = 1.06

  • 3275 reflections

  • 347 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1NA⋯O2 0.95 (3) 1.75 (3) 2.698 (2) 172 (3)
N2A—H2NA⋯O1 0.83 (3) 2.10 (3) 2.906 (2) 165 (3)
N2A—H3NA⋯O1i 0.91 (3) 1.97 (3) 2.866 (2) 171 (2)
N1B—H1NB⋯O4ii 1.02 (5) 1.72 (5) 2.723 (2) 169 (3)
N2B—H2NB⋯O3ii 0.90 (4) 1.88 (4) 2.765 (2) 170 (3)
N2B—H3NB⋯O3Wiii 0.93 (3) 1.97 (3) 2.894 (2) 174 (3)
O1W—H1W1⋯O3W 0.76 (4) 2.03 (3) 2.781 (2) 174 (4)
O1W—H2W1⋯O4W 0.89 (4) 1.91 (4) 2.779 (2) 167 (3)
O2W—H1W2⋯O4iv 0.88 (3) 1.86 (3) 2.741 (2) 175 (3)
O2W—H2W2⋯O4W 0.88 (3) 1.90 (3) 2.772 (2) 176 (3)
O3W—H1W3⋯O3v 0.77 (4) 1.95 (4) 2.721 (2) 178 (5)
O3W—H2W3⋯O1Wvi 0.86 (4) 1.89 (3) 2.742 (2) 168 (3)
O4W—H1W4⋯O2 0.92 (4) 1.81 (4) 2.689 (2) 161 (3)
O4W—H2W4⋯O2Wvi 0.80 (3) 1.93 (3) 2.716 (2) 171 (3)
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{3\over 2}}]; (iii) [x, -y, z-{\script{1\over 2}}]; (iv) x, y, z-1; (v) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) [x, -y, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Supramolecular architectures assembled via various delicate noncovalent interactions such as hydrogen bonds, ππ stacking and electrostatic interactions, etc., have attracted intense interest in recent years because of their fascinating structural diversity and potential applications for functional materials (Desiraju, 2007; Corna et al., 2004). Especially, the application of intermolecular hydrogen bonds is a well known and efficient tool in the field of organic crystal design owing to its strength and directional properties (Aakeröy & Seddon, 1993). Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). Terephthalic acid (H2TPA), a rod-like aromatic diacid, has often been used in the synthesis of metal-organic frameworks as a linker molecule (Serre et al., 2007; Mukherjee et al., 2004; Sun et al., 2000). Recently, with the increase in interest in controlling the crystalline structures of organic-based solid-state materials, H2TPA is being increasingly employed in constructing supramolecular structures (Lynch & Jones, 2004; Spencer et al., 2004; Devi & Muthiah, 2007). Since our aim is to study some interesting hydrogen-bonding interactions, the crystal structure of the title compound is presented here.

The asymmetric unit of the title salt contains two 2-amino-4-methylpyridinium cations (A and B), one terephthalate anion and four water molecules (Fig. 1). Each 2-amino-4-methylpyridinium cation is planar, with a maximum deviation of 0.008 (2) Å for atom C2A (molecule A) and 0.005 (2) Å for atom C3B (molecule B). The protonation of atoms N1A and N1B lead to a slight increase in C1A—N1A—C5A [122.10 (16)°] and C1B—N1B—C5B [122.09 (16)°] angles. The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal structure, the terephthalate carboxylate groups interacts with 2-amino-4-methylpyridinium cations via a pair of N—H···O hydrogen bonds, forming an R22(8) ring motif (Bernstein et al., 1995). An R66(12) ring motif is formed by water molecules through O—H···O (Table 1) hydrogen bonds and these motifs fuse to form a one-dimensional supramolecular chain along the c-axis (Fig. 2). Further, the R22(8) and R66(12) motifs are connected via O—H···O hydrogen bonds (Fig. 3). The crystal structure is further stabilized by ππ interactions between N1A/C1A–C5A and N1B/C1B–C5B pyridinium rings at (x, y, z) [centroid-to-centroid distance = 3.522 (1) Å].

Related literature top

For details of non-covalent interactions, see: Desiraju (2007); Corna et al. (2004); Aakeröy & Seddon (1993). For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For the applications of terephthalic acid, see: Serre et al. (2007); Mukherjee et al. (2004); Sun et al. (2000); Lynch & Jones (2004); Spencer et al. (2004); Devi & Muthiah (2007). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A hot methanol solution (20 ml) of 2-amino-4-methylpyridine (54 mg, Aldrich) and terephthalic acid (83 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement top

O- and N-bound H atoms were located from a difference Fourier map and were refined freely [N–H= 0.83 (3)–1.01 (5) Å and O–H = 0.75 (3)–0.92 (3) Å]. The remaining hydrogen atoms were positioned geometrically [C–H = 0.93 or 0.96 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was used for the methyl groups. In the absence of significant anomalous dispersion, 2680 Friedel pairs were merged before the final refinement.

Structure description top

Supramolecular architectures assembled via various delicate noncovalent interactions such as hydrogen bonds, ππ stacking and electrostatic interactions, etc., have attracted intense interest in recent years because of their fascinating structural diversity and potential applications for functional materials (Desiraju, 2007; Corna et al., 2004). Especially, the application of intermolecular hydrogen bonds is a well known and efficient tool in the field of organic crystal design owing to its strength and directional properties (Aakeröy & Seddon, 1993). Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). Terephthalic acid (H2TPA), a rod-like aromatic diacid, has often been used in the synthesis of metal-organic frameworks as a linker molecule (Serre et al., 2007; Mukherjee et al., 2004; Sun et al., 2000). Recently, with the increase in interest in controlling the crystalline structures of organic-based solid-state materials, H2TPA is being increasingly employed in constructing supramolecular structures (Lynch & Jones, 2004; Spencer et al., 2004; Devi & Muthiah, 2007). Since our aim is to study some interesting hydrogen-bonding interactions, the crystal structure of the title compound is presented here.

The asymmetric unit of the title salt contains two 2-amino-4-methylpyridinium cations (A and B), one terephthalate anion and four water molecules (Fig. 1). Each 2-amino-4-methylpyridinium cation is planar, with a maximum deviation of 0.008 (2) Å for atom C2A (molecule A) and 0.005 (2) Å for atom C3B (molecule B). The protonation of atoms N1A and N1B lead to a slight increase in C1A—N1A—C5A [122.10 (16)°] and C1B—N1B—C5B [122.09 (16)°] angles. The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal structure, the terephthalate carboxylate groups interacts with 2-amino-4-methylpyridinium cations via a pair of N—H···O hydrogen bonds, forming an R22(8) ring motif (Bernstein et al., 1995). An R66(12) ring motif is formed by water molecules through O—H···O (Table 1) hydrogen bonds and these motifs fuse to form a one-dimensional supramolecular chain along the c-axis (Fig. 2). Further, the R22(8) and R66(12) motifs are connected via O—H···O hydrogen bonds (Fig. 3). The crystal structure is further stabilized by ππ interactions between N1A/C1A–C5A and N1B/C1B–C5B pyridinium rings at (x, y, z) [centroid-to-centroid distance = 3.522 (1) Å].

For details of non-covalent interactions, see: Desiraju (2007); Corna et al. (2004); Aakeröy & Seddon (1993). For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For the applications of terephthalic acid, see: Serre et al. (2007); Mukherjee et al. (2004); Sun et al. (2000); Lynch & Jones (2004); Spencer et al. (2004); Devi & Muthiah (2007). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the supramolecular chain made up of water molecules along the c-axis.
[Figure 3] Fig. 3. Hydrogen bonding pattern in the title compound.
Bis(2-amino-4-methylpyridinium) terephthalate tetrahydrate top
Crystal data top
2C6H9N2+·C8H4O42·4H2OF(000) = 968
Mr = 454.48Dx = 1.343 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 4430 reflections
a = 17.6290 (16) Åθ = 2.3–30.0°
b = 13.8091 (13) ŵ = 0.11 mm1
c = 9.2518 (9) ÅT = 100 K
β = 93.940 (2)°Plate, colourless
V = 2246.9 (4) Å30.45 × 0.27 × 0.07 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3275 independent reflections
Radiation source: fine-focus sealed tube3004 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 30.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2124
Tmin = 0.955, Tmax = 0.992k = 1913
12651 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0657P)2 + 0.2622P]
where P = (Fo2 + 2Fc2)/3
3275 reflections(Δ/σ)max = 0.001
347 parametersΔρmax = 0.46 e Å3
2 restraintsΔρmin = 0.20 e Å3
Crystal data top
2C6H9N2+·C8H4O42·4H2OV = 2246.9 (4) Å3
Mr = 454.48Z = 4
Monoclinic, CcMo Kα radiation
a = 17.6290 (16) ŵ = 0.11 mm1
b = 13.8091 (13) ÅT = 100 K
c = 9.2518 (9) Å0.45 × 0.27 × 0.07 mm
β = 93.940 (2)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3275 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3004 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.992Rint = 0.031
12651 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0362 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.46 e Å3
3275 reflectionsΔρmin = 0.20 e Å3
347 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1A0.73749 (9)0.27051 (12)0.16796 (17)0.0163 (3)
N2A0.75478 (10)0.43694 (12)0.17137 (18)0.0204 (3)
C1A0.73275 (10)0.35697 (14)0.09938 (19)0.0163 (4)
C2A0.70424 (11)0.35868 (15)0.0481 (2)0.0187 (4)
H2AA0.70160.41700.09830.022*
C3A0.68056 (10)0.27471 (14)0.11685 (19)0.0173 (4)
C4A0.68604 (11)0.18620 (14)0.0396 (2)0.0188 (4)
H4AA0.67020.12860.08410.023*
C5A0.71489 (11)0.18657 (15)0.1009 (2)0.0202 (4)
H5AA0.71920.12850.15180.024*
C6A0.64919 (12)0.27652 (16)0.2720 (2)0.0230 (4)
H6AA0.65840.33890.31330.034*
H6AB0.59540.26450.27620.034*
H6AC0.67360.22740.32570.034*
N1B0.48583 (10)0.31843 (13)0.04463 (18)0.0195 (3)
N2B0.49724 (10)0.15247 (12)0.02353 (17)0.0184 (3)
C1B0.50869 (11)0.23962 (14)0.03428 (19)0.0169 (4)
C2B0.54266 (11)0.25447 (16)0.1759 (2)0.0183 (4)
H2BA0.55820.20150.23260.022*
C3B0.55264 (11)0.34599 (15)0.2296 (2)0.0200 (4)
C4B0.52752 (12)0.42658 (16)0.1435 (2)0.0230 (4)
H4BA0.53360.48940.17880.028*
C5B0.49433 (12)0.41005 (15)0.0082 (2)0.0220 (4)
H5BA0.47730.46220.04870.026*
C6B0.58818 (13)0.36063 (18)0.3806 (2)0.0271 (5)
H6BA0.61730.30430.40990.041*
H6BB0.54900.37070.44610.041*
H6BC0.62100.41620.38220.041*
O10.79418 (8)0.41120 (10)0.47912 (14)0.0196 (3)
O20.80222 (9)0.25260 (10)0.43950 (15)0.0196 (3)
O30.95157 (10)0.35431 (12)1.18466 (16)0.0258 (3)
O40.93553 (9)0.19471 (11)1.17111 (15)0.0227 (3)
C70.87740 (10)0.39144 (13)0.75006 (19)0.0156 (3)
H7A0.87910.45200.70630.019*
C80.90527 (10)0.37998 (14)0.89289 (19)0.0158 (3)
H8A0.92480.43310.94470.019*
C90.90425 (10)0.28948 (14)0.95947 (18)0.0148 (3)
C100.87640 (10)0.20985 (14)0.87956 (19)0.0153 (3)
H10A0.87710.14880.92190.018*
C110.84752 (11)0.22144 (13)0.73637 (19)0.0156 (3)
H11A0.82860.16810.68400.019*
C120.84683 (10)0.31250 (13)0.67150 (18)0.0138 (3)
C130.81214 (10)0.32704 (14)0.51865 (18)0.0147 (3)
C140.93282 (10)0.27846 (14)1.11620 (19)0.0165 (4)
O1W0.63068 (10)0.06139 (12)0.38459 (17)0.0271 (3)
O2W0.85423 (10)0.02585 (12)0.18024 (18)0.0268 (3)
O3W0.56061 (10)0.01269 (12)0.63491 (16)0.0242 (3)
O4W0.78771 (9)0.05874 (11)0.43863 (16)0.0224 (3)
H1NA0.7560 (17)0.265 (2)0.267 (3)0.024 (7)*
H2NA0.7743 (15)0.432 (2)0.255 (3)0.022 (6)*
H3NA0.7636 (14)0.489 (2)0.115 (3)0.019 (6)*
H1NB0.463 (3)0.307 (3)0.147 (5)0.077 (14)*
H2NB0.4765 (19)0.150 (2)0.115 (4)0.038 (8)*
H3NB0.5148 (17)0.100 (2)0.032 (3)0.033 (8)*
H1W10.6143 (17)0.050 (2)0.456 (4)0.025 (7)*
H2W10.680 (2)0.051 (2)0.404 (4)0.040 (9)*
H1W20.8800 (16)0.080 (2)0.172 (3)0.025 (7)*
H2W20.8348 (16)0.035 (2)0.264 (3)0.025 (7)*
H1W30.529 (2)0.049 (3)0.649 (4)0.059 (12)*
H2W30.5807 (17)0.003 (2)0.719 (4)0.034 (8)*
H1W40.7949 (18)0.123 (3)0.461 (3)0.035 (8)*
H2W40.8036 (18)0.029 (2)0.508 (4)0.031 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0186 (7)0.0172 (7)0.0128 (7)0.0016 (6)0.0011 (6)0.0010 (5)
N2A0.0271 (8)0.0185 (7)0.0147 (7)0.0044 (6)0.0042 (6)0.0014 (6)
C1A0.0166 (8)0.0170 (8)0.0151 (8)0.0016 (7)0.0005 (6)0.0016 (6)
C2A0.0203 (9)0.0220 (9)0.0136 (7)0.0013 (7)0.0008 (6)0.0026 (6)
C3A0.0146 (8)0.0234 (9)0.0140 (8)0.0014 (7)0.0007 (6)0.0006 (7)
C4A0.0200 (9)0.0182 (8)0.0182 (8)0.0020 (7)0.0015 (7)0.0031 (7)
C5A0.0209 (9)0.0184 (9)0.0215 (9)0.0021 (7)0.0024 (7)0.0027 (7)
C6A0.0234 (10)0.0321 (11)0.0125 (8)0.0007 (8)0.0051 (7)0.0014 (7)
N1B0.0219 (8)0.0207 (8)0.0153 (7)0.0009 (6)0.0021 (6)0.0001 (6)
N2B0.0225 (8)0.0195 (8)0.0127 (7)0.0017 (6)0.0024 (6)0.0006 (6)
C1B0.0162 (8)0.0211 (9)0.0135 (8)0.0020 (6)0.0013 (6)0.0009 (6)
C2B0.0172 (8)0.0240 (9)0.0137 (8)0.0006 (7)0.0002 (6)0.0005 (6)
C3B0.0174 (9)0.0295 (10)0.0133 (8)0.0029 (7)0.0020 (6)0.0019 (7)
C4B0.0250 (10)0.0221 (9)0.0217 (9)0.0004 (8)0.0004 (7)0.0039 (7)
C5B0.0232 (9)0.0227 (9)0.0198 (9)0.0027 (7)0.0003 (7)0.0001 (7)
C6B0.0282 (11)0.0370 (12)0.0151 (9)0.0003 (9)0.0048 (8)0.0064 (8)
O10.0276 (7)0.0164 (6)0.0140 (6)0.0043 (5)0.0034 (5)0.0006 (5)
O20.0293 (7)0.0149 (6)0.0138 (6)0.0008 (5)0.0032 (5)0.0006 (5)
O30.0373 (8)0.0238 (7)0.0151 (6)0.0085 (6)0.0064 (6)0.0005 (5)
O40.0309 (8)0.0196 (7)0.0165 (6)0.0048 (6)0.0053 (5)0.0033 (5)
C70.0165 (8)0.0154 (8)0.0146 (8)0.0003 (6)0.0007 (6)0.0007 (6)
C80.0160 (8)0.0173 (8)0.0138 (7)0.0027 (6)0.0014 (6)0.0012 (6)
C90.0143 (8)0.0198 (8)0.0103 (7)0.0005 (6)0.0001 (6)0.0015 (6)
C100.0183 (8)0.0152 (8)0.0124 (8)0.0010 (7)0.0002 (6)0.0017 (6)
C110.0180 (8)0.0161 (8)0.0126 (8)0.0004 (7)0.0006 (6)0.0006 (6)
C120.0136 (8)0.0166 (8)0.0112 (7)0.0015 (6)0.0010 (6)0.0009 (6)
C130.0163 (8)0.0177 (8)0.0099 (7)0.0002 (6)0.0003 (6)0.0006 (6)
C140.0177 (8)0.0203 (9)0.0109 (7)0.0035 (7)0.0028 (6)0.0009 (6)
O1W0.0280 (8)0.0343 (9)0.0189 (7)0.0029 (7)0.0002 (6)0.0039 (6)
O2W0.0357 (9)0.0214 (7)0.0236 (7)0.0049 (6)0.0044 (6)0.0045 (6)
O3W0.0289 (8)0.0237 (7)0.0197 (7)0.0027 (6)0.0002 (6)0.0012 (5)
O4W0.0306 (8)0.0169 (7)0.0194 (7)0.0007 (6)0.0007 (6)0.0001 (5)
Geometric parameters (Å, º) top
N1A—C1A1.352 (2)C4B—H4BA0.93
N1A—C5A1.361 (3)C5B—H5BA0.93
N1A—H1NA0.95 (3)C6B—H6BA0.96
N2A—C1A1.334 (2)C6B—H6BB0.96
N2A—H2NA0.83 (3)C6B—H6BC0.96
N2A—H3NA0.91 (3)O1—C131.253 (2)
C1A—C2A1.421 (2)O2—C131.267 (2)
C2A—C3A1.374 (3)O3—C141.256 (2)
C2A—H2AA0.93O4—C141.263 (2)
C3A—C4A1.416 (3)C7—C81.387 (2)
C3A—C6A1.503 (2)C7—C121.398 (2)
C4A—C5A1.363 (3)C7—H7A0.93
C4A—H4AA0.93C8—C91.394 (3)
C5A—H5AA0.93C8—H8A0.93
C6A—H6AA0.96C9—C101.395 (2)
C6A—H6AB0.96C9—C141.510 (2)
C6A—H6AC0.96C10—C111.395 (2)
N1B—C1B1.356 (2)C10—H10A0.93
N1B—C5B1.361 (3)C11—C121.393 (2)
N1B—H1NB1.01 (5)C11—H11A0.93
N2B—C1B1.327 (3)C12—C131.515 (2)
N2B—H2NB0.90 (3)O1W—H1W10.75 (3)
N2B—H3NB0.93 (3)O1W—H2W10.89 (3)
C1B—C2B1.418 (2)O2W—H1W20.88 (3)
C2B—C3B1.365 (3)O2W—H2W20.88 (3)
C2B—H2BA0.93O3W—H1W30.76 (5)
C3B—C4B1.421 (3)O3W—H2W30.86 (3)
C3B—C6B1.505 (3)O4W—H1W40.92 (3)
C4B—C5B1.364 (3)O4W—H2W40.79 (3)
C1A—N1A—C5A122.10 (16)C4B—C3B—C6B120.57 (19)
C1A—N1A—H1NA121.5 (17)C5B—C4B—C3B118.71 (19)
C5A—N1A—H1NA116.4 (17)C5B—C4B—H4BA120.6
C1A—N2A—H2NA118.8 (19)C3B—C4B—H4BA120.6
C1A—N2A—H3NA115.1 (16)N1B—C5B—C4B121.01 (18)
H2NA—N2A—H3NA122 (2)N1B—C5B—H5BA119.5
N2A—C1A—N1A119.37 (16)C4B—C5B—H5BA119.5
N2A—C1A—C2A122.50 (17)C3B—C6B—H6BA109.5
N1A—C1A—C2A118.13 (16)C3B—C6B—H6BB109.5
C3A—C2A—C1A120.45 (18)H6BA—C6B—H6BB109.5
C3A—C2A—H2AA119.8C3B—C6B—H6BC109.5
C1A—C2A—H2AA119.8H6BA—C6B—H6BC109.5
C2A—C3A—C4A119.13 (16)H6BB—C6B—H6BC109.5
C2A—C3A—C6A120.58 (18)C8—C7—C12120.35 (17)
C4A—C3A—C6A120.29 (18)C8—C7—H7A119.8
C5A—C4A—C3A119.09 (17)C12—C7—H7A119.8
C5A—C4A—H4AA120.5C7—C8—C9120.59 (16)
C3A—C4A—H4AA120.5C7—C8—H8A119.7
N1A—C5A—C4A121.08 (18)C9—C8—H8A119.7
N1A—C5A—H5AA119.5C8—C9—C10119.16 (15)
C4A—C5A—H5AA119.5C8—C9—C14120.08 (15)
C3A—C6A—H6AA109.5C10—C9—C14120.77 (16)
C3A—C6A—H6AB109.5C11—C10—C9120.31 (16)
H6AA—C6A—H6AB109.5C11—C10—H10A119.8
C3A—C6A—H6AC109.5C9—C10—H10A119.8
H6AA—C6A—H6AC109.5C12—C11—C10120.29 (16)
H6AB—C6A—H6AC109.5C12—C11—H11A119.9
C1B—N1B—C5B122.09 (16)C10—C11—H11A119.9
C1B—N1B—H1NB118 (3)C11—C12—C7119.24 (15)
C5B—N1B—H1NB120 (3)C11—C12—C13120.85 (15)
C1B—N2B—H2NB117 (2)C7—C12—C13119.90 (16)
C1B—N2B—H3NB116.5 (19)O1—C13—O2124.18 (16)
H2NB—N2B—H3NB126 (3)O1—C13—C12118.25 (16)
N2B—C1B—N1B118.66 (16)O2—C13—C12117.57 (16)
N2B—C1B—C2B123.14 (18)O3—C14—O4124.01 (16)
N1B—C1B—C2B118.19 (18)O3—C14—C9117.32 (16)
C3B—C2B—C1B120.39 (19)O4—C14—C9118.66 (16)
C3B—C2B—H2BA119.8H1W1—O1W—H2W1103 (3)
C1B—C2B—H2BA119.8H1W2—O2W—H2W2101 (3)
C2B—C3B—C4B119.60 (17)H1W3—O3W—H2W3106 (4)
C2B—C3B—C6B119.81 (19)H1W4—O4W—H2W4106 (3)
C5A—N1A—C1A—N2A179.05 (18)C3B—C4B—C5B—N1B0.6 (3)
C5A—N1A—C1A—C2A1.0 (3)C12—C7—C8—C90.9 (3)
N2A—C1A—C2A—C3A178.48 (19)C7—C8—C9—C101.5 (3)
N1A—C1A—C2A—C3A1.6 (3)C7—C8—C9—C14178.37 (18)
C1A—C2A—C3A—C4A1.0 (3)C8—C9—C10—C112.2 (3)
C1A—C2A—C3A—C6A178.99 (18)C14—C9—C10—C11177.62 (17)
C2A—C3A—C4A—C5A0.2 (3)C9—C10—C11—C120.5 (3)
C6A—C3A—C4A—C5A179.84 (18)C10—C11—C12—C71.9 (3)
C1A—N1A—C5A—C4A0.2 (3)C10—C11—C12—C13176.98 (17)
C3A—C4A—C5A—N1A0.8 (3)C8—C7—C12—C112.6 (3)
C5B—N1B—C1B—N2B178.77 (19)C8—C7—C12—C13176.24 (17)
C5B—N1B—C1B—C2B0.2 (3)C11—C12—C13—O1161.04 (18)
N2B—C1B—C2B—C3B179.74 (19)C7—C12—C13—O117.8 (3)
N1B—C1B—C2B—C3B0.8 (3)C11—C12—C13—O218.0 (3)
C1B—C2B—C3B—C4B1.1 (3)C7—C12—C13—O2163.16 (17)
C1B—C2B—C3B—C6B179.48 (19)C8—C9—C14—O35.2 (3)
C2B—C3B—C4B—C5B0.4 (3)C10—C9—C14—O3174.63 (18)
C6B—C3B—C4B—C5B178.8 (2)C8—C9—C14—O4175.75 (19)
C1B—N1B—C5B—C4B0.9 (3)C10—C9—C14—O44.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O20.95 (3)1.75 (3)2.698 (2)172 (3)
N2A—H2NA···O10.83 (3)2.10 (3)2.906 (2)165 (3)
N2A—H3NA···O1i0.91 (3)1.97 (3)2.866 (2)171 (2)
N1B—H1NB···O4ii1.02 (5)1.72 (5)2.723 (2)169 (3)
N2B—H2NB···O3ii0.90 (4)1.88 (4)2.765 (2)170 (3)
N2B—H3NB···O3Wiii0.93 (3)1.97 (3)2.894 (2)174 (3)
O1W—H1W1···O3W0.76 (4)2.03 (3)2.781 (2)174 (4)
O1W—H2W1···O4W0.89 (4)1.91 (4)2.779 (2)167 (3)
O2W—H1W2···O4iv0.88 (3)1.86 (3)2.741 (2)175 (3)
O2W—H2W2···O4W0.88 (3)1.90 (3)2.772 (2)176 (3)
O3W—H1W3···O3v0.77 (4)1.95 (4)2.721 (2)178 (5)
O3W—H2W3···O1Wvi0.86 (4)1.89 (3)2.742 (2)168 (3)
O4W—H1W4···O20.92 (4)1.81 (4)2.689 (2)161 (3)
O4W—H2W4···O2Wvi0.80 (3)1.93 (3)2.716 (2)171 (3)
Symmetry codes: (i) x, y+1, z1/2; (ii) x1/2, y+1/2, z3/2; (iii) x, y, z1/2; (iv) x, y, z1; (v) x1/2, y+1/2, z1/2; (vi) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula2C6H9N2+·C8H4O42·4H2O
Mr454.48
Crystal system, space groupMonoclinic, Cc
Temperature (K)100
a, b, c (Å)17.6290 (16), 13.8091 (13), 9.2518 (9)
β (°) 93.940 (2)
V3)2246.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.45 × 0.27 × 0.07
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.955, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
12651, 3275, 3004
Rint0.031
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.101, 1.06
No. of reflections3275
No. of parameters347
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.20

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O20.95 (3)1.75 (3)2.698 (2)172 (3)
N2A—H2NA···O10.83 (3)2.10 (3)2.906 (2)165 (3)
N2A—H3NA···O1i0.91 (3)1.97 (3)2.866 (2)171 (2)
N1B—H1NB···O4ii1.02 (5)1.72 (5)2.723 (2)169 (3)
N2B—H2NB···O3ii0.90 (4)1.88 (4)2.765 (2)170 (3)
N2B—H3NB···O3Wiii0.93 (3)1.97 (3)2.894 (2)174 (3)
O1W—H1W1···O3W0.76 (4)2.03 (3)2.781 (2)174 (4)
O1W—H2W1···O4W0.89 (4)1.91 (4)2.779 (2)167 (3)
O2W—H1W2···O4iv0.88 (3)1.86 (3)2.741 (2)175 (3)
O2W—H2W2···O4W0.88 (3)1.90 (3)2.772 (2)176 (3)
O3W—H1W3···O3v0.77 (4)1.95 (4)2.721 (2)178 (5)
O3W—H2W3···O1Wvi0.86 (4)1.89 (3)2.742 (2)168 (3)
O4W—H1W4···O20.92 (4)1.81 (4)2.689 (2)161 (3)
O4W—H2W4···O2Wvi0.80 (3)1.93 (3)2.716 (2)171 (3)
Symmetry codes: (i) x, y+1, z1/2; (ii) x1/2, y+1/2, z3/2; (iii) x, y, z1/2; (iv) x, y, z1; (v) x1/2, y+1/2, z1/2; (vi) x, y, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAakeröy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev. 22, 397–407.  CrossRef CAS Web of Science Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCorna, A., Rey, F., Rius, J., Sabater, M. J. & Valencla, S. (2004). Nature (London), 431, 287–290.  Web of Science PubMed Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDesiraju, G. R. (2007). Angew. Chem. Int. Ed. 46, 8342–8356.  Web of Science CrossRef CAS Google Scholar
First citationDevi, P. & Muthiah, P. T. (2007). Acta Cryst. E63, o4822–o4823.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.  Google Scholar
First citationJeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.  Google Scholar
First citationKatritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.  Google Scholar
First citationLynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748–754.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMukherjee, P. S., Das, N., Kryschenko, Y. K., Arif, A. M. & Stang, P. J. (2004). J. Am. Chem. Soc. 126, 2464–2473.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.  Google Scholar
First citationScheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.  Google Scholar
First citationSerre, C., Mellot-Draznieks, C., Surblé, S., Audebrand, N., Filinchuk, Y. & Férey, G. (2007). Science, 315, 1828–1831.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpencer, E. C., Baby Mariyatra, M., Howard, J. A. K. & Panchanatheswaran, K. (2004). Acta Cryst. C60, o839–o842.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSun, D., Cao, R., Liang, Y., Hong, M., Su, W. & Weng, J. (2000). Acta Cryst. C56, e240–e241.  CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds