metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[bis­­(thio­cyanato-κN)zinc(II)]-μ-1,2-bis­­{[2-(2-pyrid­yl)-1H-imidazol-1-yl]meth­yl}benzene] 0.28-hydrate]

aDepartment of Physics Education, Changchun Normal University, 667 Changji Highway (North), Erdao District, Jilin Province 130032, People's Republic of China
*Correspondence e-mail: shi19781980@yahoo.cn

(Received 20 June 2010; accepted 12 July 2010; online 17 July 2010)

The title one-dimensional coordination polymer, {[Zn(NCS)2(C24H20N6)2]·0.28H2O}n, was obtained by the reaction of Zn(OAc)2·2H2O, KSCN and 1,2-bis­{[2-(2-pyrid­yl)-1H-imid­azol-1-yl]meth­yl}benzene (hereafter L). The ZnII ion shows a distorted octa­hedral coordination geometry and is coordin­ated by two N atoms from two SCN anions and four N atoms from two organic ligands. The L ligands act as bridging bis-chelating ligands with cis coordination modes at the ZnII ion. One-dimensional coordination polymers are arranged into layers by ππ stacking inter­actions between the imidazole rings of adjacent chains, with an inter­planar distance of 3.46 (1) Å and centroid–centroid distances of 3.8775 (16) Å. One of the thio­cyanate ligands is disordered over two positions with an occupancy factor of 0.564 (3) for the major component. The partially occupied water mol­ecule forms an O—H⋯S hydrogen bond with the disordered thio­cyanate group.

Related literature

For backgroud to the topologies, supra­molecular structures and applications of metal-organic frameworks (MOFs), see: Dybtsev et al. (2004[Dybtsev, D. N., Chun, H., Yoon, S. H., Kim, D. & Kim, K. (2004). J. Am. Chem. Soc. 126, 32-33.]); Evans & Lin (2002[Evans, O. R. & Lin, W. (2002). Acc. Chem. Res. 35, 511-522.]); Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. (2001). Chem. Rev. 101, 1629-1658.]). For coordination modes of organic ligands, see: Janiak (2003[Janiak, C. (2003). Dalton Trans. pp. 2781-2804.]). For similar structures, see: Dai et al. (2002[Dai, J.-C., Wu, X.-T., Fu, Z.-Y., Cui, C.-P., Hu, S.-M., Du, W.-X., Wu, L.-M., Zhang, H.-H. & Sun, R.-Q. (2002). Inorg. Chem. 41, 1391-1396.]); Luan et al. (2006[Luan, X.-J., Cai, X.-H., Wang, Y.-Y., Li, D.-S., Wang, C.-J., Liu, P., Hu, H.-M., Shi, Q.-Z. & Peng, S.-M. (2006). Chem. Eur. J. 12, 6281-6289.]). For the synthesis of 1,2-bis­{[2-(2-pyrid­yl)-1H-imidazol-1-yl]meth­yl}benzene, see: Li et al. (2008[Li, S.-L., Lan, Y.-Q., Ma, J.-F., Fu, Y.-M., Yang, J., Ping, G.-J., Liu, J. & Su, Z.-M. (2008). Cryst. Growth Des. 8, 1610-1616.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(NCS)2(C24H20N6)2]·0.28H2O

  • Mr = 579.03

  • Monoclinic, P 21 /c

  • a = 7.8780 (4) Å

  • b = 13.1770 (7) Å

  • c = 25.9620 (14) Å

  • β = 98.462 (1)°

  • V = 2665.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.11 mm−1

  • T = 293 K

  • 0.26 × 0.22 × 0.21 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.750, Tmax = 0.792

  • 13328 measured reflections

  • 4707 independent reflections

  • 3127 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.102

  • S = 1.04

  • 4707 reflections

  • 362 parameters

  • 30 restraints

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W⋯S1i 0.85 2.68 3.30 (2) 132
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2008[Brandenburg, K. & Putz, H. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent years, there is an increasing interest in metal-organic frameworks (MOFs) for the versatile architectures and intriguing topologies as well as their wide potential applications (Dybtsev et al. 2004; Evans & Lin, 2002). A universal strategy for the construction of MOFs is dependent primarily on the appropriate choice of inorganic building blocks and different organic ligands. Among them, N-donor organic ligands are important because of their divers coordination modes to metal ions resulting in different structures (Janiak, 2003) and the ability to form of weak interactions to assemble supramolecular structures (Moulton & Zaworotko, 2001). In this case, 1,2-bis{[2-(2-pyridyl)-1H-imidazol-1-yl]methyl}benzene (hereafter L) is selected as organic ligand and reacted with Zn(OAc)2.2H2O and KSCN to obtain the title compound.

In the title compound, there is one kind of L ligand, ZnII ion and two kinds of SCN- anions in the unit cell (Fig. 1). Each ZnII ion is coordinated by two nitrogen atoms from two SCN- anions and four aromatic N atoms from two different L molecules with normal Zn—N distances (Dai et al. 2002; Luan et al. 2006), showing a distorted octahedral coordination geometry. Each L molecule is acting as a bridging bis-bidentate ligand coordinated to two ZnII ions to form polymeric one-dimensional chain (Fig. 2). Moreover, a two-dimensional supramolecular layer is finally formed by linking these chains through the ππ stacking interactions between imidazole rings from adjacent chains, with the plane to plane distance of 3.46 (1) Å and the centroid-centroid distances of 3.87 (8) Å. (Fig. 3).

Related literature top

For backgroud to the topologies, supramolecular structures and applications of metal-organic frameworks (MOFs), see: Dybtsev et al. (2004); Evans & Lin (2002); Moulton & Zaworotko (2001). For coordination modes of organic ligands, see: Janiak (2003). For similar structures, see: Dai et al. (2002); Luan et al. (2006). For the synthesis of 1,2-bis{[2-(2-pyridyl)-1H-imidazol-1-yl]methyl}benzene, see: Li et al. (2008).

Experimental top

A mixture of Zn(OAc)2. 2H2O (1 mmol), L (1 mmol) (Li et al. 2008), KSCN (0.10 g, 2 mmol) and H2O (8 ml) was sealed in a 18 ml Teflon- lined stainless steel container which was heated to 120 °C for 50 h, and cooled to room temperature. Colorless polyhedron crystals were collected in 85% yield.

Refinement top

The disordered SCN- anion was refined with S and C atoms split over two sites, with the sum of the occupancy factors equal to 1.00. In this anion restraints were imposed on the anion geometry (DFIX instructions of SHELXL-97) and anisotropic displacement parameter of C and S atoms (ISOR instruction). The occupancy factor of the water molecule was initially refined but it was fixed in the final refinement cycles. Positions of H atoms from water molecules were calculated assuming interactions with the anion S atoms and these atoms were refined as riding with O-H = 0.85 Å and Uiso=1.5Ueq (O). All H atoms bound to C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 and 0.97 Å, and Uiso=1.2Ueq (C).

Structure description top

In recent years, there is an increasing interest in metal-organic frameworks (MOFs) for the versatile architectures and intriguing topologies as well as their wide potential applications (Dybtsev et al. 2004; Evans & Lin, 2002). A universal strategy for the construction of MOFs is dependent primarily on the appropriate choice of inorganic building blocks and different organic ligands. Among them, N-donor organic ligands are important because of their divers coordination modes to metal ions resulting in different structures (Janiak, 2003) and the ability to form of weak interactions to assemble supramolecular structures (Moulton & Zaworotko, 2001). In this case, 1,2-bis{[2-(2-pyridyl)-1H-imidazol-1-yl]methyl}benzene (hereafter L) is selected as organic ligand and reacted with Zn(OAc)2.2H2O and KSCN to obtain the title compound.

In the title compound, there is one kind of L ligand, ZnII ion and two kinds of SCN- anions in the unit cell (Fig. 1). Each ZnII ion is coordinated by two nitrogen atoms from two SCN- anions and four aromatic N atoms from two different L molecules with normal Zn—N distances (Dai et al. 2002; Luan et al. 2006), showing a distorted octahedral coordination geometry. Each L molecule is acting as a bridging bis-bidentate ligand coordinated to two ZnII ions to form polymeric one-dimensional chain (Fig. 2). Moreover, a two-dimensional supramolecular layer is finally formed by linking these chains through the ππ stacking interactions between imidazole rings from adjacent chains, with the plane to plane distance of 3.46 (1) Å and the centroid-centroid distances of 3.87 (8) Å. (Fig. 3).

For backgroud to the topologies, supramolecular structures and applications of metal-organic frameworks (MOFs), see: Dybtsev et al. (2004); Evans & Lin (2002); Moulton & Zaworotko (2001). For coordination modes of organic ligands, see: Janiak (2003). For similar structures, see: Dai et al. (2002); Luan et al. (2006). For the synthesis of 1,2-bis{[2-(2-pyridyl)-1H-imidazol-1-yl]methyl}benzene, see: Li et al. (2008).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A displacement ellipsoids view of the title compound with the displacement ellipsoids drawn at the 30% probability level. Symmetry code #2: x, -y+1/2, z-1/2.
[Figure 2] Fig. 2. View of the one-dimensional chain.
[Figure 3] Fig. 3. View of the two-dimensional supramolecular structure formed by ππ stacking interactions.
catena-Poly[[[bis(thiocyanato-κN)zinc(II)]- µ-1,2-bis{[2-(2-pyridyl)-1H-imidazol-1-yl]methyl}benzene] 0.28-hydrate] top
Crystal data top
[Zn(NCS)2(C24H20N6)2]·0.28H2OF(000) = 1187
Mr = 579.03Dx = 1.443 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 2199 reflections
a = 7.8780 (4) Åθ = 1.6–26.4°
b = 13.1770 (7) ŵ = 1.11 mm1
c = 25.9620 (14) ÅT = 293 K
β = 98.462 (1)°Block, colorless
V = 2665.7 (2) Å30.26 × 0.22 × 0.21 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
4707 independent reflections
Radiation source: fine-focus sealed tube3127 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.750, Tmax = 0.792k = 1315
13328 measured reflectionsl = 2830
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0472P)2 + 0.0052P]
where P = (Fo2 + 2Fc2)/3
4707 reflections(Δ/σ)max = 0.001
362 parametersΔρmax = 0.38 e Å3
30 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Zn(NCS)2(C24H20N6)2]·0.28H2OV = 2665.7 (2) Å3
Mr = 579.03Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.8780 (4) ŵ = 1.11 mm1
b = 13.1770 (7) ÅT = 293 K
c = 25.9620 (14) Å0.26 × 0.22 × 0.21 mm
β = 98.462 (1)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
4707 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3127 reflections with I > 2σ(I)
Tmin = 0.750, Tmax = 0.792Rint = 0.036
13328 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03830 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.04Δρmax = 0.38 e Å3
4707 reflectionsΔρmin = 0.33 e Å3
362 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.1405 (4)0.0988 (2)0.23131 (12)0.0627 (9)
H10.05600.05830.21280.075*
C20.1380 (4)0.1355 (2)0.27956 (12)0.0628 (9)
H20.05270.12530.30030.075*
C30.3735 (4)0.1861 (2)0.25115 (10)0.0498 (7)
C40.5346 (4)0.2347 (2)0.24331 (11)0.0488 (7)
C50.6518 (4)0.2810 (2)0.28088 (12)0.0652 (9)
H50.63600.28010.31570.078*
C60.7924 (5)0.3283 (3)0.26590 (14)0.0787 (10)
H60.87190.36070.29050.094*
C70.8146 (4)0.3274 (3)0.21460 (15)0.0797 (11)
H70.90590.36150.20340.096*
C80.6981 (4)0.2748 (3)0.18015 (13)0.0715 (10)
H80.71620.27100.14560.086*
C90.3326 (4)0.2402 (2)0.34290 (10)0.0562 (8)
H9A0.22870.25950.35640.067*
H9B0.39600.30180.33820.067*
C100.4402 (4)0.1734 (2)0.38252 (10)0.0493 (7)
C110.4785 (4)0.0736 (2)0.37134 (12)0.0633 (9)
H110.44020.04750.33840.076*
C120.4998 (3)0.2120 (2)0.43188 (10)0.0464 (7)
C130.5948 (4)0.1497 (2)0.46849 (11)0.0574 (8)
H130.63550.17510.50140.069*
C140.6294 (4)0.0511 (3)0.45663 (13)0.0699 (9)
H140.69210.01000.48160.084*
C150.5719 (4)0.0128 (3)0.40811 (14)0.0747 (10)
H150.59610.05390.40010.090*
C160.4598 (4)0.3198 (2)0.44434 (10)0.0514 (7)
H16A0.51260.36440.42150.062*
H16B0.33660.32970.43680.062*
C170.6633 (4)0.4061 (2)0.51368 (11)0.0594 (8)
H170.74190.42780.49260.071*
C180.6701 (4)0.4240 (2)0.56517 (12)0.0610 (8)
H180.75520.46110.58570.073*
C190.4434 (4)0.3341 (2)0.54193 (10)0.0460 (7)
C200.2902 (4)0.2752 (2)0.54843 (10)0.0480 (7)
C210.1991 (4)0.2117 (2)0.51218 (11)0.0554 (8)
H210.23080.20400.47930.066*
C220.0594 (4)0.1596 (3)0.52576 (13)0.0691 (9)
H220.00470.11730.50170.083*
C230.0159 (4)0.1703 (3)0.57424 (14)0.0728 (10)
H230.07740.13570.58390.087*
C240.1140 (4)0.2337 (3)0.60837 (13)0.0715 (10)
H240.08570.24040.64170.086*
N10.5617 (3)0.22928 (18)0.19344 (9)0.0557 (6)
N20.2857 (3)0.19105 (18)0.29238 (8)0.0531 (6)
N30.2880 (3)0.13082 (18)0.21386 (9)0.0556 (6)
N40.5181 (3)0.34985 (17)0.49856 (8)0.0490 (6)
N50.5331 (3)0.37948 (18)0.58233 (9)0.0525 (6)
N60.2472 (3)0.28627 (19)0.59660 (9)0.0566 (7)
N70.6024 (4)0.0045 (2)0.18550 (12)0.0833 (9)
C250.6692 (4)0.0180 (2)0.22631 (14)0.0603 (8)
S20.75961 (13)0.04934 (9)0.28408 (4)0.0927 (3)
N80.2453 (4)0.0111 (2)0.11975 (10)0.0852 (10)
C260.1381 (15)0.0639 (10)0.1031 (6)0.052 (3)0.56 (3)
S10.0107 (12)0.1515 (10)0.0796 (4)0.1109 (18)0.56 (3)
C26'0.1698 (19)0.0857 (8)0.1087 (8)0.042 (3)0.44 (3)
S1'0.0605 (18)0.1874 (10)0.0912 (4)0.091 (3)0.44 (3)
Zn10.41177 (5)0.10351 (3)0.149130 (12)0.05821 (16)
O1W0.0298 (16)0.1050 (10)0.3898 (4)0.154 (5)0.28
H1W0.12260.07450.37820.231*0.28
H2W0.04080.16420.37680.231*0.28
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.070 (2)0.072 (2)0.0484 (19)0.0175 (18)0.0148 (17)0.0006 (16)
C20.063 (2)0.080 (2)0.050 (2)0.0060 (18)0.0228 (17)0.0030 (16)
C30.0625 (19)0.0526 (18)0.0363 (16)0.0014 (15)0.0143 (15)0.0020 (13)
C40.0609 (19)0.0455 (17)0.0416 (17)0.0010 (15)0.0127 (15)0.0043 (13)
C50.072 (2)0.069 (2)0.055 (2)0.0104 (19)0.0133 (18)0.0107 (17)
C60.076 (2)0.085 (3)0.075 (3)0.014 (2)0.010 (2)0.024 (2)
C70.072 (2)0.087 (3)0.087 (3)0.027 (2)0.034 (2)0.018 (2)
C80.081 (2)0.077 (2)0.064 (2)0.015 (2)0.037 (2)0.0131 (18)
C90.077 (2)0.0581 (19)0.0361 (16)0.0103 (17)0.0170 (15)0.0024 (14)
C100.0592 (18)0.0525 (19)0.0394 (17)0.0047 (15)0.0185 (14)0.0039 (13)
C110.083 (2)0.056 (2)0.0514 (19)0.0117 (18)0.0113 (17)0.0073 (15)
C120.0553 (17)0.0495 (18)0.0379 (16)0.0036 (14)0.0185 (14)0.0064 (13)
C130.069 (2)0.058 (2)0.0458 (18)0.0074 (17)0.0093 (16)0.0041 (15)
C140.078 (2)0.062 (2)0.068 (2)0.0175 (19)0.0052 (19)0.0107 (18)
C150.094 (3)0.054 (2)0.077 (2)0.023 (2)0.013 (2)0.0041 (19)
C160.073 (2)0.0531 (18)0.0303 (15)0.0011 (16)0.0139 (14)0.0033 (13)
C170.075 (2)0.061 (2)0.0472 (19)0.0101 (17)0.0248 (17)0.0008 (15)
C180.078 (2)0.059 (2)0.0481 (19)0.0122 (17)0.0143 (17)0.0020 (15)
C190.0625 (19)0.0425 (17)0.0356 (16)0.0050 (15)0.0156 (15)0.0051 (13)
C200.0558 (18)0.0485 (17)0.0406 (17)0.0087 (15)0.0102 (14)0.0085 (13)
C210.0595 (19)0.063 (2)0.0448 (18)0.0008 (17)0.0104 (15)0.0038 (15)
C220.059 (2)0.078 (2)0.069 (2)0.0022 (19)0.0041 (18)0.0009 (19)
C230.063 (2)0.089 (3)0.071 (2)0.008 (2)0.0235 (19)0.009 (2)
C240.074 (2)0.088 (3)0.057 (2)0.002 (2)0.0279 (19)0.0067 (19)
N10.0656 (16)0.0576 (16)0.0482 (15)0.0092 (13)0.0228 (13)0.0068 (12)
N20.0680 (17)0.0611 (16)0.0325 (13)0.0014 (14)0.0155 (12)0.0008 (11)
N30.0691 (16)0.0614 (16)0.0382 (14)0.0151 (14)0.0142 (13)0.0044 (12)
N40.0662 (16)0.0491 (14)0.0336 (13)0.0013 (13)0.0140 (12)0.0002 (11)
N50.0698 (16)0.0537 (15)0.0357 (14)0.0045 (13)0.0136 (13)0.0005 (11)
N60.0664 (17)0.0643 (17)0.0419 (14)0.0053 (14)0.0180 (13)0.0081 (12)
N70.124 (3)0.0640 (19)0.0637 (19)0.0083 (18)0.0209 (18)0.0063 (16)
C250.067 (2)0.0435 (18)0.075 (2)0.0036 (16)0.0286 (19)0.0005 (17)
S20.0803 (7)0.1023 (8)0.0907 (8)0.0078 (6)0.0037 (6)0.0145 (6)
N80.125 (3)0.077 (2)0.0556 (19)0.029 (2)0.0210 (18)0.0141 (15)
C260.049 (5)0.060 (5)0.046 (5)0.014 (4)0.006 (4)0.001 (4)
S10.065 (2)0.129 (4)0.137 (3)0.031 (3)0.007 (2)0.033 (3)
C26'0.038 (5)0.053 (5)0.034 (5)0.020 (5)0.006 (4)0.001 (4)
S1'0.072 (3)0.113 (4)0.089 (3)0.031 (3)0.019 (2)0.043 (2)
Zn10.0859 (3)0.0552 (2)0.0370 (2)0.00799 (19)0.02056 (19)0.00498 (16)
O1W0.159 (11)0.198 (14)0.117 (10)0.065 (9)0.058 (8)0.028 (8)
Geometric parameters (Å, º) top
C1—C21.346 (4)C16—H16A0.9700
C1—N31.374 (4)C16—H16B0.9700
C1—H10.9300C17—C181.351 (4)
C2—N21.373 (4)C17—N41.371 (4)
C2—H20.9300C17—H170.9300
C3—N31.315 (3)C18—N51.360 (4)
C3—N21.359 (3)C18—H180.9300
C3—C41.463 (4)C19—N51.319 (3)
C4—N11.345 (3)C19—N41.361 (3)
C4—C51.382 (4)C19—C201.465 (4)
C5—C61.376 (4)C20—N61.351 (3)
C5—H50.9300C20—C211.379 (4)
C6—C71.369 (4)C21—C221.386 (4)
C6—H60.9300C21—H210.9300
C7—C81.372 (4)C22—C231.360 (4)
C7—H70.9300C22—H220.9300
C8—N11.321 (4)C23—C241.371 (4)
C8—H80.9300C23—H230.9300
C9—N21.461 (3)C24—N61.330 (4)
C9—C101.515 (4)C24—H240.9300
C9—H9A0.9700N1—Zn12.250 (2)
C9—H9B0.9700N3—Zn12.095 (2)
C10—C111.390 (4)N5—Zn1i2.112 (2)
C10—C121.394 (4)N6—Zn1i2.265 (2)
C11—C151.374 (4)N7—C251.151 (4)
C11—H110.9300N7—Zn12.105 (3)
C12—C131.389 (4)C25—S21.616 (4)
C12—C161.501 (4)N8—C261.130 (4)
C13—C141.371 (4)N8—Zn12.071 (3)
C13—H130.9300C26—S11.591 (4)
C14—C151.371 (4)C26'—S1'1.621 (4)
C14—H140.9300O1W—H1W0.8500
C15—H150.9300O1W—H2W0.8500
C16—N41.469 (3)
C2—C1—N3109.0 (3)C17—C18—H18125.3
C2—C1—H1125.5N5—C18—H18125.3
N3—C1—H1125.5N5—C19—N4110.0 (2)
C1—C2—N2106.8 (3)N5—C19—C20120.2 (2)
C1—C2—H2126.6N4—C19—C20129.8 (3)
N2—C2—H2126.6N6—C20—C21121.4 (3)
N3—C3—N2110.0 (3)N6—C20—C19111.8 (2)
N3—C3—C4120.1 (2)C21—C20—C19126.7 (3)
N2—C3—C4129.9 (3)C20—C21—C22118.7 (3)
N1—C4—C5121.3 (3)C20—C21—H21120.7
N1—C4—C3112.0 (2)C22—C21—H21120.7
C5—C4—C3126.8 (3)C23—C22—C21120.1 (3)
C6—C5—C4118.8 (3)C23—C22—H22119.9
C6—C5—H5120.6C21—C22—H22119.9
C4—C5—H5120.6C22—C23—C24117.8 (3)
C7—C6—C5119.7 (3)C22—C23—H23121.1
C7—C6—H6120.2C24—C23—H23121.1
C5—C6—H6120.2N6—C24—C23123.9 (3)
C6—C7—C8118.0 (3)N6—C24—H24118.0
C6—C7—H7121.0C23—C24—H24118.0
C8—C7—H7121.0C8—N1—C4118.5 (3)
N1—C8—C7123.5 (3)C8—N1—Zn1126.0 (2)
N1—C8—H8118.3C4—N1—Zn1112.71 (18)
C7—C8—H8118.3C3—N2—C2107.1 (2)
N2—C9—C10113.2 (2)C3—N2—C9129.6 (3)
N2—C9—H9A108.9C2—N2—C9123.2 (2)
C10—C9—H9A108.9C3—N3—C1107.1 (2)
N2—C9—H9B108.9C3—N3—Zn1115.93 (19)
C10—C9—H9B108.9C1—N3—Zn1136.7 (2)
H9A—C9—H9B107.7C19—N4—C17106.9 (2)
C11—C10—C12118.9 (3)C19—N4—C16129.7 (2)
C11—C10—C9121.7 (3)C17—N4—C16123.4 (2)
C12—C10—C9119.4 (3)C19—N5—C18107.1 (2)
C15—C11—C10121.1 (3)C19—N5—Zn1i116.53 (19)
C15—C11—H11119.4C18—N5—Zn1i134.4 (2)
C10—C11—H11119.4C24—N6—C20118.0 (3)
C13—C12—C10119.3 (3)C24—N6—Zn1i126.6 (2)
C13—C12—C16121.4 (3)C20—N6—Zn1i115.3 (2)
C10—C12—C16119.3 (2)C25—N7—Zn1140.6 (3)
C14—C13—C12120.7 (3)N7—C25—S2178.9 (3)
C14—C13—H13119.6C26—N8—Zn1170.9 (9)
C12—C13—H13119.6N8—C26—S1170.8 (12)
C15—C14—C13120.4 (3)N8—Zn1—N394.38 (10)
C15—C14—H14119.8N8—Zn1—N794.87 (13)
C13—C14—H14119.8N3—Zn1—N797.60 (11)
C14—C15—C11119.7 (3)N8—Zn1—N5ii96.53 (10)
C14—C15—H15120.2N3—Zn1—N5ii163.98 (9)
C11—C15—H15120.2N7—Zn1—N5ii93.14 (11)
N4—C16—C12114.5 (2)N8—Zn1—N1168.99 (10)
N4—C16—H16A108.6N3—Zn1—N174.61 (9)
C12—C16—H16A108.6N7—Zn1—N186.62 (11)
N4—C16—H16B108.6N5ii—Zn1—N194.28 (9)
C12—C16—H16B108.6N8—Zn1—N6ii88.30 (11)
H16A—C16—H16B107.6N3—Zn1—N6ii94.60 (9)
C18—C17—N4106.7 (3)N7—Zn1—N6ii167.12 (10)
C18—C17—H17126.6N5ii—Zn1—N6ii74.07 (9)
N4—C17—H17126.6N1—Zn1—N6ii92.65 (9)
C17—C18—N5109.3 (3)H1W—O1W—H2W105.1
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···S1iii0.852.683.30 (2)132
Symmetry code: (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(NCS)2(C24H20N6)2]·0.28H2O
Mr579.03
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.8780 (4), 13.1770 (7), 25.9620 (14)
β (°) 98.462 (1)
V3)2665.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.11
Crystal size (mm)0.26 × 0.22 × 0.21
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.750, 0.792
No. of measured, independent and
observed [I > 2σ(I)] reflections
13328, 4707, 3127
Rint0.036
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.102, 1.04
No. of reflections4707
No. of parameters362
No. of restraints30
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.33

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···S1i0.852.683.30 (2)132
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

We greatly acknowledge the financial support of this work by the Department of Education of Jilin Province.

References

First citationBrandenburg, K. & Putz, H. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDai, J.-C., Wu, X.-T., Fu, Z.-Y., Cui, C.-P., Hu, S.-M., Du, W.-X., Wu, L.-M., Zhang, H.-H. & Sun, R.-Q. (2002). Inorg. Chem. 41, 1391–1396.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDybtsev, D. N., Chun, H., Yoon, S. H., Kim, D. & Kim, K. (2004). J. Am. Chem. Soc. 126, 32–33.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEvans, O. R. & Lin, W. (2002). Acc. Chem. Res. 35, 511–522.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJaniak, C. (2003). Dalton Trans. pp. 2781–2804.  Web of Science CrossRef Google Scholar
First citationLi, S.-L., Lan, Y.-Q., Ma, J.-F., Fu, Y.-M., Yang, J., Ping, G.-J., Liu, J. & Su, Z.-M. (2008). Cryst. Growth Des. 8, 1610–1616.  Web of Science CSD CrossRef CAS Google Scholar
First citationLuan, X.-J., Cai, X.-H., Wang, Y.-Y., Li, D.-S., Wang, C.-J., Liu, P., Hu, H.-M., Shi, Q.-Z. & Peng, S.-M. (2006). Chem. Eur. J. 12, 6281–6289.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMoulton, B. & Zaworotko, M. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds