metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[1-(2-pyrid­yl)ethanone-κ2N,O]di-μ2-thio­cyanato-κ2N:S;κ2S:N-cadmium(II)]

aDepartment of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721007, People's Republic of China
*Correspondence e-mail: jianying_miao@163.com

(Received 23 June 2010; accepted 27 June 2010; online 3 July 2010)

In the title compound, [Cd(NCS)2(C7H7NO)]n, the Cd2+ ion is six-coordinated by one N,O-bidentate 1-(2-pyridyletahanone ligand, two N-bonded thio­cyanate ions and two S-bonded thio­cyanate ions. In the resulting distorted CdOS2N3 octa­hedron, the N atoms adopt a fac arrangement. The bridging thio­cyanate ions lead to infinite sheets oriented parallel to (101) in the crystal structure.

Related literature

For background to cadmium complexes, see: Banerjee et al. (2005[Banerjee, S., Wu, B., Lassahn, P.-G., Janiak, C. & Ghosh, A. (2005). Inorg. Chim. Acta, 358, 535-544.]); Shi et al. (2004[Shi, Q., Xu, L., Ji, J., Li, Y., Wang, R., Zhou, Z., Cao, R., Hong, M. & Chan, A. S. C. (2004). Inorg. Chem. Commun. 7, 1254-1257.]); Ercan et al. (2004[Ercan, F., Arici, C., Ulku, D., Kurtaran, R., Aksu, M. & Atakol, O. (2004). Z. Kristallogr. 219, 295-304.]); Reger et al. (2002[Reger, D. L., Wright, T. D., Smith, M. D., Rheingold, A. L., Kassel, S., Concolino, T. & Rhagitan, B. (2002). Polyhedron, 21, 1795-1807.]); Ghosh et al. (2007[Ghosh, R., Rahaman, S. H., Rosair, G. M. & Ghosh, B. K. (2007). Inorg. Chem. Commun. 10, 61-65.]). For related cadmium complexes with thio­cyanate bridges, see: Zhao et al. (2006[Zhao, Q.-H., Wang, L., Wang, K.-M. & Fang, R.-B. (2006). Chin. J. Inorg. Chem. 22, 1285-1288.]); Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]); Taniguchi et al. (1986[Taniguchi, M., Shimoi, M. & Ouchi, A. (1986). Bull. Chem. Soc. Jpn, 59, 2299-2302.]); Marsh et al. (1995[Marsh, R. E. (1995). Acta Cryst. B51, 897-907.]); Yang et al. (2001[Yang, G., Zhu, H.-G., Liang, B.-H. & Chen, X.-M. (2001). J. Chem. Soc. Dalton Trans. pp. 580-585.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(NCS)2(C7H7NO)]

  • Mr = 349.70

  • Monoclinic, P 21 /n

  • a = 12.3511 (12) Å

  • b = 7.6540 (8) Å

  • c = 12.5636 (12) Å

  • β = 97.045 (1)°

  • V = 1178.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.19 mm−1

  • T = 298 K

  • 0.27 × 0.27 × 0.22 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.580, Tmax = 0.645

  • 7522 measured reflections

  • 2559 independent reflections

  • 2234 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.054

  • S = 1.06

  • 2559 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—N2i 2.271 (2)
Cd1—N3ii 2.314 (2)
Cd1—N1 2.336 (2)
Cd1—O1 2.4571 (19)
Cd1—S2 2.6235 (8)
Cd1—S1 2.7269 (7)
Symmetry codes: (i) [-x+{\script{5\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+2, -y, -z+2.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Considerable attention has been focused on the cadmium(II) complexes with multidentate ligands (Banerjee et al., 2005; Shi et al., 2004; Ercan et al., 2004; Reger et al., 2002; Ghosh et al., 2007). As an extension of the work on the structural characterization of such complexes, the title new polynuclear cadmium(II) complex is reported here.

The title compound is a thiocyanate-bridged polynuclear cadmium(II) complex, as shown in Fig. 1. Each Cd atom is six-coordinated by one O and one N atoms of 2-acetylpyridine (L), and by two N and two S atoms from four thiocyanate ligands, forming an octahedral geometry. The bond lengths in the octahedral coordination are comparable with those reported in similar cadmium structures with thiocyanate bridges (Zhao et al., 2006; Bigoli et al., 1972; Taniguchi et al., 1986; Marsh et al., 1995; Yang et al., 2001). The adjacent two CdL units are linked by two thiocyanate ligands, forming a dimer. The dimers are further linked by thiocyanate ligands, forming a two-dimensional sheet, as shown in Fig. 2.

Related literature top

For background to cadmium complexes, see: Banerjee et al. (2005); Shi et al. (2004); Ercan et al. (2004); Reger et al. (2002); Ghosh et al. (2007). For related cadmium complexes with thiocyanate bridges, see: Zhao et al. (2006); Bigoli et al. (1972); Taniguchi et al. (1986); Marsh et al. (1995); Yang et al. (2001).

Experimental top

2-Acetylpyridine (1 mmol, 121 mg), ammonium thiocyanate (2 mmol, 152 mg), and Cd(NO3)2.4H2O (1 mmol, 308 mg) were dissolved in MeOH (80 ml). The mixture was stirred at room temperature for 1 h to give a colorless solution. The resulting solution was kept in air for a week, and colorless blocks of (I) were formed as the solvent slowly evaporated.

Refinement top

H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.96 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A fragment of (I), showing 30% displacement ellipsoids (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. The two-dimensional sheet of (I).
Poly[[1-(2-pyridyl)ethanone-κ2N,O]di-µ2- thiocyanato-κ2N:S;κ2S:N-cadmium(II)] top
Crystal data top
[Cd(NCS)2(C7H7NO)]F(000) = 680
Mr = 349.70Dx = 1.971 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3922 reflections
a = 12.3511 (12) Åθ = 2.4–28.3°
b = 7.6540 (8) ŵ = 2.19 mm1
c = 12.5636 (12) ÅT = 298 K
β = 97.045 (1)°Block, colorless
V = 1178.7 (2) Å30.27 × 0.27 × 0.22 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2559 independent reflections
Radiation source: fine-focus sealed tube2234 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 27.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1415
Tmin = 0.580, Tmax = 0.645k = 79
7522 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0236P)2 + 0.5142P]
where P = (Fo2 + 2Fc2)/3
2559 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
[Cd(NCS)2(C7H7NO)]V = 1178.7 (2) Å3
Mr = 349.70Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.3511 (12) ŵ = 2.19 mm1
b = 7.6540 (8) ÅT = 298 K
c = 12.5636 (12) Å0.27 × 0.27 × 0.22 mm
β = 97.045 (1)°
Data collection top
Bruker SMART CCD
diffractometer
2559 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2234 reflections with I > 2σ(I)
Tmin = 0.580, Tmax = 0.645Rint = 0.021
7522 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.054H-atom parameters constrained
S = 1.06Δρmax = 0.29 e Å3
2559 reflectionsΔρmin = 0.64 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd11.056450 (14)0.09491 (3)0.785436 (13)0.03489 (7)
N10.95994 (16)0.3107 (3)0.68209 (16)0.0364 (5)
N21.2939 (2)0.2353 (4)0.67082 (19)0.0543 (7)
N31.0159 (2)0.1892 (3)1.06320 (18)0.0517 (6)
O10.87057 (15)0.0002 (3)0.71826 (16)0.0502 (5)
S11.12429 (5)0.00856 (10)0.59676 (5)0.04115 (16)
S21.10322 (6)0.21406 (10)0.86912 (5)0.04669 (18)
C11.0029 (2)0.4653 (4)0.6646 (2)0.0477 (7)
H11.07530.48580.69140.057*
C20.9446 (3)0.5976 (4)0.6082 (3)0.0598 (8)
H20.97710.70480.59750.072*
C30.8386 (3)0.5672 (4)0.5688 (3)0.0596 (9)
H30.79760.65390.53080.072*
C40.7924 (2)0.4074 (4)0.5857 (2)0.0488 (7)
H40.72010.38510.55920.059*
C50.8547 (2)0.2807 (3)0.64241 (18)0.0353 (5)
C60.8117 (2)0.1048 (4)0.6665 (2)0.0401 (6)
C70.6955 (2)0.0612 (4)0.6271 (2)0.0562 (8)
H7A0.68260.07930.55100.084*
H7B0.64790.13520.66200.084*
H7C0.68160.05880.64300.084*
C81.2247 (2)0.1410 (4)0.64196 (19)0.0365 (6)
C91.0505 (2)0.1971 (3)0.9824 (2)0.0366 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03050 (11)0.04039 (12)0.03362 (10)0.00046 (8)0.00330 (7)0.00215 (8)
N10.0353 (11)0.0383 (12)0.0356 (10)0.0008 (10)0.0050 (9)0.0021 (9)
N20.0480 (14)0.0677 (18)0.0469 (13)0.0216 (13)0.0040 (11)0.0042 (12)
N30.0677 (16)0.0464 (14)0.0445 (13)0.0133 (13)0.0216 (12)0.0088 (11)
O10.0408 (11)0.0483 (12)0.0601 (12)0.0025 (10)0.0012 (9)0.0110 (10)
S10.0385 (3)0.0497 (4)0.0352 (3)0.0111 (3)0.0045 (3)0.0026 (3)
S20.0606 (4)0.0451 (4)0.0365 (3)0.0130 (4)0.0139 (3)0.0011 (3)
C10.0477 (16)0.0435 (16)0.0505 (16)0.0066 (14)0.0005 (13)0.0039 (13)
C20.072 (2)0.0399 (17)0.065 (2)0.0077 (16)0.0006 (17)0.0078 (15)
C30.066 (2)0.0461 (19)0.064 (2)0.0109 (16)0.0067 (16)0.0081 (15)
C40.0454 (16)0.0511 (18)0.0474 (15)0.0063 (14)0.0039 (13)0.0008 (13)
C50.0352 (13)0.0414 (14)0.0295 (11)0.0025 (11)0.0042 (10)0.0051 (10)
C60.0382 (14)0.0470 (16)0.0355 (13)0.0021 (12)0.0055 (11)0.0011 (12)
C70.0403 (16)0.073 (2)0.0530 (17)0.0140 (15)0.0014 (13)0.0057 (16)
C80.0355 (13)0.0442 (15)0.0303 (12)0.0012 (12)0.0064 (10)0.0017 (11)
C90.0394 (14)0.0323 (14)0.0374 (13)0.0059 (11)0.0025 (11)0.0057 (11)
Geometric parameters (Å, º) top
Cd1—N2i2.271 (2)S2—C91.642 (3)
Cd1—N3ii2.314 (2)C1—C21.386 (4)
Cd1—N12.336 (2)C1—H10.9300
Cd1—O12.4571 (19)C2—C31.362 (5)
Cd1—S22.6235 (8)C2—H20.9300
Cd1—S12.7269 (7)C3—C41.377 (4)
N1—C11.326 (4)C3—H30.9300
N1—C51.353 (3)C4—C51.380 (4)
N2—C81.143 (3)C4—H40.9300
N2—Cd1iii2.271 (2)C5—C61.492 (4)
N3—C91.149 (3)C6—C71.497 (4)
N3—Cd1ii2.314 (2)C7—H7A0.9600
O1—C61.217 (3)C7—H7B0.9600
S1—C81.648 (3)C7—H7C0.9600
N2i—Cd1—N3ii90.44 (9)C2—C1—H1118.5
N2i—Cd1—N194.28 (9)C3—C2—C1118.5 (3)
N3ii—Cd1—N190.80 (8)C3—C2—H2120.8
N2i—Cd1—O1162.00 (9)C1—C2—H2120.8
N3ii—Cd1—O186.32 (8)C2—C3—C4119.6 (3)
N1—Cd1—O168.10 (7)C2—C3—H3120.2
N2i—Cd1—S2106.62 (7)C4—C3—H3120.2
N3ii—Cd1—S292.30 (6)C3—C4—C5119.3 (3)
N1—Cd1—S2158.83 (6)C3—C4—H4120.4
O1—Cd1—S291.21 (5)C5—C4—H4120.4
N2i—Cd1—S192.80 (6)N1—C5—C4121.3 (3)
N3ii—Cd1—S1174.86 (6)N1—C5—C6115.4 (2)
N1—Cd1—S184.98 (5)C4—C5—C6123.3 (2)
O1—Cd1—S189.38 (5)O1—C6—C5120.0 (2)
S2—Cd1—S190.60 (2)O1—C6—C7121.1 (3)
C1—N1—C5118.4 (2)C5—C6—C7119.0 (2)
C1—N1—Cd1122.40 (18)C6—C7—H7A109.5
C5—N1—Cd1119.10 (17)C6—C7—H7B109.5
C8—N2—Cd1iii173.0 (2)H7A—C7—H7B109.5
C9—N3—Cd1ii164.7 (2)C6—C7—H7C109.5
C6—O1—Cd1117.39 (18)H7A—C7—H7C109.5
C8—S1—Cd1100.23 (9)H7B—C7—H7C109.5
C9—S2—Cd1100.65 (9)N2—C8—S1178.2 (3)
N1—C1—C2122.9 (3)N3—C9—S2177.8 (2)
N1—C1—H1118.5
Symmetry codes: (i) x+5/2, y+1/2, z+3/2; (ii) x+2, y, z+2; (iii) x+5/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Cd(NCS)2(C7H7NO)]
Mr349.70
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)12.3511 (12), 7.6540 (8), 12.5636 (12)
β (°) 97.045 (1)
V3)1178.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.19
Crystal size (mm)0.27 × 0.27 × 0.22
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.580, 0.645
No. of measured, independent and
observed [I > 2σ(I)] reflections
7522, 2559, 2234
Rint0.021
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.054, 1.06
No. of reflections2559
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.64

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—N2i2.271 (2)Cd1—O12.4571 (19)
Cd1—N3ii2.314 (2)Cd1—S22.6235 (8)
Cd1—N12.336 (2)Cd1—S12.7269 (7)
Symmetry codes: (i) x+5/2, y+1/2, z+3/2; (ii) x+2, y, z+2.
 

Acknowledgements

The author acknowledges the Baoji University of Arts and Sciences for funding this study (project No. ZK0831).

References

First citationBanerjee, S., Wu, B., Lassahn, P.-G., Janiak, C. & Ghosh, A. (2005). Inorg. Chim. Acta, 358, 535–544.  Web of Science CSD CrossRef CAS
First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationErcan, F., Arici, C., Ulku, D., Kurtaran, R., Aksu, M. & Atakol, O. (2004). Z. Kristallogr. 219, 295–304.  Web of Science CSD CrossRef CAS
First citationGhosh, R., Rahaman, S. H., Rosair, G. M. & Ghosh, B. K. (2007). Inorg. Chem. Commun. 10, 61–65.  Web of Science CSD CrossRef CAS
First citationMarsh, R. E. (1995). Acta Cryst. B51, 897–907.  CSD CrossRef CAS Web of Science IUCr Journals
First citationReger, D. L., Wright, T. D., Smith, M. D., Rheingold, A. L., Kassel, S., Concolino, T. & Rhagitan, B. (2002). Polyhedron, 21, 1795–1807.  Web of Science CSD CrossRef CAS
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationShi, Q., Xu, L., Ji, J., Li, Y., Wang, R., Zhou, Z., Cao, R., Hong, M. & Chan, A. S. C. (2004). Inorg. Chem. Commun. 7, 1254–1257.  Web of Science CSD CrossRef CAS
First citationTaniguchi, M., Shimoi, M. & Ouchi, A. (1986). Bull. Chem. Soc. Jpn, 59, 2299–2302.  CrossRef CAS Web of Science
First citationYang, G., Zhu, H.-G., Liang, B.-H. & Chen, X.-M. (2001). J. Chem. Soc. Dalton Trans. pp. 580–585.  Web of Science CSD CrossRef
First citationZhao, Q.-H., Wang, L., Wang, K.-M. & Fang, R.-B. (2006). Chin. J. Inorg. Chem. 22, 1285–1288.  CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds