organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2,4-Di­nitro­benz­yl)pyridinium 2-hy­dr­oxy-3,5-di­nitro­benzoate

aFaculty of Science and Technology, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia, and bSchool of Biomolecular and Physical Sciences, Griffith University, Nathan, Queensland 4111, Australia
*Correspondence e-mail: g.smith@qut.edu.au

(Received 10 June 2010; accepted 24 June 2010; online 3 July 2010)

In the structure of the title salt, C12H10N3O4+·C7H3N2O7, the cations and the anions are linked by a single N+—H⋯Ocarbox­yl hydrogen bond, the discrete cation–anion unit having no inter­molecular associations other than weak cation–anion aromatic ring ππ inter­actions [ring centroid separation = 3.7320 (14) Å] and a number of weak inter-unit aromatic C—H⋯O contacts. An intramolecular C—H⋯O hydrox­yl–carboxyl hydrogen bond occurs in the anion.

Related literature

For structural data on 2-(2,4-dinitro­benz­yl)pyridine and related compounds, see: Seff & Trueblood (1968[Seff, K. & Trueblood, K. N. (1968). Acta Cryst. B24, 1406-1415.]); Scherl et al. (1996[Scherl, M., Haarer, D., Fischer, J., DeCian, A., Lehn, J.-M. & Eichen, Y. (1996). J. Phys. Chem. 100, 16175-16186.]); Naumov et al. (2002[Naumov, P., Sekine, A., Uekusa, H. & Ohashi, Y. (2002). J. Am. Chem. Soc. 124, 8540-8541.], 2005[Naumov, P., Sakurai, K., Ishikawa, T., Takahashi, J., Koshihawa, S. & Ohashi, Y. (2005). J. Phys. Chem. A, 109, 7264-7275.]); Smith, Wermuth & Young (2010[Smith, G., Wermuth, U. D. & Young, D. J. (2010). Acta Cryst. E66, o1184-o1185.]). For some structures of 3,5-dinitro­salicylic acid salts of Lewis bases, see: Smith et al. (2002[Smith, G., Wermuth, U. D., Bott, R. C., Healy, P. C. & White, J. M. (2002). Aust. J. Chem. 55, 349-356.], 2003[Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2003). Aust. J. Chem. 56, 707-713.], 2007[Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2007). Aust. J. Chem. 60, 264-267.]); Smith, Cotton et al. (2010[Smith, G., Cotton, M. S., Wermuth, U. D. & Boyd, S. E. (2010). Acta Cryst. C66, o252-o255.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N3O4+·C7H3N2O7

  • Mr = 487.34

  • Monoclinic, P 21 /c

  • a = 7.1550 (2) Å

  • b = 21.7356 (5) Å

  • c = 13.2080 (4) Å

  • β = 104.424 (3)°

  • V = 1989.34 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 200 K

  • 0.40 × 0.35 × 0.18 mm

Data collection
  • Oxford Diffraction Gemini-S CCD-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.960, Tmax = 0.982

  • 13759 measured reflections

  • 3910 independent reflections

  • 2865 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.153

  • S = 1.08

  • 3910 reflections

  • 320 parameters

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O11A 0.91 1.72 2.627 (3) 172
O2A—H2A⋯O12A 0.93 1.61 2.476 (3) 152
C3—H3⋯O11Ai 0.93 2.48 3.246 (3) 140
C5—H5⋯O31Aii 0.93 2.56 3.051 (4) 114
C6—H6⋯O31Aii 0.93 2.48 3.020 (4) 117
C51—H51⋯O51Aiii 0.93 2.55 3.137 (4) 122
C61—H61⋯O51Aiii 0.93 2.54 3.141 (3) 123
C71—H72⋯O11A 0.97 2.55 3.247 (3) 129
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [x-1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The Lewis base 2-(2,4-dinitrobenzyl)pyridine (DNBP) is unusual because of its photochromic properties, undergoing a reversible solid-state colour change from colourless to deep blue on irradiation with light of wavelength 400 nm or less. This is due to two-photon excitation giving nitro-assisted proton transfer (NAPT) involving an oxygen of the o-nitro substituent group and the pyridine N atom (Naumov et al., 2002). The structures of both the colourless form (Seff & Trueblood, 1968; Scherl et al., 1996) and the blue form (Naumov et al., 2002), have been determined as well, as that of the chloride (Naumov et al., 2005).

Our reaction of DNBP with a number of aromatic carboxylic and sulfonic acids in aqueous ethanol has previously provided only one crystalline compound: bis[2-(2,4-dinitrobenzyl)pyridinium] biphenyl-4,4'-disulfonate trihydrate, for which the structure was reported (Smith, Wermuth & Young, 2010). A second crystalline compound was subsequently obtained from the reaction of DNBP with 3,5-dinitrosalicylic acid (DNSA), the title compound anhydrous C12H10N3O4+.C7H3N2O7- (I), the structure of which is reported here. DNSA has been very useful as an acid capable of producing crystalline salts with a range of both aliphatic and aromatic Lewis bases and the structures of a large number of these are reported in the crystallographic literature, e.g. Smith et al. (2002, 2003, 2007) and Smith, Cotton et al. (2010).

With compound (I) (Fig. 1), a single cation–anion N+H···Ocarboxyl hydrogen bond together with a weak aliphatic CH···Ocarboxyl association (C71–H···O11A) (Table 1), form discrete cation–anion units. These units have no intermolecular interactions other than mostly weak aromatic C–H···O contacts [one is strong: C6–H···O31Aiii: symmetry code (iii), -x + 1, -y + 1, -z + 1], and also weak cation–anion ππ aromatic ring associations [ring centroid separation for C11–C61 to C1A–C6A, 3.7320 (14) Å] down the a axial direction (Fig. 2).

With the DNBP cation both nitro groups are rotated out of the plane of the benzene ring [torsion angles C11–C21–N21–O22, -151.4 (2)° and C31–C41–N41–O42, 149.9 (2)°]. In the DNSA anion, within the intramolecular hydroxyl–carboxyl hydrogen bond, the H atom is located on the hydroxyl group rather than being anti-related on the carboxyl group. (I) is only one of the ca 30% of the known examples of DNSA salts having this (Smith et al., 2007). The carboxyl group, as expected, is close to planar with the benzene ring [torsion angle C2A–C1A–C11A–O11A, 175.0 (2)°], while one nitro group is close to coplanar [torsion angle C4A–C5A–C51A–O52A, 177.6 (2)°], the other being rotated out of the plane [torsion angle C2A–C3A–C31A–O32A, -159.1 (2)°]. In the structure there is a short nonbonded contact across an inversion centre [O42···O42iv, 2.897 (3) Å: symmetry code (iv) -x + 1, -y, -z + 1], this O atom being associated with the large electron density maximum (0.75 e Å-3).

Related literature top

For structural data on 2-(2,4-dinitrobenzyl)pyridine and related compounds, see: Seff & Trueblood (1968); Scherl et al. (1996); Naumov et al. (2002, 2005); Smith, Wermuth & Young (2010). For some structures of 3,5-dinitrosalicylic acid salts of Lewis bases, see: Smith et al. (2002, 2003, 2007); Smith, Cotton et al. (2010).

Experimental top

The title compound was synthesized by heating together under reflux for 10 minutes, 1 mmol quantities of 2-(2,4-dinitrobenzyl)pyridine and 3,5-dinitrosalicylic acid in 50 ml of 50% ethanol–water. After concentration to ca 30 ml, partial room temperature evaporation of the hot-filtered solution gave yellow plates (m.p. 383 K) having 90° yellow–colourless orientational dichroism in the crystals.

Refinement top

The two hydrogen atoms involved in hydrogen-bonding interactions were located by difference methods and were constrained in the refinement with the other H atoms at calculated positions [C–H = 0.93 Å (aromatic) and 0.97 Å (aliphatic)] and with Uiso(H) = 1.2Ueq(C), using a riding-model approximation. There is a larger than normal maximum residual electron density peak (0.75 e Å-3) which is located ca 1.56 Å from the nitro O atom O42).

Structure description top

The Lewis base 2-(2,4-dinitrobenzyl)pyridine (DNBP) is unusual because of its photochromic properties, undergoing a reversible solid-state colour change from colourless to deep blue on irradiation with light of wavelength 400 nm or less. This is due to two-photon excitation giving nitro-assisted proton transfer (NAPT) involving an oxygen of the o-nitro substituent group and the pyridine N atom (Naumov et al., 2002). The structures of both the colourless form (Seff & Trueblood, 1968; Scherl et al., 1996) and the blue form (Naumov et al., 2002), have been determined as well, as that of the chloride (Naumov et al., 2005).

Our reaction of DNBP with a number of aromatic carboxylic and sulfonic acids in aqueous ethanol has previously provided only one crystalline compound: bis[2-(2,4-dinitrobenzyl)pyridinium] biphenyl-4,4'-disulfonate trihydrate, for which the structure was reported (Smith, Wermuth & Young, 2010). A second crystalline compound was subsequently obtained from the reaction of DNBP with 3,5-dinitrosalicylic acid (DNSA), the title compound anhydrous C12H10N3O4+.C7H3N2O7- (I), the structure of which is reported here. DNSA has been very useful as an acid capable of producing crystalline salts with a range of both aliphatic and aromatic Lewis bases and the structures of a large number of these are reported in the crystallographic literature, e.g. Smith et al. (2002, 2003, 2007) and Smith, Cotton et al. (2010).

With compound (I) (Fig. 1), a single cation–anion N+H···Ocarboxyl hydrogen bond together with a weak aliphatic CH···Ocarboxyl association (C71–H···O11A) (Table 1), form discrete cation–anion units. These units have no intermolecular interactions other than mostly weak aromatic C–H···O contacts [one is strong: C6–H···O31Aiii: symmetry code (iii), -x + 1, -y + 1, -z + 1], and also weak cation–anion ππ aromatic ring associations [ring centroid separation for C11–C61 to C1A–C6A, 3.7320 (14) Å] down the a axial direction (Fig. 2).

With the DNBP cation both nitro groups are rotated out of the plane of the benzene ring [torsion angles C11–C21–N21–O22, -151.4 (2)° and C31–C41–N41–O42, 149.9 (2)°]. In the DNSA anion, within the intramolecular hydroxyl–carboxyl hydrogen bond, the H atom is located on the hydroxyl group rather than being anti-related on the carboxyl group. (I) is only one of the ca 30% of the known examples of DNSA salts having this (Smith et al., 2007). The carboxyl group, as expected, is close to planar with the benzene ring [torsion angle C2A–C1A–C11A–O11A, 175.0 (2)°], while one nitro group is close to coplanar [torsion angle C4A–C5A–C51A–O52A, 177.6 (2)°], the other being rotated out of the plane [torsion angle C2A–C3A–C31A–O32A, -159.1 (2)°]. In the structure there is a short nonbonded contact across an inversion centre [O42···O42iv, 2.897 (3) Å: symmetry code (iv) -x + 1, -y, -z + 1], this O atom being associated with the large electron density maximum (0.75 e Å-3).

For structural data on 2-(2,4-dinitrobenzyl)pyridine and related compounds, see: Seff & Trueblood (1968); Scherl et al. (1996); Naumov et al. (2002, 2005); Smith, Wermuth & Young (2010). For some structures of 3,5-dinitrosalicylic acid salts of Lewis bases, see: Smith et al. (2002, 2003, 2007); Smith, Cotton et al. (2010).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom naming scheme for the DNBP cation and the DNSA anion in the asymmetric unit of (I), with the hydrogen bonds shown as a dashed lines. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing of the cation–anion pairs in the unit cell viewed down the a cell direction. Non-interactive H atoms are omitted.
2-(2,4-Dinitrobenzyl)pyridinium 2-hydroxy-3,5-dinitrobenzoate top
Crystal data top
C12H10N3O4+·C7H3N2O7F(000) = 1000
Mr = 487.34Dx = 1.627 Mg m3
Monoclinic, P21/cMelting point: 383 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.1550 (2) ÅCell parameters from 6248 reflections
b = 21.7356 (5) Åθ = 3.1–28.7°
c = 13.2080 (4) ŵ = 0.14 mm1
β = 104.424 (3)°T = 200 K
V = 1989.34 (10) Å3Plate, yellow
Z = 40.40 × 0.35 × 0.18 mm
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
3910 independent reflections
Radiation source: Enhance (Mo) X-ray source2865 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 26.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 85
Tmin = 0.960, Tmax = 0.982k = 2626
13759 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0819P)2 + 0.673P]
where P = (Fo2 + 2Fc2)/3
3910 reflections(Δ/σ)max < 0.001
320 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C12H10N3O4+·C7H3N2O7V = 1989.34 (10) Å3
Mr = 487.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.1550 (2) ŵ = 0.14 mm1
b = 21.7356 (5) ÅT = 200 K
c = 13.2080 (4) Å0.40 × 0.35 × 0.18 mm
β = 104.424 (3)°
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
3910 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2865 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.982Rint = 0.025
13759 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.08Δρmax = 0.75 e Å3
3910 reflectionsΔρmin = 0.32 e Å3
320 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O211.2566 (3)0.22969 (10)0.63986 (18)0.0562 (8)
O221.1932 (4)0.18930 (12)0.48691 (19)0.0733 (10)
O410.7828 (4)0.00564 (10)0.43481 (18)0.0635 (9)
O420.6790 (3)0.02169 (9)0.56819 (19)0.0577 (8)
N10.6649 (3)0.32238 (8)0.69232 (15)0.0274 (6)
N211.1587 (3)0.19783 (10)0.57118 (18)0.0365 (7)
N410.7462 (3)0.01652 (11)0.5177 (2)0.0458 (8)
C20.7755 (3)0.28074 (10)0.75516 (18)0.0267 (7)
C30.7361 (4)0.26743 (11)0.84941 (19)0.0316 (7)
C40.5867 (4)0.29735 (12)0.87819 (19)0.0345 (8)
C50.4801 (4)0.34101 (12)0.8133 (2)0.0376 (8)
C60.5212 (4)0.35297 (12)0.7190 (2)0.0359 (8)
C110.8856 (3)0.19180 (10)0.65949 (17)0.0250 (7)
C210.9877 (3)0.16655 (10)0.59134 (18)0.0268 (7)
C310.9395 (3)0.11127 (11)0.5400 (2)0.0322 (8)
C410.7909 (4)0.07812 (11)0.5632 (2)0.0353 (8)
C510.6845 (4)0.10000 (12)0.6292 (2)0.0359 (8)
C610.7296 (3)0.15746 (11)0.67349 (19)0.0307 (7)
C710.9381 (3)0.25231 (10)0.7169 (2)0.0308 (7)
O2A0.7053 (3)0.51546 (8)0.39374 (15)0.0389 (6)
O11A0.7728 (2)0.34274 (8)0.51916 (13)0.0363 (6)
O12A0.6246 (3)0.43376 (8)0.50643 (15)0.0404 (6)
O31A0.8926 (3)0.60447 (8)0.32114 (17)0.0482 (7)
O32A1.0404 (4)0.57457 (11)0.20856 (19)0.0703 (10)
O51A1.4121 (3)0.38998 (10)0.28140 (17)0.0514 (7)
O52A1.3387 (3)0.32069 (9)0.38239 (19)0.0536 (7)
N31A0.9667 (3)0.56457 (10)0.28107 (17)0.0388 (7)
N51A1.3139 (3)0.37048 (10)0.33857 (18)0.0375 (7)
C1A0.8825 (3)0.42179 (10)0.42470 (17)0.0254 (6)
C2A0.8508 (3)0.48139 (11)0.38128 (18)0.0276 (7)
C3A0.9808 (4)0.50221 (10)0.32341 (18)0.0293 (7)
C4A1.1287 (3)0.46614 (11)0.30776 (18)0.0296 (7)
C5A1.1555 (3)0.40898 (11)0.35306 (18)0.0278 (7)
C6A1.0358 (3)0.38671 (10)0.41266 (18)0.0268 (7)
C11A0.7494 (3)0.39730 (11)0.48798 (18)0.0294 (7)
H10.691000.328800.629000.0330*
H30.809700.238400.893700.0380*
H40.558300.287900.941400.0410*
H50.381700.362100.833000.0450*
H60.449800.382100.673800.0430*
H311.004400.097000.491800.0390*
H510.584900.076800.643500.0430*
H610.652900.173800.714200.0370*
H711.047000.245500.776300.0370*
H720.978500.281200.670500.0370*
H2A0.648000.493800.439200.0470*
H4A1.209200.480200.267200.0350*
H6A1.058900.348300.444300.0320*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O210.0376 (11)0.0622 (13)0.0758 (15)0.0202 (10)0.0272 (11)0.0216 (12)
O220.0767 (17)0.0939 (18)0.0687 (15)0.0332 (14)0.0546 (14)0.0196 (14)
O410.0775 (17)0.0640 (14)0.0585 (14)0.0200 (12)0.0349 (13)0.0309 (12)
O420.0637 (14)0.0356 (11)0.0721 (15)0.0054 (10)0.0135 (12)0.0012 (11)
N10.0292 (10)0.0257 (9)0.0297 (10)0.0008 (8)0.0120 (9)0.0026 (8)
N210.0322 (12)0.0356 (11)0.0477 (13)0.0004 (10)0.0212 (11)0.0017 (11)
N410.0363 (13)0.0420 (13)0.0597 (16)0.0027 (10)0.0132 (12)0.0135 (12)
C20.0264 (12)0.0207 (10)0.0338 (13)0.0042 (9)0.0093 (10)0.0031 (10)
C30.0344 (13)0.0284 (12)0.0306 (13)0.0009 (10)0.0057 (11)0.0015 (10)
C40.0373 (14)0.0405 (14)0.0283 (13)0.0064 (11)0.0133 (11)0.0037 (11)
C50.0367 (14)0.0408 (14)0.0391 (14)0.0066 (12)0.0164 (12)0.0033 (12)
C60.0341 (13)0.0337 (13)0.0412 (14)0.0074 (11)0.0121 (12)0.0054 (11)
C110.0219 (11)0.0259 (11)0.0270 (12)0.0036 (9)0.0055 (9)0.0055 (9)
C210.0223 (11)0.0304 (12)0.0289 (12)0.0020 (9)0.0087 (9)0.0049 (10)
C310.0296 (13)0.0357 (13)0.0335 (13)0.0058 (10)0.0121 (11)0.0016 (11)
C410.0301 (13)0.0322 (13)0.0440 (15)0.0014 (10)0.0098 (11)0.0072 (12)
C510.0292 (13)0.0363 (13)0.0455 (15)0.0065 (11)0.0153 (12)0.0050 (12)
C610.0277 (12)0.0289 (12)0.0393 (13)0.0007 (10)0.0158 (11)0.0019 (11)
C710.0284 (12)0.0265 (12)0.0396 (14)0.0002 (10)0.0123 (11)0.0002 (11)
O2A0.0345 (10)0.0364 (10)0.0512 (11)0.0054 (8)0.0209 (9)0.0012 (8)
O11A0.0406 (10)0.0372 (10)0.0350 (9)0.0063 (8)0.0169 (8)0.0018 (8)
O12A0.0391 (10)0.0429 (10)0.0475 (11)0.0027 (8)0.0266 (9)0.0072 (9)
O31A0.0479 (12)0.0313 (10)0.0636 (13)0.0026 (9)0.0108 (11)0.0013 (9)
O32A0.101 (2)0.0591 (14)0.0630 (15)0.0014 (13)0.0434 (15)0.0203 (12)
O51A0.0386 (11)0.0653 (13)0.0604 (13)0.0026 (9)0.0311 (10)0.0076 (11)
O52A0.0403 (11)0.0374 (11)0.0861 (16)0.0093 (9)0.0215 (11)0.0020 (11)
N31A0.0385 (12)0.0389 (12)0.0385 (12)0.0018 (10)0.0087 (10)0.0062 (10)
N51A0.0249 (11)0.0425 (13)0.0475 (13)0.0001 (9)0.0133 (10)0.0094 (11)
C1A0.0254 (11)0.0286 (11)0.0228 (11)0.0030 (9)0.0073 (9)0.0043 (10)
C2A0.0258 (12)0.0325 (12)0.0255 (12)0.0010 (10)0.0082 (10)0.0051 (10)
C3A0.0316 (13)0.0290 (12)0.0274 (12)0.0018 (10)0.0074 (10)0.0015 (10)
C4A0.0262 (12)0.0385 (13)0.0265 (12)0.0069 (10)0.0113 (10)0.0032 (11)
C5A0.0226 (11)0.0327 (12)0.0288 (12)0.0007 (10)0.0076 (10)0.0091 (10)
C6A0.0265 (12)0.0273 (12)0.0266 (11)0.0024 (9)0.0065 (10)0.0019 (10)
C11A0.0285 (12)0.0352 (13)0.0264 (12)0.0073 (10)0.0104 (10)0.0061 (10)
Geometric parameters (Å, º) top
O21—N211.215 (3)C11—C611.393 (3)
O22—N211.213 (3)C11—C711.518 (3)
O41—N411.211 (3)C21—C311.381 (3)
O42—N411.235 (3)C31—C411.381 (4)
O2A—C2A1.321 (3)C41—C511.377 (4)
O11A—C11A1.253 (3)C51—C611.383 (4)
O12A—C11A1.262 (3)C3—H30.9300
O31A—N31A1.206 (3)C4—H40.9300
O32A—N31A1.222 (3)C5—H50.9300
O51A—N51A1.228 (3)C6—H60.9300
O52A—N51A1.219 (3)C31—H310.9300
O2A—H2A0.9300C51—H510.9300
N1—C61.343 (4)C61—H610.9300
N1—C21.344 (3)C71—H710.9700
N21—C211.481 (3)C71—H720.9700
N41—C411.470 (3)C1A—C6A1.377 (3)
N1—H10.9100C1A—C11A1.512 (3)
N31A—C3A1.460 (3)C1A—C2A1.412 (3)
N51A—C5A1.459 (3)C2A—C3A1.417 (4)
C2—C711.511 (3)C3A—C4A1.373 (4)
C2—C31.374 (3)C4A—C5A1.372 (3)
C3—C41.383 (4)C5A—C6A1.387 (3)
C4—C51.375 (4)C4A—H4A0.9300
C5—C61.374 (4)C6A—H6A0.9300
C11—C211.405 (3)
C2A—O2A—H2A106.00C5—C4—H4120.00
C2—N1—C6122.9 (2)C3—C4—H4120.00
O21—N21—C21118.4 (2)C6—C5—H5121.00
O22—N21—C21117.5 (2)C4—C5—H5120.00
O21—N21—O22124.1 (3)N1—C6—H6120.00
O41—N41—O42123.9 (2)C5—C6—H6120.00
O42—N41—C41117.8 (2)C41—C31—H31121.00
O41—N41—C41118.3 (2)C21—C31—H31121.00
C6—N1—H1121.00C41—C51—H51121.00
C2—N1—H1116.00C61—C51—H51121.00
O31A—N31A—O32A122.6 (2)C11—C61—H61119.00
O31A—N31A—C3A119.7 (2)C51—C61—H61119.00
O32A—N31A—C3A117.6 (2)H71—C71—H72108.00
O51A—N51A—C5A117.7 (2)C2—C71—H72109.00
O52A—N51A—C5A118.2 (2)C11—C71—H71109.00
O51A—N51A—O52A124.1 (2)C2—C71—H71109.00
C3—C2—C71124.5 (2)C11—C71—H72109.00
N1—C2—C3118.6 (2)C2A—C1A—C6A120.9 (2)
N1—C2—C71116.9 (2)C2A—C1A—C11A119.2 (2)
C2—C3—C4119.8 (2)C6A—C1A—C11A119.9 (2)
C3—C4—C5120.0 (2)O2A—C2A—C3A122.1 (2)
C4—C5—C6119.0 (3)C1A—C2A—C3A116.8 (2)
N1—C6—C5119.7 (2)O2A—C2A—C1A121.0 (2)
C61—C11—C71120.3 (2)N31A—C3A—C2A120.7 (2)
C21—C11—C71123.7 (2)C2A—C3A—C4A122.2 (2)
C21—C11—C61116.0 (2)N31A—C3A—C4A117.0 (2)
N21—C21—C11121.4 (2)C3A—C4A—C5A118.7 (2)
C11—C21—C31123.3 (2)N51A—C5A—C6A118.9 (2)
N21—C21—C31115.3 (2)C4A—C5A—C6A121.7 (2)
C21—C31—C41117.2 (2)N51A—C5A—C4A119.4 (2)
N41—C41—C51118.4 (2)C1A—C6A—C5A119.6 (2)
N41—C41—C31119.1 (2)O11A—C11A—C1A117.7 (2)
C31—C41—C51122.6 (2)O12A—C11A—C1A117.3 (2)
C41—C51—C61118.2 (2)O11A—C11A—O12A125.0 (2)
C11—C61—C51122.6 (2)C3A—C4A—H4A121.00
C2—C71—C11113.96 (18)C5A—C4A—H4A121.00
C2—C3—H3120.00C1A—C6A—H6A120.00
C4—C3—H3120.00C5A—C6A—H6A120.00
C6—N1—C2—C32.1 (3)C71—C11—C61—C51175.1 (2)
C6—N1—C2—C71177.0 (2)C21—C11—C71—C2160.2 (2)
C2—N1—C6—C51.4 (4)C61—C11—C71—C220.4 (3)
O21—N21—C21—C1129.4 (3)C11—C21—C31—C414.3 (4)
O21—N21—C21—C31149.7 (2)N21—C21—C31—C41174.8 (2)
O22—N21—C21—C11151.4 (2)C21—C31—C41—N41174.5 (2)
O22—N21—C21—C3129.5 (3)C21—C31—C41—C514.2 (4)
O41—N41—C41—C3127.8 (4)C31—C41—C51—C610.0 (4)
O41—N41—C41—C51153.4 (3)N41—C41—C51—C61178.7 (2)
O42—N41—C41—C31149.9 (2)C41—C51—C61—C114.5 (4)
O42—N41—C41—C5128.8 (4)C6A—C1A—C2A—O2A179.2 (2)
O31A—N31A—C3A—C2A24.4 (4)C6A—C1A—C2A—C3A1.4 (3)
O31A—N31A—C3A—C4A153.3 (2)C11A—C1A—C2A—O2A1.1 (3)
O32A—N31A—C3A—C2A159.1 (2)C11A—C1A—C2A—C3A179.5 (2)
O32A—N31A—C3A—C4A23.2 (3)C2A—C1A—C6A—C5A3.0 (3)
O51A—N51A—C5A—C4A3.5 (3)C11A—C1A—C6A—C5A178.9 (2)
O51A—N51A—C5A—C6A176.6 (2)C2A—C1A—C11A—O11A175.0 (2)
O52A—N51A—C5A—C4A177.6 (2)C2A—C1A—C11A—O12A5.8 (3)
O52A—N51A—C5A—C6A2.3 (3)C6A—C1A—C11A—O11A6.9 (3)
C71—C2—C3—C4178.3 (2)C6A—C1A—C11A—O12A172.3 (2)
N1—C2—C71—C1194.0 (2)O2A—C2A—C3A—N31A4.4 (4)
C3—C2—C71—C1186.9 (3)O2A—C2A—C3A—C4A178.0 (2)
N1—C2—C3—C40.8 (4)C1A—C2A—C3A—N31A176.2 (2)
C2—C3—C4—C51.1 (4)C1A—C2A—C3A—C4A1.4 (3)
C3—C4—C5—C61.7 (4)N31A—C3A—C4A—C5A175.2 (2)
C4—C5—C6—N10.5 (4)C2A—C3A—C4A—C5A2.5 (4)
C61—C11—C21—N21178.8 (2)C3A—C4A—C5A—N51A179.0 (2)
C61—C11—C21—C310.2 (3)C3A—C4A—C5A—C6A0.9 (4)
C71—C11—C21—N210.6 (3)N51A—C5A—C6A—C1A178.2 (2)
C71—C11—C21—C31179.6 (2)C4A—C5A—C6A—C1A1.9 (4)
C21—C11—C61—C514.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O11A0.911.722.627 (3)172
O2A—H2A···O12A0.931.612.476 (3)152
C3—H3···O11Ai0.932.483.246 (3)140
C5—H5···O31Aii0.932.563.051 (4)114
C6—H6···O31Aii0.932.483.020 (4)117
C51—H51···O51Aiii0.932.553.137 (4)122
C61—H61···O51Aiii0.932.543.141 (3)123
C71—H72···O11A0.972.553.247 (3)129
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H10N3O4+·C7H3N2O7
Mr487.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)7.1550 (2), 21.7356 (5), 13.2080 (4)
β (°) 104.424 (3)
V3)1989.34 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.40 × 0.35 × 0.18
Data collection
DiffractometerOxford Diffraction Gemini-S CCD-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.960, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
13759, 3910, 2865
Rint0.025
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.153, 1.08
No. of reflections3910
No. of parameters320
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.32

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O11A0.911.722.627 (3)172
O2A—H2A···O12A0.931.612.476 (3)152
C3—H3···O11Ai0.932.483.246 (3)140
C5—H5···O31Aii0.932.563.051 (4)114
C6—H6···O31Aii0.932.483.020 (4)117
C51—H51···O51Aiii0.932.553.137 (4)122
C61—H61···O51Aiii0.932.543.141 (3)123
C71—H72···O11A0.972.553.247 (3)129
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x1, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge financial support from the Australian Research Council, the Faculty of Science and Technology, Queensland University of Technology and the School of Biomolecular and Physical Sciences, Griffith University.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationNaumov, P., Sakurai, K., Ishikawa, T., Takahashi, J., Koshihawa, S. & Ohashi, Y. (2005). J. Phys. Chem. A, 109, 7264–7275.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNaumov, P., Sekine, A., Uekusa, H. & Ohashi, Y. (2002). J. Am. Chem. Soc. 124, 8540–8541.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationScherl, M., Haarer, D., Fischer, J., DeCian, A., Lehn, J.-M. & Eichen, Y. (1996). J. Phys. Chem. 100, 16175–16186.  CSD CrossRef CAS Web of Science Google Scholar
First citationSeff, K. & Trueblood, K. N. (1968). Acta Cryst. B24, 1406–1415.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Cotton, M. S., Wermuth, U. D. & Boyd, S. E. (2010). Acta Cryst. C66, o252–o255.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D., Bott, R. C., Healy, P. C. & White, J. M. (2002). Aust. J. Chem. 55, 349–356.  Web of Science CSD CrossRef CAS Google Scholar
First citationSmith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2003). Aust. J. Chem. 56, 707–713.  Web of Science CSD CrossRef CAS Google Scholar
First citationSmith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2007). Aust. J. Chem. 60, 264–267.  Web of Science CSD CrossRef CAS Google Scholar
First citationSmith, G., Wermuth, U. D. & Young, D. J. (2010). Acta Cryst. E66, o1184–o1185.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds