organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(E)-(1-Methyl-1H-pyrrol-2-yl)methyl­­idene]benzohydrazide

aDepartment of Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 26 June 2010; accepted 28 June 2010; online 3 July 2010)

In the title compound, C13H13N3O, the phenyl and pyrrole rings are inclined at 47.45 (8)°. In the crystal, inter­molecular N—H⋯O and C—H⋯O hydrogen bonds form R21(6) ring motifs. Mol­ecules connected through these hydrogen bonds are arranged into polymeric chains extending along the c axis.

Related literature

For related structures, see: Shafiq et al. (2009a[Shafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009a). Acta Cryst. E65, o2501.],b[Shafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009b). Acta Cryst. E65, o2898.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13N3O

  • Mr = 227.26

  • Monoclinic, P 21 /c

  • a = 11.1170 (8) Å

  • b = 11.6329 (9) Å

  • c = 9.6735 (6) Å

  • β = 110.241 (3)°

  • V = 1173.75 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.28 × 0.12 × 0.10 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.942, Tmax = 0.952

  • 11164 measured reflections

  • 2930 independent reflections

  • 1770 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.139

  • S = 1.02

  • 2930 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.11 2.910 (2) 155
C8—H8⋯O1i 0.93 2.38 3.209 (2) 148
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

We have reported crystal structures of Schiff bases containing benzohydrazide (Shafiq et al., 2009a, 2009b) and as a part of this project, we report herein the structure and synthesis of the title compound (I, Fig. 1).

In (I) the group A (C1–C7/N1/N2) of benzohydrazide and group B (C8—C12/N3/C13) of 1-methyl-1H-pyrrole are planar with r. m. s. deviation of 0.0345 and 0.0249 Å, respectively. The O atom of the carbonyl group is at a distance of 0.1993 (22) Å from the mean square plane of A. The dihedral angle between A/B is 46.78 (7)°. There exist intermolecular hydrgen bonds of N—H···O and C—H···O types (Table 1) that complete R21(6) ring motif (Bernstein et al., 1995). The molecules are stabilized in the form of one dimensional polymeric chains (Fig. 2) extending along the crystallographic c axis.

Related literature top

For related structures, see: Shafiq et al. (2009a,b). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

To a hot stirred solution of benzohydrazide (1.36 g, 0.01 mole) in ethanol 15 ml was added N-methylpyrrol-2-carboxaldehyde (1.1 ml, 0.01 mol). The resultant mixture was then heated under reflux. The reaction was monitored through TLC. After an hour, the precipitate was formed. The reaction mixture was further heated for 30 min. The resultant crude material was recrystallized from methanol to afford colourless needles of the titke compound.

Refinement top

The H atoms were positioned geometrically (N–H = 0.86 Å, C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl group and x = 1.2 for all other H atoms.

Structure description top

We have reported crystal structures of Schiff bases containing benzohydrazide (Shafiq et al., 2009a, 2009b) and as a part of this project, we report herein the structure and synthesis of the title compound (I, Fig. 1).

In (I) the group A (C1–C7/N1/N2) of benzohydrazide and group B (C8—C12/N3/C13) of 1-methyl-1H-pyrrole are planar with r. m. s. deviation of 0.0345 and 0.0249 Å, respectively. The O atom of the carbonyl group is at a distance of 0.1993 (22) Å from the mean square plane of A. The dihedral angle between A/B is 46.78 (7)°. There exist intermolecular hydrgen bonds of N—H···O and C—H···O types (Table 1) that complete R21(6) ring motif (Bernstein et al., 1995). The molecules are stabilized in the form of one dimensional polymeric chains (Fig. 2) extending along the crystallographic c axis.

For related structures, see: Shafiq et al. (2009a,b). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. H atoms are shown by small circles of arbitrary radii.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009) showing one dimensional polymeric chain via hydrogen bonds. Hydrogen bonds are shown as dashed lines.
N'-[(E)-(1-Methyl-1H-pyrrol-2-yl)methylidene]benzohydrazide benzohydrazide top
Crystal data top
C13H13N3OF(000) = 480
Mr = 227.26Dx = 1.286 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1770 reflections
a = 11.1170 (8) Åθ = 2.6–28.4°
b = 11.6329 (9) ŵ = 0.09 mm1
c = 9.6735 (6) ÅT = 296 K
β = 110.241 (3)°Needle, colorless
V = 1173.75 (15) Å30.28 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2930 independent reflections
Radiation source: fine-focus sealed tube1770 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 7.50 pixels mm-1θmax = 28.4°, θmin = 2.6°
ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1515
Tmin = 0.942, Tmax = 0.952l = 129
11164 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0555P)2 + 0.160P]
where P = (Fo2 + 2Fc2)/3
2930 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C13H13N3OV = 1173.75 (15) Å3
Mr = 227.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.1170 (8) ŵ = 0.09 mm1
b = 11.6329 (9) ÅT = 296 K
c = 9.6735 (6) Å0.28 × 0.12 × 0.10 mm
β = 110.241 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2930 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1770 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.952Rint = 0.047
11164 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.02Δρmax = 0.19 e Å3
2930 reflectionsΔρmin = 0.17 e Å3
155 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.71496 (14)0.18682 (11)0.12223 (13)0.0554 (5)
N10.75685 (15)0.26311 (12)0.34764 (15)0.0431 (5)
N20.80816 (15)0.36186 (12)0.30879 (16)0.0442 (5)
N30.93230 (15)0.58927 (13)0.29335 (16)0.0457 (5)
C10.66632 (16)0.07206 (14)0.29906 (18)0.0394 (5)
C20.67749 (19)0.05014 (16)0.4433 (2)0.0492 (7)
C30.6323 (2)0.05186 (18)0.4795 (2)0.0602 (8)
C40.5752 (2)0.13174 (18)0.3738 (3)0.0639 (8)
C50.5635 (2)0.11093 (19)0.2302 (3)0.0695 (9)
C60.6095 (2)0.01047 (18)0.1927 (2)0.0565 (7)
C70.71456 (16)0.17851 (14)0.24946 (19)0.0389 (6)
C80.80671 (18)0.44929 (15)0.38773 (19)0.0454 (6)
C90.85533 (18)0.56059 (15)0.37314 (19)0.0445 (6)
C100.8295 (2)0.66046 (17)0.4330 (2)0.0592 (8)
C110.8898 (2)0.75049 (18)0.3880 (3)0.0657 (9)
C120.9521 (2)0.70430 (16)0.3038 (2)0.0563 (7)
C130.9916 (2)0.51144 (17)0.2185 (2)0.0562 (8)
H10.752400.256590.434290.0517*
H20.715520.104220.516110.0591*
H30.640970.066330.577040.0723*
H40.544250.199930.399070.0767*
H50.524290.165070.157930.0833*
H60.602540.002380.095320.0679*
H80.771030.439800.460910.0545*
H100.780190.666880.493120.0711*
H110.887530.827790.411550.0788*
H121.001080.745190.259750.0676*
H13A1.051860.553100.186540.0843*
H13B0.926780.478410.134550.0843*
H13C1.035500.451370.284850.0843*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0848 (10)0.0528 (8)0.0376 (7)0.0061 (7)0.0325 (7)0.0043 (6)
N10.0592 (10)0.0417 (8)0.0346 (8)0.0077 (7)0.0241 (7)0.0013 (6)
N20.0558 (10)0.0409 (8)0.0399 (8)0.0051 (7)0.0216 (7)0.0028 (7)
N30.0516 (9)0.0408 (8)0.0479 (9)0.0001 (7)0.0214 (8)0.0031 (7)
C10.0378 (9)0.0440 (10)0.0371 (9)0.0005 (8)0.0138 (8)0.0010 (8)
C20.0590 (12)0.0476 (11)0.0426 (11)0.0056 (9)0.0195 (9)0.0009 (8)
C30.0711 (14)0.0606 (13)0.0520 (12)0.0075 (11)0.0251 (11)0.0097 (10)
C40.0647 (14)0.0540 (13)0.0751 (16)0.0136 (10)0.0269 (12)0.0061 (11)
C50.0750 (16)0.0641 (14)0.0675 (15)0.0270 (12)0.0224 (12)0.0157 (12)
C60.0604 (13)0.0633 (13)0.0446 (11)0.0146 (10)0.0165 (10)0.0064 (10)
C70.0418 (10)0.0430 (10)0.0351 (9)0.0039 (8)0.0175 (8)0.0013 (8)
C80.0568 (12)0.0453 (11)0.0388 (10)0.0008 (8)0.0224 (9)0.0022 (8)
C90.0548 (11)0.0421 (10)0.0384 (10)0.0003 (8)0.0185 (9)0.0027 (8)
C100.0787 (15)0.0468 (11)0.0624 (13)0.0016 (10)0.0375 (12)0.0031 (10)
C110.0869 (17)0.0394 (11)0.0789 (16)0.0007 (10)0.0391 (14)0.0016 (10)
C120.0662 (13)0.0407 (11)0.0668 (14)0.0041 (9)0.0291 (11)0.0076 (9)
C130.0645 (14)0.0516 (12)0.0625 (13)0.0037 (10)0.0346 (11)0.0038 (10)
Geometric parameters (Å, º) top
O1—C71.236 (2)C9—C101.372 (3)
N1—N21.391 (2)C10—C111.392 (3)
N1—C71.335 (2)C11—C121.350 (3)
N2—C81.275 (2)C2—H20.9300
N3—C91.377 (3)C3—H30.9300
N3—C121.354 (2)C4—H40.9300
N3—C131.452 (3)C5—H50.9300
N1—H10.8600C6—H60.9300
C1—C21.381 (2)C8—H80.9300
C1—C71.493 (2)C10—H100.9300
C1—C61.389 (3)C11—H110.9300
C2—C31.380 (3)C12—H120.9300
C3—C41.365 (3)C13—H13A0.9600
C4—C51.371 (4)C13—H13B0.9600
C5—C61.374 (3)C13—H13C0.9600
C8—C91.429 (3)
O1···N22.6801 (19)C13···H11iii3.0200
O1···N1i2.910 (2)H1···C22.5500
O1···C8i3.209 (2)H1···H22.0400
O1···H62.4500H1···H82.1500
O1···H1i2.1100H1···O1ii2.1100
O1···H2i2.6400H2···N12.6100
O1···H8i2.3800H2···H12.0400
N1···O1ii2.910 (2)H2···O1ii2.6400
N2···N33.011 (2)H2···N2ii2.6900
N2···O12.6801 (19)H2···H13Bii2.4300
N2···C133.030 (3)H3···C9ii3.0300
N3···N23.011 (2)H4···C7ix3.0800
N1···H22.6100H6···O12.4500
N2···H13B2.8200H6···C6vii2.9600
N2···H12iii2.7800H6···H6vii2.3900
N2···H2i2.6900H8···H12.1500
N2···H13C2.8200H8···O1ii2.3800
C3···C3iv3.328 (3)H11···C13vi3.0200
C8···O1ii3.209 (2)H12···H13A2.4700
C9···C9v3.591 (3)H12···N2vi2.7800
C11···C13vi3.599 (3)H12···H13Cvi2.4500
C13···C11iii3.599 (3)H13A···H122.4700
C13···N23.030 (3)H13A···C1vi3.1000
C1···H13Aiii3.1000H13A···C7vi2.8500
C2···H13Bii2.7700H13B···N22.8200
C2···H12.5500H13B···C2i2.7700
C6···H6vii2.9600H13B···H2i2.4300
C7···H13Aiii2.8500H13C···N22.8200
C7···H4viii3.0800H13C···C83.0400
C8···H13C3.0400H13C···C12iii3.0200
C9···H3i3.0300H13C···H12iii2.4500
C10···H13Cv2.9300H13C···C10v2.9300
C12···H13Cvi3.0200
N2—N1—C7119.54 (14)C1—C2—H2120.00
N1—N2—C8113.93 (16)C3—C2—H2120.00
C9—N3—C12108.30 (16)C2—C3—H3120.00
C9—N3—C13127.28 (16)C4—C3—H3120.00
C12—N3—C13124.28 (17)C3—C4—H4120.00
N2—N1—H1120.00C5—C4—H4120.00
C7—N1—H1120.00C4—C5—H5120.00
C6—C1—C7117.20 (15)C6—C5—H5120.00
C2—C1—C6118.66 (17)C1—C6—H6120.00
C2—C1—C7124.13 (16)C5—C6—H6120.00
C1—C2—C3120.11 (17)N2—C8—H8117.00
C2—C3—C4120.73 (19)C9—C8—H8117.00
C3—C4—C5119.7 (2)C9—C10—H10126.00
C4—C5—C6120.3 (2)C11—C10—H10126.00
C1—C6—C5120.52 (19)C10—C11—H11126.00
N1—C7—C1117.39 (15)C12—C11—H11127.00
O1—C7—N1121.93 (16)N3—C12—H12125.00
O1—C7—C1120.68 (15)C11—C12—H12125.00
N2—C8—C9125.45 (18)N3—C13—H13A109.00
N3—C9—C10107.02 (16)N3—C13—H13B110.00
C8—C9—C10125.74 (19)N3—C13—H13C110.00
N3—C9—C8127.20 (17)H13A—C13—H13B109.00
C9—C10—C11108.14 (19)H13A—C13—H13C109.00
C10—C11—C12107.00 (19)H13B—C13—H13C109.00
N3—C12—C11109.53 (19)
C7—N1—N2—C8158.43 (18)C2—C1—C7—O1171.48 (19)
N2—N1—C7—O12.8 (3)C2—C1—C7—N18.4 (3)
N2—N1—C7—C1177.08 (16)C6—C1—C7—O17.0 (3)
N1—N2—C8—C9178.86 (18)C6—C1—C7—N1173.11 (18)
C12—N3—C9—C8177.51 (19)C1—C2—C3—C40.6 (3)
C12—N3—C9—C100.4 (2)C2—C3—C4—C50.5 (4)
C13—N3—C9—C86.7 (3)C3—C4—C5—C60.3 (4)
C13—N3—C9—C10175.43 (18)C4—C5—C6—C11.1 (4)
C9—N3—C12—C110.1 (2)N2—C8—C9—N313.0 (3)
C13—N3—C12—C11176.05 (19)N2—C8—C9—C10164.5 (2)
C6—C1—C2—C30.2 (3)N3—C9—C10—C110.7 (2)
C7—C1—C2—C3178.67 (19)C8—C9—C10—C11177.2 (2)
C2—C1—C6—C51.1 (3)C9—C10—C11—C120.7 (3)
C7—C1—C6—C5179.6 (2)C10—C11—C12—N30.5 (3)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x+2, y1/2, z+1/2; (iv) x+1, y, z+1; (v) x+2, y+1, z+1; (vi) x+2, y+1/2, z+1/2; (vii) x+1, y, z; (viii) x+1, y+1/2, z+1/2; (ix) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1ii0.862.112.910 (2)155
C8—H8···O1ii0.932.383.209 (2)148
Symmetry code: (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H13N3O
Mr227.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.1170 (8), 11.6329 (9), 9.6735 (6)
β (°) 110.241 (3)
V3)1173.75 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.28 × 0.12 × 0.10
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.942, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
11164, 2930, 1770
Rint0.047
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.139, 1.02
No. of reflections2930
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.17

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.112.910 (2)155
C8—H8···O1i0.932.383.209 (2)148
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationShafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009a). Acta Cryst. E65, o2501.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009b). Acta Cryst. E65, o2898.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds