metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­bromido{2-[1-(cyclo­propyl­imino)­eth­yl]pyridine}­zinc(II)

aSchool of Chemistry and Environmental Science, Shaanxi University of Technology, Hanzhong 723000, People's Republic of China
*Correspondence e-mail: jiufulu@163.com

(Received 25 June 2010; accepted 27 June 2010; online 3 July 2010)

In the title compound, [ZnBr2(C10H12N2)], the Zn2+ ion is coordinated by the N,N′-bidentate Schiff base ligand and two bromode ions in a distorted tetra­hedral arrangement. The dihedral angle between the pyridine and the cyclo­propyl rings is 95.4 (8)°.

Related literature

For background to Schiff bases as chelating ligands, see: Hamaker et al. (2010[Hamaker, C. G., Maryashina, O. S., Daley, D. K. & Wadler, A. L. (2010). J. Chem. Crystallogr. 40, 34-39.]); Wang et al. (2010[Wang, W., Zhang, F. X., Li, J. & Hu, W. B. (2010). Russ. J. Coord. Chem. 36, 33-36.]); Mirkhani et al. (2010[Mirkhani, V., Kia, R., Milic, D., Vartooni, A. R. & Matkovic-Calogovic, D. (2010). Transition Met. Chem. 35, 81-87.]); Liu & Yang (2009[Liu, Y.-C. & Yang, Z.-Y. (2009). Eur. J. Med. Chem. 44, 5080-5089.]). For similar zinc complexes, see: Zakrzewski & Lingafelter (1970[Zakrzewski, G. & Lingafelter, E. C. (1970). Inorg. Chim. Acta, 4, 251-257.]); Gourbatsis et al. (1999[Gourbatsis, S., Perlepes, S. P., Butler, I. S. & Hadjiliadis, N. (1999). Polyhedron, 18, 2369-2375.]); Merino et al. (2001[Merino, P., Anoro, S., Cerrada, E., Laguna, M., Moreno, A. & Tejero, T. (2001). Molecules, 6, 208-220.]); Majumder et al. (2006[Majumder, A., Rosair, G. M., Mallick, A., Chattopadhyay, N. & Mitra, S. (2006). Polyhedron, 25, 1753-1762.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnBr2(C10H12N2)]

  • Mr = 385.41

  • Monoclinic, P 21

  • a = 7.029 (3) Å

  • b = 14.090 (3) Å

  • c = 7.037 (2) Å

  • β = 111.820 (3)°

  • V = 647.0 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 8.04 mm−1

  • T = 298 K

  • 0.23 × 0.23 × 0.21 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.259, Tmax = 0.283

  • 4060 measured reflections

  • 2408 independent reflections

  • 1708 reflections with I > 2σ(I)

  • Rint = 0.104

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.165

  • S = 0.95

  • 2408 reflections

  • 137 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.96 e Å−3

  • Δρmin = −1.09 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 957 Friedel pairs

  • Flack parameter: −0.05 (3)

Table 1
Selected bond lengths (Å)

Zn1—N1 2.041 (9)
Zn1—N2 2.073 (10)
Zn1—Br1 2.3488 (18)
Zn1—Br2 2.3616 (19)

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have often been used as chelating ligands in coordination chemistry (Hamaker et al., 2010; Wang et al., 2010; Mirkhani et al., 2010; Liu & Yang, 2009). We report here the crystal structure of the title new zinc complex with the chelating Schiff base ligand cyclopropyl-(1-pyridin-2-ylethylidene)amine.

The Zn atom in the complex is four-coordinated by one pyridine N and one imine N atoms of the Schiff base ligand, and by two bromide atoms, forming a tetrahedral geometry (Fig. 1). The dihedral angle between the pyridine and the cyclopropyl rings is 95.4 (8)°. The bond lengths (Table 1) related to the Zn atom are comparable to those observed in similar zinc complexes (Zakrzewski & Lingafelter, 1970; Gourbatsis et al., 1999; Merino et al., 2001; Majumder et al., 2006).

Related literature top

For background to Schiff bases as chelating ligands, see: Hamaker et al. (2010); Wang et al. (2010); Mirkhani et al. (2010); Liu & Yang (2009). For similar zinc complexes, see: Zakrzewski & Lingafelter (1970); Gourbatsis et al. (1999); Merino et al. (2001); Majumder et al. (2006).

Experimental top

2-Acetylpyridine (0.1 mmol, 12.1 mg) and cyclopropylamine (0.1 mmol, 5.7 mg) were mixed and stirred in methanol (10 ml) for 30 min. Then a methanol solution (5 ml) of zinc bromide (0.1 mmol, 22.5 mg) was added to the mixture. The final mixture was stirred for another 30 min to give a colourless solution. Colourless blocks of (I) were obtained by slow evaporation of the solution at room temperature.

Refinement top

H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and refined using a riding model, with with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was used for the methyl group.

Structure description top

Schiff bases have often been used as chelating ligands in coordination chemistry (Hamaker et al., 2010; Wang et al., 2010; Mirkhani et al., 2010; Liu & Yang, 2009). We report here the crystal structure of the title new zinc complex with the chelating Schiff base ligand cyclopropyl-(1-pyridin-2-ylethylidene)amine.

The Zn atom in the complex is four-coordinated by one pyridine N and one imine N atoms of the Schiff base ligand, and by two bromide atoms, forming a tetrahedral geometry (Fig. 1). The dihedral angle between the pyridine and the cyclopropyl rings is 95.4 (8)°. The bond lengths (Table 1) related to the Zn atom are comparable to those observed in similar zinc complexes (Zakrzewski & Lingafelter, 1970; Gourbatsis et al., 1999; Merino et al., 2001; Majumder et al., 2006).

For background to Schiff bases as chelating ligands, see: Hamaker et al. (2010); Wang et al. (2010); Mirkhani et al. (2010); Liu & Yang (2009). For similar zinc complexes, see: Zakrzewski & Lingafelter (1970); Gourbatsis et al. (1999); Merino et al. (2001); Majumder et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing 30% probability displacement ellipsoids.
Dibromido{2-[1-(cyclopropylimino)ethyl]pyridine}zinc(II) top
Crystal data top
[ZnBr2(C10H12N2)]F(000) = 372
Mr = 385.41Dx = 1.978 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 7.029 (3) ÅCell parameters from 1405 reflections
b = 14.090 (3) Åθ = 2.8–25.0°
c = 7.037 (2) ŵ = 8.04 mm1
β = 111.820 (3)°T = 298 K
V = 647.0 (4) Å3Block, colourless
Z = 20.23 × 0.23 × 0.21 mm
Data collection top
Bruker APEXII CCD
diffractometer
2408 independent reflections
Radiation source: fine-focus sealed tube1708 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.104
ω scansθmax = 27.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 88
Tmin = 0.259, Tmax = 0.283k = 1817
4060 measured reflectionsl = 88
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.165 w = 1/[σ2(Fo2) + (0.0966P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max < 0.001
2408 reflectionsΔρmax = 0.96 e Å3
137 parametersΔρmin = 1.09 e Å3
1 restraintAbsolute structure: Flack (1983), 957 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (3)
Crystal data top
[ZnBr2(C10H12N2)]V = 647.0 (4) Å3
Mr = 385.41Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.029 (3) ŵ = 8.04 mm1
b = 14.090 (3) ÅT = 298 K
c = 7.037 (2) Å0.23 × 0.23 × 0.21 mm
β = 111.820 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2408 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1708 reflections with I > 2σ(I)
Tmin = 0.259, Tmax = 0.283Rint = 0.104
4060 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.165Δρmax = 0.96 e Å3
S = 0.95Δρmin = 1.09 e Å3
2408 reflectionsAbsolute structure: Flack (1983), 957 Friedel pairs
137 parametersAbsolute structure parameter: 0.05 (3)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.01583 (18)0.10050 (8)0.5412 (2)0.0380 (3)
Br10.0650 (2)0.05302 (9)0.6175 (2)0.0601 (4)
Br20.0576 (2)0.12235 (9)0.2262 (2)0.0559 (4)
N10.1663 (14)0.2047 (7)0.5832 (15)0.040 (2)
N20.2313 (14)0.1748 (7)0.7783 (14)0.036 (2)
C10.3710 (18)0.2147 (10)0.491 (2)0.050 (3)
H10.44470.16740.40220.060*
C20.477 (2)0.2918 (10)0.524 (2)0.053 (3)
H20.61840.29650.45820.064*
C30.369 (2)0.3597 (10)0.652 (2)0.057 (4)
H30.43510.41340.67420.069*
C40.158 (2)0.3503 (9)0.753 (2)0.047 (3)
H40.08330.39660.84500.056*
C50.0622 (16)0.2727 (8)0.7166 (16)0.034 (2)
C60.1628 (17)0.2531 (8)0.8195 (16)0.036 (2)
C70.288 (2)0.3276 (9)0.968 (2)0.058 (4)
H7A0.23000.33901.07020.087*
H7B0.28700.38540.89600.087*
H7C0.42650.30571.03370.087*
C80.4414 (17)0.1441 (9)0.8788 (19)0.044 (3)
H80.54380.19390.93850.053*
C90.471 (2)0.0526 (10)0.995 (2)0.051 (3)
H9A0.35010.01880.99170.061*
H9B0.58890.04741.12200.061*
C100.511 (2)0.0589 (11)0.799 (2)0.058 (4)
H10A0.65180.05720.80840.070*
H10B0.41310.02850.67810.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0393 (6)0.0335 (7)0.0441 (7)0.0027 (6)0.0189 (5)0.0084 (6)
Br10.0749 (9)0.0420 (7)0.0784 (10)0.0192 (7)0.0460 (8)0.0117 (7)
Br20.0672 (8)0.0607 (9)0.0464 (7)0.0071 (6)0.0287 (7)0.0038 (6)
N10.039 (5)0.039 (6)0.039 (5)0.000 (4)0.010 (4)0.005 (4)
N20.040 (5)0.037 (5)0.029 (5)0.004 (4)0.011 (4)0.009 (4)
C10.043 (7)0.061 (8)0.045 (7)0.001 (6)0.016 (6)0.001 (6)
C20.056 (8)0.056 (8)0.056 (8)0.029 (7)0.030 (7)0.009 (7)
C30.069 (9)0.045 (8)0.066 (9)0.028 (7)0.035 (8)0.013 (7)
C40.066 (8)0.034 (6)0.045 (7)0.006 (6)0.026 (7)0.001 (5)
C50.035 (6)0.038 (6)0.028 (5)0.003 (5)0.009 (5)0.009 (5)
C60.051 (7)0.031 (6)0.030 (6)0.002 (5)0.020 (5)0.001 (4)
C70.065 (9)0.041 (8)0.061 (9)0.007 (6)0.016 (8)0.014 (6)
C80.032 (6)0.043 (7)0.052 (7)0.002 (5)0.009 (5)0.001 (6)
C90.052 (8)0.047 (7)0.054 (7)0.012 (6)0.019 (7)0.015 (6)
C100.046 (7)0.079 (10)0.047 (7)0.018 (7)0.015 (6)0.007 (7)
Geometric parameters (Å, º) top
Zn1—N12.041 (9)C4—H40.9300
Zn1—N22.073 (10)C5—C61.500 (15)
Zn1—Br12.3488 (18)C6—C71.514 (16)
Zn1—Br22.3616 (19)C7—H7A0.9600
N1—C11.348 (15)C7—H7B0.9600
N1—C51.350 (15)C7—H7C0.9600
N2—C61.279 (15)C8—C101.48 (2)
N2—C81.446 (14)C8—C91.498 (18)
C1—C21.383 (18)C8—H80.9800
C1—H10.9300C9—C101.506 (19)
C2—C31.34 (2)C9—H9A0.9700
C2—H20.9300C9—H9B0.9700
C3—C41.392 (19)C10—H10A0.9700
C3—H30.9300C10—H10B0.9700
C4—C51.358 (17)
N1—Zn1—N280.2 (4)N2—C6—C5117.9 (10)
N1—Zn1—Br1114.3 (3)N2—C6—C7125.7 (11)
N2—Zn1—Br1116.6 (3)C5—C6—C7116.4 (10)
N1—Zn1—Br2110.2 (3)C6—C7—H7A109.5
N2—Zn1—Br2112.4 (3)C6—C7—H7B109.5
Br1—Zn1—Br2117.36 (7)H7A—C7—H7B109.5
C1—N1—C5117.7 (10)C6—C7—H7C109.5
C1—N1—Zn1128.4 (8)H7A—C7—H7C109.5
C5—N1—Zn1113.8 (7)H7B—C7—H7C109.5
C6—N2—C8123.3 (11)N2—C8—C10118.4 (11)
C6—N2—Zn1113.2 (7)N2—C8—C9115.8 (10)
C8—N2—Zn1123.4 (8)C10—C8—C960.7 (9)
N1—C1—C2123.2 (13)N2—C8—H8116.7
N1—C1—H1118.4C10—C8—H8116.7
C2—C1—H1118.4C9—C8—H8116.7
C3—C2—C1117.8 (12)C8—C9—C1059.1 (9)
C3—C2—H2121.1C8—C9—H9A117.9
C1—C2—H2121.1C10—C9—H9A117.9
C2—C3—C4120.3 (12)C8—C9—H9B117.9
C2—C3—H3119.8C10—C9—H9B117.9
C4—C3—H3119.8H9A—C9—H9B115.0
C5—C4—C3119.3 (12)C8—C10—C960.2 (8)
C5—C4—H4120.4C8—C10—H10A117.8
C3—C4—H4120.4C9—C10—H10A117.8
N1—C5—C4121.6 (10)C8—C10—H10B117.8
N1—C5—C6114.0 (10)C9—C10—H10B117.8
C4—C5—C6124.3 (11)H10A—C10—H10B114.9

Experimental details

Crystal data
Chemical formula[ZnBr2(C10H12N2)]
Mr385.41
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)7.029 (3), 14.090 (3), 7.037 (2)
β (°) 111.820 (3)
V3)647.0 (4)
Z2
Radiation typeMo Kα
µ (mm1)8.04
Crystal size (mm)0.23 × 0.23 × 0.21
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.259, 0.283
No. of measured, independent and
observed [I > 2σ(I)] reflections
4060, 2408, 1708
Rint0.104
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.165, 0.95
No. of reflections2408
No. of parameters137
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.96, 1.09
Absolute structureFlack (1983), 957 Friedel pairs
Absolute structure parameter0.05 (3)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—N12.041 (9)Zn1—Br12.3488 (18)
Zn1—N22.073 (10)Zn1—Br22.3616 (19)
 

Acknowledgements

The authors thank the Scientific Research Foundation of Shaanxi University of Technology (project No. SLGQD0708) for financial support.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGourbatsis, S., Perlepes, S. P., Butler, I. S. & Hadjiliadis, N. (1999). Polyhedron, 18, 2369–2375.  Web of Science CSD CrossRef CAS Google Scholar
First citationHamaker, C. G., Maryashina, O. S., Daley, D. K. & Wadler, A. L. (2010). J. Chem. Crystallogr. 40, 34–39.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Y.-C. & Yang, Z.-Y. (2009). Eur. J. Med. Chem. 44, 5080–5089.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMajumder, A., Rosair, G. M., Mallick, A., Chattopadhyay, N. & Mitra, S. (2006). Polyhedron, 25, 1753–1762.  Web of Science CSD CrossRef CAS Google Scholar
First citationMerino, P., Anoro, S., Cerrada, E., Laguna, M., Moreno, A. & Tejero, T. (2001). Molecules, 6, 208–220.  Web of Science CrossRef CAS Google Scholar
First citationMirkhani, V., Kia, R., Milic, D., Vartooni, A. R. & Matkovic-Calogovic, D. (2010). Transition Met. Chem. 35, 81–87.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, W., Zhang, F. X., Li, J. & Hu, W. B. (2010). Russ. J. Coord. Chem. 36, 33–36.  Web of Science CrossRef Google Scholar
First citationZakrzewski, G. & Lingafelter, E. C. (1970). Inorg. Chim. Acta, 4, 251–257.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds