organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Decyl­phenyl 4-benz­yl­oxy-3-methyl­benzoate

aDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, bDepartment of Physics, Sri D Devaraja Urs Govt. First Grade College, Hunsur 571 105, Mysore District, Karnataka, India, and cRaman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore, Karnataka, India
*Correspondence e-mail: devarajegowda@yahoo.com

(Received 24 May 2010; accepted 20 July 2010; online 24 July 2010)

In the title compound, C31H38O3, the central benzene ring makes dihedral angles of 66.06 (9) and 65.21 (8)°, respectively, with the benzyl and 4-decyl­phenyl rings.

Related literature

For general background to benzyl­oxybenzoate, see: Laschat (2009[Laschat, S. (2009). Beilstein J. Org. Chem. 5, 48.]); Meter & Klanderman (1973[Meter, J. P. V. & Klanderman, B. H. (1973). Mol. Cryst. Liq. Cryst. 22, 285-299.]); Young et al. (1974[Young, W. R. & Green, D. C. (1974). Mol. Cryst. Liq. Cryst. 26, 7-9.]); Tinn et al. (1982[Tinn, N. H., Hardouin, F. & Destrade, C. (1982). J. Phys. (Paris), 43, 1127-1131.]). For the synthesis, see: Sadashiva & Subba (1975[Sadashiva, B. K. & Subba, G. S. R. (1975). Curr. Sci. 44, 222-224.]); Sadashiva (1979[Sadashiva, B. K. (1979). Mol. Cryst. Liq. Cryst. 53, 253-261.]); Hari et al. (2009[Hari, K., Srinivasa, H. T. & Sandeep, K. (2009). Beilstein J. Org. Chem. 5, 1-5.]). For related structures, see: Blake et al. (1996[Blake, A. J., Fallis, I. A., Parsons, S., Schröder, M. & Bruce, D. W. (1996). Acta Cryst. C52, 194-197.]); Chin & Goodby (1986[Chin, E. & Goodby, J. W. (1986). Mol. Cryst. Liq. Cryst. 141, 311-320.]).

[Scheme 1]

Experimental

Crystal data
  • C31H38O3

  • Mr = 458.61

  • Triclinic, [P \overline 1]

  • a = 9.3684 (16) Å

  • b = 11.168 (2) Å

  • c = 15.204 (3) Å

  • α = 68.588 (11)°

  • β = 87.274 (11)°

  • γ = 65.578 (10)°

  • V = 1338.3 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 295 K

  • 0.22 × 0.15 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: ψ scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.987, Tmax = 0.992

  • 23986 measured reflections

  • 6737 independent reflections

  • 3840 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.183

  • S = 1.04

  • 6737 reflections

  • 308 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Liquid crystals are unique functional soft materials that possess both order and mobility at the molecular and supramolecular level.One of the major issues in liquid crystal research today is still the poor knowledge of structure-property relationships and thus the synthesis of whole series of structurally related compounds is required in order to allow the design of liquid crystalline and other physical properties (Laschat, 2009) Several benzyloxy derivative liquid crystals were reported with terminal alkyl and alkoxy chains (Meter et al., 1973), and these compounds were shown to be of nematic mesophases (Young et al., 1974; Tinn et al., 1982). Terminal carbonitrile group containing liquid crystals were also synthesized and studied for their positive dielectric anisotropy (Sadashiva et al., 1975; Sadashiva, 1979). In our study a novel rod shaped liquid crystal having a decyloxy chain has been synthesized and characterized using single-crystal X-ray diffraction study. 4-decylphenyl 4-(benzyloxy)-3- methylbenzoate is the study compound showing monotropic nematic mesophase at 305 K.

The structure of decylphenyl 4-(benzyloxy) -3-methylbenzoate contains one independent molecule in the asymmetric unit. The ring systems and alkyl chain are non coplanar with each other. The dihedral angle between the aromatic rings A–B, B–C and A–C are 66.06 (9)°, 65.21 (8)° and 12.89 (10)° respectively. The alkyl chain and ring C together makes a dihedral angle of 10.73 (12)°. The packing of the molecules is stabilized by C7—H7B···O2 hydrogen bond and Van der Waal's forces(Figure 2).

Related literature top

For general background to benzyloxybenzoate, see: Laschat (2009); Meter & Klanderman (1973); Young et al. (1974); Tinn et al. (1982). For the synthesis, see: Sadashiva & Subba (1975); Sadashiva, (1979); Hari et al. (2009). For a related structure, see: Blake et al. (1996). For related literature [on what subject?, see: Chin & Goodby (1986).

Experimental top

A mixture of 3-methyl-4-benzyloxybenzoic acid(0.41 mol) and 4-decylphenol(0.41 mol), a catalytic quantity of 4-(N,N-Dimethylamino) pyridine (DMAP) and dry dichloromethane(10 ml) were stirred for 10 min. To this N, N'-dicyclohexylcarbodiimide(DCC,0.49 mol) was added and the mixture stirred overnight at room temperature. The precipitated N,N'-dicyclohexylurea was filtered off; the filterate was diluted with dichloromethane(30 ml) and washed successively with 5% acetic acid(10 ml x 2), 5% ice-cold sodium hydroxide solution(10 ml x 2) and water(20 ml x 3), then dried over anhydrous sodium sulfate.Removal of solvent gave a product which was chromatographed on silica gel using dichloromethane as eluent. Removal of solvent from the eluate afforded a white product which was recrystallized with analytical grade methanol. Yield was about 90%. m.p. 339 K. Spectral data IR (KBr) cm-1: 2951 & 2891(CH2 aliphatic), 1728(C=O ester),1602(aromatic C=C), 1469(CH aromatic). 1H NMR(CDCl3): 8.01(d, 2H, Ar—H), 7.43(m, 5H, Ar—H), 7.33(d, 1H, Ar—H),7.20(d, 2H, Ar—H), 7.10(d, 2H, Ar—H), 5.20(s, 2H, Ar—CH2—O–), 2.56(t, 2H, Ar—CH2–), 2.30(s, 3H, Ar—CH3), 1.56(m,2H, Ar—CH2—CH2–), 1.30(m, 14H, aliphatic-CH2–),0.9 (t, 3H, –CH3). Elemental analysis: Molecular Weight, 458.63 for C31 H38O3requires C 81.18%, H 8.35%. Found, C 80.71% H 8.50%.

Refinement top

All H atoms were positioned at calculated positions with C—H = 0.93Å for aromatic H, 0.97Å for methylene H and 0.96Å for methyl H and refined using a riding model with Uiso(H) =1.5Ueq(C)for methyl H and 1.2Ueq(C) for other.

Structure description top

Liquid crystals are unique functional soft materials that possess both order and mobility at the molecular and supramolecular level.One of the major issues in liquid crystal research today is still the poor knowledge of structure-property relationships and thus the synthesis of whole series of structurally related compounds is required in order to allow the design of liquid crystalline and other physical properties (Laschat, 2009) Several benzyloxy derivative liquid crystals were reported with terminal alkyl and alkoxy chains (Meter et al., 1973), and these compounds were shown to be of nematic mesophases (Young et al., 1974; Tinn et al., 1982). Terminal carbonitrile group containing liquid crystals were also synthesized and studied for their positive dielectric anisotropy (Sadashiva et al., 1975; Sadashiva, 1979). In our study a novel rod shaped liquid crystal having a decyloxy chain has been synthesized and characterized using single-crystal X-ray diffraction study. 4-decylphenyl 4-(benzyloxy)-3- methylbenzoate is the study compound showing monotropic nematic mesophase at 305 K.

The structure of decylphenyl 4-(benzyloxy) -3-methylbenzoate contains one independent molecule in the asymmetric unit. The ring systems and alkyl chain are non coplanar with each other. The dihedral angle between the aromatic rings A–B, B–C and A–C are 66.06 (9)°, 65.21 (8)° and 12.89 (10)° respectively. The alkyl chain and ring C together makes a dihedral angle of 10.73 (12)°. The packing of the molecules is stabilized by C7—H7B···O2 hydrogen bond and Van der Waal's forces(Figure 2).

For general background to benzyloxybenzoate, see: Laschat (2009); Meter & Klanderman (1973); Young et al. (1974); Tinn et al. (1982). For the synthesis, see: Sadashiva & Subba (1975); Sadashiva, (1979); Hari et al. (2009). For a related structure, see: Blake et al. (1996). For related literature [on what subject?, see: Chin & Goodby (1986).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing of the molecules with dotted line weak intermolecular hydrogen bond.
4-Decylphenyl 4-benzyloxy-3-methylbenzoate top
Crystal data top
C31H38O3Z = 2
Mr = 458.61F(000) = 496
Triclinic, P1Dx = 1.138 Mg m3
Hall symbol: -P 1Melting point: 339 K
a = 9.3684 (16) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.168 (2) ÅCell parameters from 6737 reflections
c = 15.204 (3) Åθ = 1.5–28.5°
α = 68.588 (11)°µ = 0.07 mm1
β = 87.274 (11)°T = 295 K
γ = 65.578 (10)°Plate, colourless
V = 1338.3 (4) Å30.22 × 0.15 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
6737 independent reflections
Radiation source: fine-focus sealed tube3840 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω and φ scansθmax = 28.5°, θmin = 1.5°
Absorption correction: ψ scan
(SADABS; Sheldrick, 2004)
h = 1212
Tmin = 0.987, Tmax = 0.992k = 1414
23986 measured reflectionsl = 1920
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.183 w = 1/[σ2(Fo2) + (0.0834P)2 + 0.1711P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
6737 reflectionsΔρmax = 0.37 e Å3
308 parametersΔρmin = 0.28 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.009 (2)
Crystal data top
C31H38O3γ = 65.578 (10)°
Mr = 458.61V = 1338.3 (4) Å3
Triclinic, P1Z = 2
a = 9.3684 (16) ÅMo Kα radiation
b = 11.168 (2) ŵ = 0.07 mm1
c = 15.204 (3) ÅT = 295 K
α = 68.588 (11)°0.22 × 0.15 × 0.12 mm
β = 87.274 (11)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6737 independent reflections
Absorption correction: ψ scan
(SADABS; Sheldrick, 2004)
3840 reflections with I > 2σ(I)
Tmin = 0.987, Tmax = 0.992Rint = 0.034
23986 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0536 restraints
wR(F2) = 0.183H-atom parameters constrained
S = 1.04Δρmax = 0.37 e Å3
6737 reflectionsΔρmin = 0.28 e Å3
308 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.29391 (13)0.71764 (13)0.39798 (8)0.0596 (3)
O20.76009 (16)0.85364 (16)0.66658 (10)0.0782 (4)
O30.66987 (13)0.76081 (12)0.58579 (8)0.0587 (3)
C11.7436 (2)0.6890 (3)0.21401 (16)0.0773 (6)
H11.81610.67250.17100.093*
C21.7328 (2)0.5776 (2)0.28609 (18)0.0808 (6)
H21.79870.48490.29260.097*
C31.6246 (2)0.6016 (2)0.34940 (15)0.0734 (5)
H31.61780.52490.39830.088*
C41.52641 (19)0.73813 (19)0.34098 (13)0.0563 (4)
C51.5386 (2)0.85005 (19)0.26763 (14)0.0654 (5)
H51.47280.94310.26050.078*
C61.6476 (2)0.8246 (2)0.20518 (15)0.0770 (6)
H61.65600.90060.15650.092*
C81.16997 (18)0.74083 (16)0.45050 (11)0.0493 (4)
C71.4092 (2)0.7663 (2)0.40939 (14)0.0703 (5)
H7A1.46190.71630.47410.084*
H7B1.35820.86720.39670.084*
C91.05899 (18)0.69493 (15)0.43409 (11)0.0478 (4)
C100.93050 (18)0.71552 (16)0.48486 (11)0.0490 (4)
H100.85520.68640.47460.059*
C110.91080 (18)0.77889 (16)0.55122 (11)0.0493 (4)
C121.0225 (2)0.82287 (19)0.56523 (12)0.0578 (4)
H121.01020.86570.60900.069*
C131.1519 (2)0.80452 (19)0.51555 (12)0.0589 (4)
H131.22620.83470.52570.071*
C141.0830 (2)0.6250 (2)0.36370 (14)0.0680 (5)
H14A1.17840.62080.33620.102*
H14B0.99500.67890.31440.102*
H14C1.09080.53040.39550.102*
C150.77674 (19)0.80247 (17)0.60752 (12)0.0538 (4)
C160.53999 (18)0.77559 (18)0.63921 (11)0.0512 (4)
C170.5292 (2)0.65529 (18)0.70043 (13)0.0611 (5)
H170.60600.56600.70670.073*
C180.4030 (2)0.66829 (18)0.75268 (13)0.0604 (4)
H180.39580.58640.79430.072*
C190.28666 (19)0.79952 (17)0.74503 (11)0.0501 (4)
C200.30000 (19)0.91846 (17)0.68052 (12)0.0561 (4)
H200.22251.00820.67270.067*
C210.42535 (19)0.90750 (18)0.62747 (12)0.0553 (4)
H210.43180.98880.58430.066*
C220.1539 (2)0.80822 (18)0.80631 (13)0.0608 (4)
H22A0.08960.77110.78650.073*
H22B0.19970.74620.87160.073*
C230.0474 (2)0.95323 (19)0.80478 (13)0.0612 (5)
H23A0.00871.01300.74130.073*
H23B0.11160.99520.81840.073*
C240.0723 (2)0.9519 (2)0.87570 (13)0.0650 (5)
H24A0.13990.91430.86010.078*
H24B0.01640.88830.93880.078*
C250.1748 (2)1.0969 (2)0.87793 (13)0.0634 (5)
H25A0.23471.15940.81570.076*
H25B0.10731.13650.89080.076*
C260.2886 (2)1.0926 (2)0.95230 (13)0.0632 (5)
H26A0.35081.04680.94190.076*
H26B0.22801.03471.01470.076*
C270.4000 (2)1.23739 (19)0.95192 (13)0.0639 (5)
H27A0.33831.28170.96540.077*
H27B0.45781.29700.88890.077*
C280.5169 (2)1.23037 (19)1.02399 (13)0.0641 (5)
H28A0.57451.18191.01190.077*
H28B0.45821.17311.08700.077*
C290.6347 (2)1.3720 (2)1.02406 (14)0.0687 (5)
H29A0.57811.41931.03890.082*
H29B0.69171.43100.96070.082*
C300.7516 (2)1.3592 (2)1.09440 (16)0.0803 (6)
H30A0.69391.29391.15670.096*
H30B0.81331.31831.07640.096*
C310.8634 (3)1.4982 (3)1.1015 (2)0.1154 (9)
H31A0.93381.48141.14750.173*
H31B0.92351.56291.04060.173*
H31C0.80391.53861.12100.173*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0546 (7)0.0750 (8)0.0666 (7)0.0390 (6)0.0209 (6)0.0339 (6)
O20.0796 (9)0.1107 (11)0.0799 (9)0.0556 (8)0.0335 (7)0.0593 (9)
O30.0524 (7)0.0696 (7)0.0669 (7)0.0305 (6)0.0233 (6)0.0365 (6)
C10.0557 (11)0.0991 (17)0.0911 (15)0.0335 (11)0.0254 (10)0.0522 (14)
C20.0535 (11)0.0668 (13)0.1176 (18)0.0144 (10)0.0078 (12)0.0426 (13)
C30.0661 (12)0.0579 (11)0.0869 (14)0.0293 (10)0.0077 (11)0.0141 (10)
C40.0497 (9)0.0661 (11)0.0632 (10)0.0336 (8)0.0118 (8)0.0257 (9)
C50.0630 (11)0.0566 (10)0.0798 (12)0.0285 (9)0.0197 (10)0.0272 (10)
C60.0774 (13)0.0784 (14)0.0781 (13)0.0423 (11)0.0282 (11)0.0246 (11)
C80.0475 (8)0.0491 (9)0.0492 (9)0.0228 (7)0.0098 (7)0.0143 (7)
C70.0669 (11)0.0982 (15)0.0767 (12)0.0548 (11)0.0256 (10)0.0456 (11)
C90.0482 (8)0.0435 (8)0.0505 (9)0.0206 (7)0.0084 (7)0.0156 (7)
C100.0464 (8)0.0461 (8)0.0543 (9)0.0219 (7)0.0086 (7)0.0167 (7)
C110.0470 (8)0.0468 (9)0.0483 (9)0.0183 (7)0.0071 (7)0.0138 (7)
C120.0614 (10)0.0672 (11)0.0534 (9)0.0313 (9)0.0119 (8)0.0283 (8)
C130.0579 (10)0.0720 (11)0.0612 (10)0.0376 (9)0.0123 (8)0.0297 (9)
C140.0688 (11)0.0793 (12)0.0822 (13)0.0439 (10)0.0274 (10)0.0466 (11)
C150.0533 (9)0.0544 (10)0.0533 (9)0.0239 (8)0.0114 (8)0.0193 (8)
C160.0487 (9)0.0589 (10)0.0524 (9)0.0245 (8)0.0147 (7)0.0272 (8)
C170.0562 (10)0.0496 (10)0.0747 (12)0.0189 (8)0.0180 (9)0.0260 (9)
C180.0635 (11)0.0488 (9)0.0668 (11)0.0254 (8)0.0186 (9)0.0191 (8)
C190.0526 (9)0.0529 (9)0.0463 (8)0.0235 (8)0.0113 (7)0.0200 (7)
C200.0555 (10)0.0482 (9)0.0569 (10)0.0177 (8)0.0141 (8)0.0176 (8)
C210.0565 (10)0.0521 (9)0.0539 (9)0.0239 (8)0.0157 (8)0.0165 (8)
C220.0629 (10)0.0609 (10)0.0570 (10)0.0274 (9)0.0208 (8)0.0212 (8)
C230.0589 (10)0.0642 (11)0.0607 (10)0.0265 (9)0.0209 (8)0.0252 (9)
C240.0634 (11)0.0686 (12)0.0645 (11)0.0301 (9)0.0266 (9)0.0268 (9)
C250.0613 (10)0.0698 (12)0.0623 (10)0.0303 (9)0.0229 (9)0.0275 (9)
C260.0605 (10)0.0658 (11)0.0616 (10)0.0261 (9)0.0214 (9)0.0249 (9)
C270.0634 (11)0.0632 (11)0.0679 (11)0.0285 (9)0.0213 (9)0.0275 (9)
C280.0654 (11)0.0616 (11)0.0658 (11)0.0271 (9)0.0217 (9)0.0261 (9)
C290.0682 (12)0.0637 (11)0.0731 (12)0.0270 (9)0.0228 (10)0.0279 (10)
C300.0715 (12)0.0821 (14)0.0890 (14)0.0307 (11)0.0319 (11)0.0393 (12)
C310.0906 (17)0.108 (2)0.138 (2)0.0207 (15)0.0451 (16)0.0656 (18)
Geometric parameters (Å, º) top
O1—C81.3664 (18)C18—C191.384 (2)
O1—C71.436 (2)C18—H180.9300
O2—C151.2021 (19)C19—C201.384 (2)
O3—C151.363 (2)C19—C221.510 (2)
O3—C161.4161 (18)C20—C211.381 (2)
C1—C61.362 (3)C20—H200.9300
C1—C21.363 (3)C21—H210.9300
C1—H10.9300C22—C231.502 (2)
C2—C31.377 (3)C22—H22A0.9700
C2—H20.9300C22—H22B0.9700
C3—C41.377 (3)C23—C241.519 (2)
C3—H30.9300C23—H23A0.9700
C4—C51.381 (2)C23—H23B0.9700
C4—C71.494 (2)C24—C251.515 (2)
C5—C61.375 (3)C24—H24A0.9700
C5—H50.9300C24—H24B0.9700
C6—H60.9300C25—C261.518 (2)
C8—C131.382 (2)C25—H25A0.9700
C8—C91.402 (2)C25—H25B0.9700
C7—H7A0.9700C26—C271.517 (2)
C7—H7B0.9700C26—H26A0.9700
C9—C101.382 (2)C26—H26B0.9700
C9—C141.500 (2)C27—C281.517 (2)
C10—C111.396 (2)C27—H27A0.9700
C10—H100.9300C27—H27B0.9700
C11—C121.380 (2)C28—C291.509 (2)
C11—C151.472 (2)C28—H28A0.9700
C12—C131.380 (2)C28—H28B0.9700
C12—H120.9300C29—C301.507 (2)
C13—H130.9300C29—H29A0.9700
C14—H14A0.9600C29—H29B0.9700
C14—H14B0.9600C30—C311.512 (3)
C14—H14C0.9600C30—H30A0.9700
C16—C171.368 (2)C30—H30B0.9700
C16—C211.369 (2)C31—H31A0.9600
C17—C181.380 (2)C31—H31B0.9600
C17—H170.9300C31—H31C0.9600
C8—O1—C7117.75 (13)C21—C20—H20119.1
C15—O3—C16116.52 (12)C19—C20—H20119.1
C6—C1—C2119.72 (19)C16—C21—C20119.21 (15)
C6—C1—H1120.1C16—C21—H21120.4
C2—C1—H1120.1C20—C21—H21120.4
C1—C2—C3120.29 (19)C23—C22—C19116.47 (14)
C1—C2—H2119.9C23—C22—H22A108.2
C3—C2—H2119.9C19—C22—H22A108.2
C2—C3—C4120.56 (18)C23—C22—H22B108.2
C2—C3—H3119.7C19—C22—H22B108.2
C4—C3—H3119.7H22A—C22—H22B107.3
C3—C4—C5118.56 (16)C22—C23—C24113.59 (14)
C3—C4—C7121.33 (17)C22—C23—H23A108.8
C5—C4—C7120.12 (17)C24—C23—H23A108.8
C6—C5—C4120.29 (17)C22—C23—H23B108.8
C6—C5—H5119.9C24—C23—H23B108.8
C4—C5—H5119.9H23A—C23—H23B107.7
C1—C6—C5120.58 (19)C25—C24—C23113.85 (15)
C1—C6—H6119.7C25—C24—H24A108.8
C5—C6—H6119.7C23—C24—H24A108.8
O1—C8—C13123.80 (14)C25—C24—H24B108.8
O1—C8—C9115.06 (14)C23—C24—H24B108.8
C13—C8—C9121.13 (14)H24A—C24—H24B107.7
O1—C7—C4108.23 (14)C24—C25—C26113.16 (15)
O1—C7—H7A110.1C24—C25—H25A108.9
C4—C7—H7A110.1C26—C25—H25A108.9
O1—C7—H7B110.1C24—C25—H25B108.9
C4—C7—H7B110.1C26—C25—H25B108.9
H7A—C7—H7B108.4H25A—C25—H25B107.8
C10—C9—C8117.95 (14)C27—C26—C25114.33 (15)
C10—C9—C14122.26 (14)C27—C26—H26A108.7
C8—C9—C14119.78 (14)C25—C26—H26A108.7
C9—C10—C11121.69 (15)C27—C26—H26B108.7
C9—C10—H10119.2C25—C26—H26B108.7
C11—C10—H10119.2H26A—C26—H26B107.6
C12—C11—C10118.62 (14)C28—C27—C26113.14 (15)
C12—C11—C15117.55 (14)C28—C27—H27A109.0
C10—C11—C15123.83 (15)C26—C27—H27A109.0
C13—C12—C11121.27 (15)C28—C27—H27B109.0
C13—C12—H12119.4C26—C27—H27B109.0
C11—C12—H12119.4H27A—C27—H27B107.8
C12—C13—C8119.34 (16)C29—C28—C27115.36 (16)
C12—C13—H13120.3C29—C28—H28A108.4
C8—C13—H13120.3C27—C28—H28A108.4
C9—C14—H14A109.5C29—C28—H28B108.4
C9—C14—H14B109.5C27—C28—H28B108.4
H14A—C14—H14B109.5H28A—C28—H28B107.5
C9—C14—H14C109.5C30—C29—C28113.17 (16)
H14A—C14—H14C109.5C30—C29—H29A108.9
H14B—C14—H14C109.5C28—C29—H29A108.9
O2—C15—O3122.27 (15)C30—C29—H29B108.9
O2—C15—C11124.65 (16)C28—C29—H29B108.9
O3—C15—C11113.08 (14)H29A—C29—H29B107.8
C17—C16—C21120.86 (14)C29—C30—C31114.4 (2)
C17—C16—O3118.55 (14)C29—C30—H30A108.7
C21—C16—O3120.56 (14)C31—C30—H30A108.7
C16—C17—C18119.10 (15)C29—C30—H30B108.7
C16—C17—H17120.5C31—C30—H30B108.7
C18—C17—H17120.5H30A—C30—H30B107.6
C17—C18—C19121.97 (16)C30—C31—H31A109.5
C17—C18—H18119.0C30—C31—H31B109.5
C19—C18—H18119.0H31A—C31—H31B109.5
C18—C19—C20117.03 (14)C30—C31—H31C109.5
C18—C19—C22119.99 (15)H31A—C31—H31C109.5
C20—C19—C22122.97 (14)H31B—C31—H31C109.5
C21—C20—C19121.78 (15)
C6—C1—C2—C30.5 (3)C16—O3—C15—C11177.94 (13)
C1—C2—C3—C40.2 (3)C12—C11—C15—O22.2 (3)
C2—C3—C4—C50.2 (3)C10—C11—C15—O2178.07 (17)
C2—C3—C4—C7179.54 (17)C12—C11—C15—O3177.47 (14)
C3—C4—C5—C60.5 (3)C10—C11—C15—O32.3 (2)
C7—C4—C5—C6179.25 (17)C15—O3—C16—C17112.35 (17)
C2—C1—C6—C50.8 (3)C15—O3—C16—C2169.6 (2)
C4—C5—C6—C10.8 (3)C21—C16—C17—C181.8 (3)
C7—O1—C8—C131.9 (2)O3—C16—C17—C18179.82 (15)
C7—O1—C8—C9178.12 (15)C16—C17—C18—C190.0 (3)
C8—O1—C7—C4176.37 (14)C17—C18—C19—C201.6 (3)
C3—C4—C7—O165.5 (2)C17—C18—C19—C22177.81 (16)
C5—C4—C7—O1114.78 (18)C18—C19—C20—C211.4 (2)
O1—C8—C9—C10179.88 (13)C22—C19—C20—C21177.94 (16)
C13—C8—C9—C100.1 (2)C17—C16—C21—C202.0 (3)
O1—C8—C9—C140.6 (2)O3—C16—C21—C20179.92 (14)
C13—C8—C9—C14179.41 (16)C19—C20—C21—C160.3 (3)
C8—C9—C10—C110.5 (2)C18—C19—C22—C23170.77 (16)
C14—C9—C10—C11179.02 (16)C20—C19—C22—C238.6 (3)
C9—C10—C11—C120.6 (2)C19—C22—C23—C24173.87 (15)
C9—C10—C11—C15179.63 (14)C22—C23—C24—C25177.16 (16)
C10—C11—C12—C130.4 (3)C23—C24—C25—C26177.39 (15)
C15—C11—C12—C13179.87 (15)C24—C25—C26—C27176.29 (16)
C11—C12—C13—C80.0 (3)C25—C26—C27—C28177.49 (16)
O1—C8—C13—C12179.87 (15)C26—C27—C28—C29177.76 (16)
C9—C8—C13—C120.1 (3)C27—C28—C29—C30177.89 (17)
C16—O3—C15—O22.4 (2)C28—C29—C30—C31175.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O30.932.472.786 (2)100
C14—H14A···O10.962.242.726 (3)110

Experimental details

Crystal data
Chemical formulaC31H38O3
Mr458.61
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)9.3684 (16), 11.168 (2), 15.204 (3)
α, β, γ (°)68.588 (11), 87.274 (11), 65.578 (10)
V3)1338.3 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.22 × 0.15 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionψ scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.987, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
23986, 6737, 3840
Rint0.034
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.183, 1.04
No. of reflections6737
No. of parameters308
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.28

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O30.93002.47002.786 (2)100.00
C14—H14A···O10.96002.24002.726 (3)110.00
 

Acknowledgements

The authors thank Dr Gunasekaran and Dr Karthik, Department of Crystallography and Bio-Chemistry, University of Madras Guindy Campus, Chennai, India, for their help with the data collection.

References

First citationBlake, A. J., Fallis, I. A., Parsons, S., Schröder, M. & Bruce, D. W. (1996). Acta Cryst. C52, 194–197.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChin, E. & Goodby, J. W. (1986). Mol. Cryst. Liq. Cryst. 141, 311-320.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHari, K., Srinivasa, H. T. & Sandeep, K. (2009). Beilstein J. Org. Chem. 5, 1–5.  Web of Science PubMed Google Scholar
First citationLaschat, S. (2009). Beilstein J. Org. Chem. 5, 48.  Web of Science CrossRef PubMed Google Scholar
First citationMeter, J. P. V. & Klanderman, B. H. (1973). Mol. Cryst. Liq. Cryst. 22, 285–299.  Google Scholar
First citationSadashiva, B. K. (1979). Mol. Cryst. Liq. Cryst. 53, 253–261.  CrossRef CAS Web of Science Google Scholar
First citationSadashiva, B. K. & Subba, G. S. R. (1975). Curr. Sci. 44, 222–224.  CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTinn, N. H., Hardouin, F. & Destrade, C. (1982). J. Phys. (Paris), 43, 1127–1131.  Google Scholar
First citationYoung, W. R. & Green, D. C. (1974). Mol. Cryst. Liq. Cryst. 26, 7–9.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds