organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-benzene­sulfonamido­benzoate

aMaterials Chemistry Laboratry, Department of Chemistry, GC University, Lahore 54000, Pakistan, and bDepartment of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey
*Correspondence e-mail: iuklodhi@yahoo.com

(Received 23 June 2010; accepted 28 June 2010; online 7 July 2010)

In the title compound, C14H13NO4S, the conformation of the C—S—N—C segment is gauche and the two benzene rings are tilted relative to each other by 85.62 (8)°. An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring and an C—H⋯O inter­action also occurs. In the crystal, inter­molecular C—H⋯O hydrogen bonds are observed, which link the mol­ecules into [100] C(7) chains.

Related literature

For related structures, see: Khan et al. (2010[Khan, I. U., Sharif, S., Akkurt, M., Sajjad, A. & Ahmad, J. (2010). Acta Cryst. E66, o786.]); Sharif et al. (2010[Sharif, S., Iqbal, H., Khan, I. U., John, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1288.]). For graph-set analysis, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13NO4S

  • Mr = 291.31

  • Triclinic, [P \overline 1]

  • a = 8.341 (5) Å

  • b = 9.115 (3) Å

  • c = 10.000 (5) Å

  • α = 84.483 (5)°

  • β = 80.663 (5)°

  • γ = 66.674 (4)°

  • V = 688.5 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 296 K

  • 0.18 × 0.10 × 0.07 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.]) Tmin = 0.88, Tmax = 0.99

  • 12401 measured reflections

  • 3387 independent reflections

  • 2495 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.174

  • S = 1.15

  • 3387 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Selected torsion angles (°)

C7—N1—S1—C1 −67.8 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O2 0.93 2.45 3.062 (3) 124
N1—H1⋯O3 0.86 1.94 2.635 (3) 136
C8—H8⋯O2i 0.93 2.63 3.326 (3) 132
C4—H4⋯O1ii 0.93 2.48 3.265 (3) 142
Symmetry codes: (i) -x, -y, -z+1; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In continuation of our studies of sulfonamides synthesis (Khan et al., 2010; Sharif et al., 2010), herein, the crystal structure of title compound, (I), is described.

In the molecule of the title compound, (I), (Fig. 1), the coordination around the S atom is a distorted tetrahedral. The molecule is twisted at the S atom with the C1—SO2—NH—C7 torsion angle of -67.8 (2)°. In (I), the benzene ring C7—C12 is oriented with respect to the planar methyl ester moiety (O3/O4/C13/C14) and the benzene ring C1—C6 at dihedral angles of 5.29 (19)° and 85.62 (8)°, respectively. The dihedral angle between SO2 moiety and the benzene ring C1—C6 is 49.96 (12)°.

The intramolecular C8—H8···O2 and N1—H1···O3 hydrogen bonds produce S(6) rings (Bernstein et al., 1995) (Fig. 1). The atom C8 in the molecule at (x, y, z) acts as a hydrogen-bond donor (Table 2) to atom O2i so forming a centrosymmetric R22(12) ring centred at (0, 0, 1/2). Atom C4 in the molecule at (x, y, z) acts as a hydrogen-bond donor to atom O1ii so forming a C(7) chain running parallel to the [-100] direciton. The combination of the C—H···O hydrogen bonds along [100] generates a chain of edge-fused R22(12) and R44(26) rings.

Related literature top

For related structures, see: Khan et al. (2010); Sharif et al. (2010). For graph-set analysis, see: Bernstein et al. (1995).

Experimental top

To methyl anthranilate (428 µl, 3.3 mmol) in distilled water (10 ml) was added benzene sulfonyl chloride (421µl, 3.3 mmol) with stirring at room temperature while maintaining the pH of the reaction mixture at 8 using 3% sodium carbonate. The progress of the reaction was monitored by TLC. The precipitate formed in this way was washed with water, dried and crystallized from methanol to yield colourless blocks of (I).

Refinement top

All H atoms bound to C and N atoms were refined using a riding model, with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C) for aromatic C atoms, C—H = 0.96Å and Uiso(H) = 1.5Ueq(C) for methyl C atom and N—H = 0.86Å and Uiso(H) = 1.2Ueq(C) for N atom.

Structure description top

In continuation of our studies of sulfonamides synthesis (Khan et al., 2010; Sharif et al., 2010), herein, the crystal structure of title compound, (I), is described.

In the molecule of the title compound, (I), (Fig. 1), the coordination around the S atom is a distorted tetrahedral. The molecule is twisted at the S atom with the C1—SO2—NH—C7 torsion angle of -67.8 (2)°. In (I), the benzene ring C7—C12 is oriented with respect to the planar methyl ester moiety (O3/O4/C13/C14) and the benzene ring C1—C6 at dihedral angles of 5.29 (19)° and 85.62 (8)°, respectively. The dihedral angle between SO2 moiety and the benzene ring C1—C6 is 49.96 (12)°.

The intramolecular C8—H8···O2 and N1—H1···O3 hydrogen bonds produce S(6) rings (Bernstein et al., 1995) (Fig. 1). The atom C8 in the molecule at (x, y, z) acts as a hydrogen-bond donor (Table 2) to atom O2i so forming a centrosymmetric R22(12) ring centred at (0, 0, 1/2). Atom C4 in the molecule at (x, y, z) acts as a hydrogen-bond donor to atom O1ii so forming a C(7) chain running parallel to the [-100] direciton. The combination of the C—H···O hydrogen bonds along [100] generates a chain of edge-fused R22(12) and R44(26) rings.

For related structures, see: Khan et al. (2010); Sharif et al. (2010). For graph-set analysis, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), showing displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of R22(12) and R44(26) rings. H atoms not involved in these interactions have been omitted for clarity. (Symmetry codes as in Table 2).
Methyl 2-benzenesulfonamidobenzoate top
Crystal data top
C14H13NO4SZ = 2
Mr = 291.31F(000) = 304
Triclinic, P1Dx = 1.405 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.341 (5) ÅCell parameters from 4237 reflections
b = 9.115 (3) Åθ = 2.4–26.0°
c = 10.000 (5) ŵ = 0.25 mm1
α = 84.483 (5)°T = 296 K
β = 80.663 (5)°Block, colourless
γ = 66.674 (4)°0.18 × 0.10 × 0.07 mm
V = 688.5 (7) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3387 independent reflections
Radiation source: fine-focus sealed tube2495 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
phi and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1110
Tmin = 0.88, Tmax = 0.99k = 129
12401 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.1024P)2 + 0.0155P]
where P = (Fo2 + 2Fc2)/3
3387 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
C14H13NO4Sγ = 66.674 (4)°
Mr = 291.31V = 688.5 (7) Å3
Triclinic, P1Z = 2
a = 8.341 (5) ÅMo Kα radiation
b = 9.115 (3) ŵ = 0.25 mm1
c = 10.000 (5) ÅT = 296 K
α = 84.483 (5)°0.18 × 0.10 × 0.07 mm
β = 80.663 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
3387 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2495 reflections with I > 2σ(I)
Tmin = 0.88, Tmax = 0.99Rint = 0.030
12401 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.174H-atom parameters constrained
S = 1.15Δρmax = 0.59 e Å3
3387 reflectionsΔρmin = 0.59 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1640 (3)0.3379 (2)0.3275 (2)0.0414 (4)
C20.2674 (3)0.2666 (3)0.4062 (2)0.0515 (5)
H20.21780.18090.46530.062*
C30.4445 (3)0.3239 (3)0.3958 (3)0.0590 (6)
H30.51500.27630.44790.071*
C40.5176 (3)0.4511 (3)0.3090 (3)0.0616 (6)
H40.63730.48890.30230.074*
C50.4141 (3)0.5228 (3)0.2317 (3)0.0613 (6)
H50.46420.60930.17350.074*
C60.2376 (3)0.4666 (2)0.2406 (2)0.0510 (5)
H60.16750.51480.18860.061*
C70.1571 (2)0.0199 (2)0.16147 (19)0.0399 (4)
C80.0860 (3)0.0706 (2)0.2535 (2)0.0477 (5)
H80.03620.03440.34030.057*
C90.0893 (3)0.2135 (2)0.2163 (2)0.0510 (5)
H90.04150.27300.27850.061*
C100.1620 (3)0.2690 (3)0.0889 (3)0.0550 (6)
H100.16490.36620.06520.066*
C110.2308 (3)0.1804 (2)0.0039 (2)0.0493 (5)
H110.27870.21790.09060.059*
C120.2295 (2)0.0359 (2)0.0301 (2)0.0404 (4)
C130.2988 (3)0.0601 (3)0.0732 (2)0.0442 (5)
C140.4176 (4)0.0777 (3)0.3020 (2)0.0681 (7)
H20A0.31880.17020.32580.102*
H20B0.46990.01100.37890.102*
H20C0.50320.11080.27510.102*
N10.1585 (2)0.1651 (2)0.19647 (18)0.0490 (4)
H10.21750.20630.13760.059*
O10.1165 (2)0.3981 (2)0.31441 (17)0.0633 (5)
O20.1035 (2)0.1602 (2)0.44859 (15)0.0600 (4)
O30.3011 (2)0.1886 (2)0.05568 (16)0.0621 (5)
O40.3592 (2)0.0106 (2)0.19141 (16)0.0614 (4)
S10.06389 (6)0.26618 (6)0.33289 (5)0.0465 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0432 (10)0.0414 (9)0.0435 (10)0.0214 (8)0.0027 (8)0.0023 (8)
C20.0492 (12)0.0515 (11)0.0524 (13)0.0221 (9)0.0011 (10)0.0075 (10)
C30.0478 (12)0.0580 (13)0.0740 (16)0.0288 (10)0.0046 (11)0.0002 (12)
C40.0431 (12)0.0542 (12)0.0885 (18)0.0185 (10)0.0122 (12)0.0020 (12)
C50.0570 (14)0.0441 (11)0.0837 (18)0.0190 (10)0.0209 (13)0.0100 (11)
C60.0531 (12)0.0470 (11)0.0590 (13)0.0276 (9)0.0066 (10)0.0050 (10)
C70.0346 (9)0.0435 (9)0.0400 (10)0.0146 (8)0.0072 (8)0.0077 (8)
C80.0433 (11)0.0507 (11)0.0444 (11)0.0166 (9)0.0041 (8)0.0096 (9)
C90.0491 (12)0.0477 (11)0.0574 (13)0.0231 (9)0.0103 (10)0.0166 (9)
C100.0597 (14)0.0450 (11)0.0636 (14)0.0240 (10)0.0126 (11)0.0056 (10)
C110.0524 (12)0.0479 (11)0.0469 (12)0.0188 (9)0.0077 (9)0.0010 (9)
C120.0335 (9)0.0450 (10)0.0411 (11)0.0146 (8)0.0073 (8)0.0073 (8)
C130.0383 (10)0.0541 (11)0.0403 (11)0.0198 (9)0.0042 (8)0.0044 (9)
C140.0777 (17)0.0807 (17)0.0449 (14)0.0377 (14)0.0081 (12)0.0060 (12)
N10.0516 (10)0.0531 (10)0.0453 (10)0.0284 (8)0.0055 (8)0.0004 (8)
O10.0599 (10)0.0711 (10)0.0758 (12)0.0435 (8)0.0025 (8)0.0121 (9)
O20.0555 (9)0.0795 (11)0.0438 (9)0.0240 (8)0.0135 (7)0.0058 (8)
O30.0829 (12)0.0640 (10)0.0500 (9)0.0465 (9)0.0070 (8)0.0011 (7)
O40.0775 (11)0.0636 (9)0.0425 (9)0.0333 (8)0.0086 (7)0.0021 (7)
S10.0432 (3)0.0566 (3)0.0448 (3)0.0249 (2)0.0046 (2)0.0027 (2)
Geometric parameters (Å, º) top
C1—C21.382 (3)C9—C101.371 (3)
C1—C61.383 (3)C9—H90.9300
C1—S11.757 (2)C10—C111.375 (3)
C2—C31.376 (3)C10—H100.9300
C2—H20.9300C11—C121.387 (3)
C3—C41.374 (3)C11—H110.9300
C3—H30.9300C12—C131.483 (3)
C4—C51.380 (3)C13—O31.210 (3)
C4—H40.9300C13—O41.327 (3)
C5—C61.369 (3)C14—O41.440 (3)
C5—H50.9300C14—H20A0.9600
C6—H60.9300C14—H20B0.9600
C7—C81.395 (3)C14—H20C0.9600
C7—N11.406 (3)N1—S11.6276 (18)
C7—C121.406 (3)N1—H10.8600
C8—C91.377 (3)O1—S11.4215 (17)
C8—H80.9300O2—S11.4275 (17)
C2—C1—C6120.60 (19)C9—C10—H10120.1
C2—C1—S1121.10 (17)C11—C10—H10120.1
C6—C1—S1118.29 (15)C10—C11—C12120.9 (2)
C3—C2—C1119.1 (2)C10—C11—H11119.6
C3—C2—H2120.4C12—C11—H11119.6
C1—C2—H2120.4C11—C12—C7119.29 (18)
C4—C3—C2120.4 (2)C11—C12—C13119.84 (19)
C4—C3—H3119.8C7—C12—C13120.84 (18)
C2—C3—H3119.8O3—C13—O4122.3 (2)
C3—C4—C5120.2 (2)O3—C13—C12125.49 (19)
C3—C4—H4119.9O4—C13—C12112.25 (18)
C5—C4—H4119.9O4—C14—H20A109.5
C6—C5—C4120.0 (2)O4—C14—H20B109.5
C6—C5—H5120.0H20A—C14—H20B109.5
C4—C5—H5120.0O4—C14—H20C109.5
C5—C6—C1119.7 (2)H20A—C14—H20C109.5
C5—C6—H6120.2H20B—C14—H20C109.5
C1—C6—H6120.2C7—N1—S1129.02 (15)
C8—C7—N1121.83 (18)C7—N1—H1115.5
C8—C7—C12118.94 (19)S1—N1—H1115.5
N1—C7—C12119.23 (17)C13—O4—C14116.87 (18)
C9—C8—C7120.3 (2)O1—S1—O2120.11 (11)
C9—C8—H8119.9O1—S1—N1103.89 (10)
C7—C8—H8119.9O2—S1—N1108.85 (10)
C10—C9—C8120.8 (2)O1—S1—C1108.53 (10)
C10—C9—H9119.6O2—S1—C1108.40 (10)
C8—C9—H9119.6N1—S1—C1106.20 (9)
C9—C10—C11119.8 (2)
C6—C1—C2—C30.8 (3)N1—C7—C12—C133.0 (3)
S1—C1—C2—C3178.17 (16)C11—C12—C13—O3178.5 (2)
C1—C2—C3—C40.4 (3)C7—C12—C13—O30.5 (3)
C2—C3—C4—C50.2 (4)C11—C12—C13—O41.0 (3)
C3—C4—C5—C60.5 (4)C7—C12—C13—O4179.01 (17)
C4—C5—C6—C10.0 (3)C8—C7—N1—S18.2 (3)
C2—C1—C6—C50.6 (3)C12—C7—N1—S1171.85 (15)
S1—C1—C6—C5178.41 (17)O3—C13—O4—C144.0 (3)
N1—C7—C8—C9179.05 (18)C12—C13—O4—C14175.53 (19)
C12—C7—C8—C90.9 (3)C7—N1—S1—O1177.77 (18)
C7—C8—C9—C100.0 (3)C7—N1—S1—O248.7 (2)
C8—C9—C10—C110.8 (3)C7—N1—S1—C167.8 (2)
C9—C10—C11—C120.8 (3)C2—C1—S1—O1145.97 (17)
C10—C11—C12—C70.1 (3)C6—C1—S1—O135.01 (19)
C10—C11—C12—C13177.87 (19)C2—C1—S1—O214.0 (2)
C8—C7—C12—C110.9 (3)C6—C1—S1—O2167.02 (16)
N1—C7—C12—C11179.00 (17)C2—C1—S1—N1102.86 (19)
C8—C7—C12—C13177.03 (18)C6—C1—S1—N176.16 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O20.932.453.062 (3)124
N1—H1···O30.861.942.635 (3)136
C8—H8···O2i0.932.633.326 (3)132
C4—H4···O1ii0.932.483.265 (3)142
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC14H13NO4S
Mr291.31
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.341 (5), 9.115 (3), 10.000 (5)
α, β, γ (°)84.483 (5), 80.663 (5), 66.674 (4)
V3)688.5 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.18 × 0.10 × 0.07
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.88, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
12401, 3387, 2495
Rint0.030
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.174, 1.15
No. of reflections3387
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.59

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected torsion angles (º) top
C7—N1—S1—C167.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O20.932.453.062 (3)124
N1—H1···O30.861.942.635 (3)136
C8—H8···O2i0.932.633.326 (3)132
C4—H4···O1ii0.932.483.265 (3)142
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z.
 

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKhan, I. U., Sharif, S., Akkurt, M., Sajjad, A. & Ahmad, J. (2010). Acta Cryst. E66, o786.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSharif, S., Iqbal, H., Khan, I. U., John, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1288.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds