organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(4-Bromo­phen­yl)-3-(2-meth­­oxy­phen­yl)prop-2-en-1-one

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, cDepartment of Studies in Physics, Mangalore University, Mangalagangotri 574 199, India, and dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 5 July 2010; accepted 6 July 2010; online 14 July 2010)

In the title compound, C16H13BrO2, the dihedral angle between the mean planes of the meth­oxy- and bromo-substituted benzene rings is 24.6 (1)°. The angles between the mean plane of the prop-2-en-1-one group and the 4-bromo­phenyl and 2-meth­oxy­phenyl ring planes are 18.8 (1) and 6.0 (1)°, respectively.

Related literature

For the use of chalcone compounds or chalcone-rich plant extracts as drugs or food preservatives, see: Dhar (1981[Dhar, D. N. (1981). The Chemistry of Chalcones and Related Compounds. New York: John Wiley.]). For the anti-inflammatory, anti­microbial, anti­fungal, anti­oxidant, cytotoxic, and anti­cancer activity of chalcones, see: Dimmock et al. (1999[Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.]). For their high anti­malarial activity, see: Troeberg et al. (2000[Troeberg, L., Chen, X., Flaherty, T. M., Morty, R. E., Cheng, M., Springer, H. C., McKerrow, J. H., Kenyon, G. L., Lonsdale-Eccles, J. D., Coetzer, T. H. T. & Cohen, F. E. (2000). Mol. Med. 6, 660-669.]). For SHG conversion efficiencies, see: Sarojini et al. (2006[Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. J. (2006). J. Cryst. Growth, 295, 54-59.]). For related structures, see: Arai et al. (1994[Arai, H., Higashigaki, Y., Goto, M. & Yano, S. (1994). Jpn J. Appl. Phys. 33, 5755-5758.]); Shettigar et al. (2006[Shettigar, V., Rosli, M. M., Fun, H.-K., Razak, I. A., Patil, P. S. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o4128-o4129.]); Rosli et al. (2006[Rosli, M. M., Patil, P. S., Fun, H.-K., Razak, I. A., Dharmaprakash, S. M. & Karthikeyan, M. S. (2006). Acta Cryst. E62, o1460-o1462.]); Ng et al. (2006[Ng, S.-L., Shettigar, V., Razak, I. A., Fun, H.-K., Patil, P. S. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o1570-o1572.]); Harrison et al. (2006[Harrison, W. T. A., Bindya, S., Yathirajan, H. S., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o5293-o5295.]); Patil et al. (2007[Patil, P. S., Chantrapromma, S., Fun, H.-K., Dharmaprakash, S. M. & Babu, H. B. R. (2007). Acta Cryst. E63, o2612.]); Li et al. (1992[Li, Z.-D., Huang, L.-R., Su, G.-B. & Wang, H.-J. (1992). Jiegou Huaxue, 11, 1-4.]); Loh et al. (2010[Loh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2010). Acta Cryst. E66, o353-o354.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13BrO2

  • Mr = 317.17

  • Monoclinic, P 21 /n

  • a = 17.729 (4) Å

  • b = 4.3505 (9) Å

  • c = 19.335 (4) Å

  • β = 116.93 (3)°

  • V = 1329.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.09 mm−1

  • T = 100 K

  • 0.55 × 0.50 × 0.35 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]) Tmin = 0.674, Tmax = 0.746

  • 19884 measured reflections

  • 4121 independent reflections

  • 3635 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.070

  • S = 1.32

  • 4121 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Chalcones belong to the flavonoid family. Chemically they consist of open-chain flavonoids in which the two aromatic rings are joined by a three-carbon, α-unsaturated carbonyl system. A vast number of naturally occurring chalcones are polyhydroxylated in the aryl rings. The radical quenching properties of the phenolic groups present in many chalcones have raised interest in using the compounds or chalcone rich plant extracts as drugs or food preservatives (Dhar et al., 1981). Chalcones have been reported to possess many useful properties, including anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, anticancer activities (Dimmock et al., 1999). Many chalcones have been described for their high antimalarial activity (Troeberg et al., 2000). Chalcones are finding applications as organic non-linear optical materials (NLO) due to their good SHG conversion efficiencies (Sarojini et al., 2006). The crystal structures of closely related chalcones, viz. 4-bromo-4'-methoxychalcone (Li et al., 1992), 4-bromo-4'-methoxychalcone (Arai et al., 1994), 1-(4-bromophenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (Shettigar et al., 2006), 1-(4-bromophenyl)-3-(2,5-dimethoxyphenyl) prop-2-en-1-one, (Rosli et al., 2006), 1-(4-bromophenyl)-3-(3,4-dimethoxyphenyl)prop-2-en-1-one (Ng et al., 2006), (2E)-3-(1,3-benzodioxol-5-yl)-1-(4-bromophenyl)prop-2-en-1-one (Harrison et al., 2006), and 1-(4-bromophenyl)-3-(3-methoxyphenyl)prop-2-en-1-one (Patil et al., 2007) and (E)-1-(6-chloro-2-methyl-4-phenyl-3-quinolyl)-3- (2-methoxyphenyl)prop-2-en-1-one (Loh et al., 2010) have been reported. Hence in continuation with the synthesis and crystal structure determination and also owing to the importance of chalcones, the title new bromo chalcone is synthesized and its crystal structure is reported.

The title compound is a chalcone derivative with 4-bromophenyl and 2-methoxy rings bonded at the opposite ends of a propenone group, the biologically active region (Fig 1). The dihedral angle between the mean planes of the bromo and methoxy substituted benzene rings is 24.6 (1)°. The methoxy (C16—O2—C15—C14 = -2.5 (2)°) substituted benzene ring is virtually planar to the prop-2-en-1-one group (dihedral angle = 6.0 (1)°), whereas the bromo substituted benzene ring attached to the prop-2-en-1-one is slightly twisted (O1—C7—C1—C2 = -16.7 (2)°). Bond distances and angles are in normal ranges (Allen et al., 1987).

Related literature top

For the use of chalcone compounds or chalcone-rich plant extracts as drugs or food preservatives, see: Dhar et al. (1981). For the anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, and anticancer activity of chalcones, see: Dimmock et al. (1999). For their high antimalarial activity, see: Troeberg et al. (2000). For SHG conversion efficiencies, see: Sarojini et al. (2006). For related structures, see: Arai et al. (1994); Shettigar et al. (2006); Rosli et al. (2006); Ng et al. (2006); Harrison et al. (2006); Patil et al. (2007); Li et al. (1992); Loh et al. (2010). For standard bond lengths, see: Allen et al. (1987).

Experimental top

To a mixture of 4-bromoacetophenone (0.01 mol, 1.99 g) and 2-methoxybenzaldehyde (0.01 mol, 1.36 g) in 30 ml of ethanol, 7 ml of 30% KOH solution was added. The mixture was stirred for 6 h at room temperature and the precipitate was collected by filtration and purified by recrystallization from ethanol. Single crystals were grown from a acetone-toluene(1:1 v/v) mixture by the slow evaporation method (m.p.329–331 K). Analytical data: found (calculated): C 60.48 (60.59%), H 4.27 (4.13%).

Refinement top

H atoms were placed in their calculated positions and then refined using a riding model with C–H = 0.93–0.96 Å, and with Uiso(H) = 1.18–1.51Ueq(C).

Structure description top

Chalcones belong to the flavonoid family. Chemically they consist of open-chain flavonoids in which the two aromatic rings are joined by a three-carbon, α-unsaturated carbonyl system. A vast number of naturally occurring chalcones are polyhydroxylated in the aryl rings. The radical quenching properties of the phenolic groups present in many chalcones have raised interest in using the compounds or chalcone rich plant extracts as drugs or food preservatives (Dhar et al., 1981). Chalcones have been reported to possess many useful properties, including anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, anticancer activities (Dimmock et al., 1999). Many chalcones have been described for their high antimalarial activity (Troeberg et al., 2000). Chalcones are finding applications as organic non-linear optical materials (NLO) due to their good SHG conversion efficiencies (Sarojini et al., 2006). The crystal structures of closely related chalcones, viz. 4-bromo-4'-methoxychalcone (Li et al., 1992), 4-bromo-4'-methoxychalcone (Arai et al., 1994), 1-(4-bromophenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (Shettigar et al., 2006), 1-(4-bromophenyl)-3-(2,5-dimethoxyphenyl) prop-2-en-1-one, (Rosli et al., 2006), 1-(4-bromophenyl)-3-(3,4-dimethoxyphenyl)prop-2-en-1-one (Ng et al., 2006), (2E)-3-(1,3-benzodioxol-5-yl)-1-(4-bromophenyl)prop-2-en-1-one (Harrison et al., 2006), and 1-(4-bromophenyl)-3-(3-methoxyphenyl)prop-2-en-1-one (Patil et al., 2007) and (E)-1-(6-chloro-2-methyl-4-phenyl-3-quinolyl)-3- (2-methoxyphenyl)prop-2-en-1-one (Loh et al., 2010) have been reported. Hence in continuation with the synthesis and crystal structure determination and also owing to the importance of chalcones, the title new bromo chalcone is synthesized and its crystal structure is reported.

The title compound is a chalcone derivative with 4-bromophenyl and 2-methoxy rings bonded at the opposite ends of a propenone group, the biologically active region (Fig 1). The dihedral angle between the mean planes of the bromo and methoxy substituted benzene rings is 24.6 (1)°. The methoxy (C16—O2—C15—C14 = -2.5 (2)°) substituted benzene ring is virtually planar to the prop-2-en-1-one group (dihedral angle = 6.0 (1)°), whereas the bromo substituted benzene ring attached to the prop-2-en-1-one is slightly twisted (O1—C7—C1—C2 = -16.7 (2)°). Bond distances and angles are in normal ranges (Allen et al., 1987).

For the use of chalcone compounds or chalcone-rich plant extracts as drugs or food preservatives, see: Dhar et al. (1981). For the anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, and anticancer activity of chalcones, see: Dimmock et al. (1999). For their high antimalarial activity, see: Troeberg et al. (2000). For SHG conversion efficiencies, see: Sarojini et al. (2006). For related structures, see: Arai et al. (1994); Shettigar et al. (2006); Rosli et al. (2006); Ng et al. (2006); Harrison et al. (2006); Patil et al. (2007); Li et al. (1992); Loh et al. (2010). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of C16H13BrO2, showing the atom labeling scheme and 50% probability displacement ellipsoids.
(E)-1-(4-Bromophenyl)-3-(2-methoxyphenyl)prop-2-en-1-one top
Crystal data top
C16H13BrO2F(000) = 640
Mr = 317.17Dx = 1.584 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ynCell parameters from 6810 reflections
a = 17.729 (4) Åθ = 2.4–31.2°
b = 4.3505 (9) ŵ = 3.09 mm1
c = 19.335 (4) ÅT = 100 K
β = 116.93 (3)°Block, yellow
V = 1329.6 (5) Å30.55 × 0.50 × 0.35 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4121 independent reflections
Radiation source: fine-focus sealed tube3635 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 31.3°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2525
Tmin = 0.674, Tmax = 0.746k = 66
19884 measured reflectionsl = 2728
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.32 w = 1/[σ2(Fo2) + (0.0363P)2]
where P = (Fo2 + 2Fc2)/3
4121 reflections(Δ/σ)max = 0.002
173 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C16H13BrO2V = 1329.6 (5) Å3
Mr = 317.17Z = 4
Monoclinic, P21/nMo Kα radiation
a = 17.729 (4) ŵ = 3.09 mm1
b = 4.3505 (9) ÅT = 100 K
c = 19.335 (4) Å0.55 × 0.50 × 0.35 mm
β = 116.93 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4121 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3635 reflections with I > 2σ(I)
Tmin = 0.674, Tmax = 0.746Rint = 0.025
19884 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.32Δρmax = 0.67 e Å3
4121 reflectionsΔρmin = 0.22 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.945523 (8)0.41655 (3)0.378517 (7)0.02597 (6)
O10.68442 (7)0.3686 (3)0.49024 (6)0.0336 (2)
O20.43404 (7)0.9395 (2)0.39362 (6)0.0264 (2)
C10.73529 (8)0.1076 (3)0.41311 (7)0.0189 (2)
C20.81716 (8)0.0874 (3)0.47366 (7)0.0220 (2)
H20.82980.18290.52070.026*
C30.88004 (8)0.0719 (3)0.46513 (7)0.0231 (3)
H30.93460.08230.50560.028*
C40.85962 (8)0.2161 (3)0.39466 (7)0.0205 (2)
C50.77855 (8)0.2084 (3)0.33435 (7)0.0218 (2)
H50.76570.31080.28810.026*
C60.71655 (8)0.0455 (3)0.34384 (7)0.0208 (2)
H60.66180.03830.30350.025*
C70.67125 (8)0.2954 (3)0.42458 (7)0.0217 (2)
C80.59523 (8)0.3990 (3)0.35504 (7)0.0220 (2)
H80.58690.33520.30620.026*
C90.53875 (9)0.5816 (3)0.36129 (7)0.0228 (2)
H90.54720.62430.41140.027*
C100.46472 (7)0.7234 (3)0.29846 (7)0.0200 (2)
C110.44482 (8)0.6850 (3)0.22024 (7)0.0236 (2)
H110.47920.56180.20700.028*
C120.37500 (9)0.8268 (3)0.16228 (7)0.0261 (3)
H120.36270.79900.11060.031*
C130.32339 (9)1.0104 (3)0.18148 (8)0.0264 (3)
H130.27641.10520.14240.032*
C140.34131 (8)1.0537 (3)0.25838 (8)0.0242 (3)
H140.30651.17750.27090.029*
C150.41145 (8)0.9114 (3)0.31666 (7)0.0204 (2)
C160.38472 (10)1.1365 (3)0.41671 (9)0.0305 (3)
H16A0.38831.34400.40160.046*
H16B0.40601.12690.47200.046*
H16C0.32681.07060.39200.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02597 (8)0.02800 (8)0.02547 (8)0.00666 (5)0.01300 (6)0.00312 (5)
O10.0330 (5)0.0476 (6)0.0203 (4)0.0095 (5)0.0120 (4)0.0023 (4)
O20.0279 (5)0.0312 (5)0.0211 (4)0.0059 (4)0.0120 (4)0.0031 (4)
C10.0210 (6)0.0194 (5)0.0173 (5)0.0001 (4)0.0097 (4)0.0022 (4)
C20.0236 (6)0.0248 (6)0.0168 (5)0.0009 (5)0.0086 (5)0.0000 (4)
C30.0215 (6)0.0266 (6)0.0189 (5)0.0007 (5)0.0071 (5)0.0027 (4)
C40.0236 (6)0.0185 (5)0.0217 (5)0.0022 (4)0.0122 (4)0.0037 (4)
C50.0262 (6)0.0204 (6)0.0187 (5)0.0006 (5)0.0101 (5)0.0001 (4)
C60.0217 (6)0.0203 (6)0.0184 (5)0.0017 (4)0.0074 (4)0.0001 (4)
C70.0226 (6)0.0233 (6)0.0203 (5)0.0004 (5)0.0108 (4)0.0001 (4)
C80.0222 (6)0.0245 (6)0.0193 (5)0.0009 (5)0.0092 (4)0.0015 (4)
C90.0222 (6)0.0267 (6)0.0200 (5)0.0026 (5)0.0100 (5)0.0039 (4)
C100.0187 (5)0.0203 (5)0.0214 (5)0.0033 (4)0.0094 (4)0.0028 (4)
C110.0253 (6)0.0236 (6)0.0234 (6)0.0033 (5)0.0124 (5)0.0046 (5)
C120.0304 (7)0.0261 (6)0.0190 (5)0.0047 (5)0.0089 (5)0.0015 (5)
C130.0233 (6)0.0246 (6)0.0260 (6)0.0021 (5)0.0064 (5)0.0015 (5)
C140.0217 (6)0.0222 (6)0.0284 (6)0.0010 (5)0.0110 (5)0.0013 (5)
C150.0203 (6)0.0197 (6)0.0217 (6)0.0038 (4)0.0100 (5)0.0031 (4)
C160.0345 (7)0.0325 (7)0.0310 (7)0.0052 (6)0.0206 (6)0.0036 (5)
Geometric parameters (Å, º) top
Br1—C41.8993 (13)C8—H80.93
O1—C71.2243 (16)C9—C101.4611 (18)
O2—C151.3600 (15)C9—H90.93
O2—C161.4325 (16)C10—C111.3987 (17)
C1—C61.3945 (17)C10—C151.4090 (17)
C1—C21.3950 (18)C11—C121.383 (2)
C1—C71.4946 (17)C11—H110.93
C2—C31.3846 (19)C12—C131.386 (2)
C2—H20.93C12—H120.93
C3—C41.3907 (17)C13—C141.3853 (19)
C3—H30.93C13—H130.93
C4—C51.3817 (18)C14—C151.3894 (18)
C5—C61.3882 (18)C14—H140.93
C5—H50.93C16—H16A0.96
C6—H60.93C16—H16B0.96
C7—C81.4787 (18)C16—H16C0.96
C8—C91.3259 (18)
C15—O2—C16118.42 (11)C8—C9—H9116.3
C6—C1—C2118.74 (12)C10—C9—H9116.3
C6—C1—C7122.47 (11)C11—C10—C15118.03 (11)
C2—C1—C7118.79 (11)C11—C10—C9122.71 (12)
C3—C2—C1121.29 (12)C15—C10—C9119.25 (11)
C3—C2—H2119.4C12—C11—C10121.20 (13)
C1—C2—H2119.4C12—C11—H11119.4
C2—C3—C4118.44 (12)C10—C11—H11119.4
C2—C3—H3120.8C11—C12—C13119.82 (12)
C4—C3—H3120.8C11—C12—H12120.1
C5—C4—C3121.71 (12)C13—C12—H12120.1
C5—C4—Br1118.52 (9)C12—C13—C14120.49 (13)
C3—C4—Br1119.72 (10)C12—C13—H13119.8
C4—C5—C6118.96 (11)C14—C13—H13119.8
C4—C5—H5120.5C13—C14—C15119.74 (13)
C6—C5—H5120.5C13—C14—H14120.1
C5—C6—C1120.82 (12)C15—C14—H14120.1
C5—C6—H6119.6O2—C15—C14124.01 (12)
C1—C6—H6119.6O2—C15—C10115.27 (11)
O1—C7—C8122.06 (12)C14—C15—C10120.73 (12)
O1—C7—C1119.67 (12)O2—C16—H16A109.5
C8—C7—C1118.20 (11)O2—C16—H16B109.5
C9—C8—C7120.98 (12)H16A—C16—H16B109.5
C9—C8—H8119.5O2—C16—H16C109.5
C7—C8—H8119.5H16A—C16—H16C109.5
C8—C9—C10127.46 (12)H16B—C16—H16C109.5
C6—C1—C2—C32.17 (18)C7—C8—C9—C10174.50 (12)
C7—C1—C2—C3177.12 (11)C8—C9—C10—C111.3 (2)
C1—C2—C3—C40.75 (18)C8—C9—C10—C15179.82 (12)
C2—C3—C4—C51.24 (18)C15—C10—C11—C120.01 (19)
C2—C3—C4—Br1176.31 (9)C9—C10—C11—C12178.89 (13)
C3—C4—C5—C61.73 (18)C10—C11—C12—C130.1 (2)
Br1—C4—C5—C6175.85 (9)C11—C12—C13—C140.2 (2)
C4—C5—C6—C10.24 (18)C12—C13—C14—C150.2 (2)
C2—C1—C6—C51.67 (18)C16—O2—C15—C142.45 (19)
C7—C1—C6—C5177.60 (11)C16—O2—C15—C10177.64 (11)
C6—C1—C7—O1164.07 (13)C13—C14—C15—O2179.85 (12)
C2—C1—C7—O116.66 (18)C13—C14—C15—C100.06 (19)
C6—C1—C7—C818.73 (18)C11—C10—C15—O2179.93 (11)
C2—C1—C7—C8160.54 (11)C9—C10—C15—O21.13 (17)
O1—C7—C8—C91.3 (2)C11—C10—C15—C140.01 (18)
C1—C7—C8—C9175.87 (12)C9—C10—C15—C14178.95 (11)

Experimental details

Crystal data
Chemical formulaC16H13BrO2
Mr317.17
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)17.729 (4), 4.3505 (9), 19.335 (4)
β (°) 116.93 (3)
V3)1329.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)3.09
Crystal size (mm)0.55 × 0.50 × 0.35
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.674, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
19884, 4121, 3635
Rint0.025
(sin θ/λ)max1)0.730
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.070, 1.32
No. of reflections4121
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.22

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

JPJ thanks Dr Matthias Zeller and the Department of Chemistry, Youngstown State University (YSU), for their assistance with the data collection. The diffractometer was funded by NSF grant No. 0087210, by Ohio Board of Regents grant CAP-491, and by YSU. BN thanks UGC for a SAP chemical grant and KPK thanks the UGC for a teacher fellowship under the Faculty Improvement Programme. HSY thanks the UOM for sabbatical leave.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationArai, H., Higashigaki, Y., Goto, M. & Yano, S. (1994). Jpn J. Appl. Phys. 33, 5755–5758.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationDhar, D. N. (1981). The Chemistry of Chalcones and Related Compounds. New York: John Wiley.  Google Scholar
First citationDimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149.  Web of Science PubMed CAS Google Scholar
First citationHarrison, W. T. A., Bindya, S., Yathirajan, H. S., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o5293–o5295.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, Z.-D., Huang, L.-R., Su, G.-B. & Wang, H.-J. (1992). Jiegou Huaxue, 11, 1–4.  Google Scholar
First citationLoh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2010). Acta Cryst. E66, o353–o354.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNg, S.-L., Shettigar, V., Razak, I. A., Fun, H.-K., Patil, P. S. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o1570–o1572.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatil, P. S., Chantrapromma, S., Fun, H.-K., Dharmaprakash, S. M. & Babu, H. B. R. (2007). Acta Cryst. E63, o2612.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRosli, M. M., Patil, P. S., Fun, H.-K., Razak, I. A., Dharmaprakash, S. M. & Karthikeyan, M. S. (2006). Acta Cryst. E62, o1460–o1462.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. J. (2006). J. Cryst. Growth, 295, 54–59.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShettigar, V., Rosli, M. M., Fun, H.-K., Razak, I. A., Patil, P. S. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o4128–o4129.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTroeberg, L., Chen, X., Flaherty, T. M., Morty, R. E., Cheng, M., Springer, H. C., McKerrow, J. H., Kenyon, G. L., Lonsdale-Eccles, J. D., Coetzer, T. H. T. & Cohen, F. E. (2000). Mol. Med. 6, 660–669.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds