organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-{3-[(4-Oxopiperidin-1-yl)carbon­yl]benzoyl}piperidin-4-one

aOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India, bMaterials Research Centre, Indian Institute of Science, Bengaluru 560012, India, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 28 June 2010; accepted 6 July 2010; online 10 July 2010)

Two independent mol­ecules comprise the asymmetric unit in the title compound, C18H20N2O4. One of the mol­ecules exhibits disorder in one of its 4-piperidone rings, which is disposed over two orientations [site occupancy of the major component = 0.651 (5)]. The first independent mol­ecule and the minor component of the second disordered mol­ecule are virtually superimposable. The central four C atoms in the major component of the disordered mol­ecule have an opposite orientation. All the 4-piperidone rings have a chair conformation. The carbonyl groups in each mol­ecule have approximate anti conformations [O=C⋯C=O = 146.2 (2) and −159.9 (2)°]. The 4-piperidone rings lie to opposite sides of the central benzene ring in both mol­ecules. In the crystal, mol­ecules are linked by C—H⋯O inter­actions. The crystal studied was found to be a non-merohedral twin (twin law −1 0 0, 0 1 0, 0 − 1/2 − 1), the fractional contribution of the minor component being approximately 11%.

Related literature

For the background on the use of N-substituted-4-piperidones in organic synthesis, see: Dyakov et al. (1991[Dyakov, M. Y., Sokolova, T. D., Peretokin, A. S., Moskovkin, A. S. & Unkovskii, B. V. (1991). Chem. Heterocycl. Compd, 27, 183-186.]); Scherer et al. (1993[Scherer, T., Hielkema, W., Krijnen, B., Hermant, R. M., Eijckelhoff, C., Kerkhof, F., Ng, A. K. F., Verleg, R., van der Tol, E. B., Brouwer, A. M. & Verhoeven, J. W. (1993). Recl Trav. Chim. Pays Bas, 112, 535-548.]). For related structures, see: Vijayakumar et al. (2010[Vijayakumar, V., Rajesh, K., Suresh, J., Narasimhamurthy, T. & Lakshman, P. L. N. (2010). Acta Cryst. E66, o170.]); Rajesh et al. (2010[Rajesh, K., Vijayakumar, V., Sarveswari, S., Narasimhamurthy, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1306-o1307.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20N2O4

  • Mr = 328.36

  • Triclinic, [P \overline 1]

  • a = 10.777 (5) Å

  • b = 11.244 (5) Å

  • c = 13.665 (5) Å

  • α = 101.500 (5)°

  • β = 92.279 (5)°

  • γ = 90.009 (5)°

  • V = 1621.3 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.27 × 0.21 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • 33080 measured reflections

  • 6729 independent reflections

  • 4023 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.157

  • S = 1.05

  • 6729 reflections

  • 451 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4b⋯O1i 0.97 2.58 3.383 (4) 141
C22—H22b⋯O5ii 0.97 2.44 3.295 (4) 146
C35—H35b⋯O8iii 0.97 2.55 3.297 (5) 134
Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x, -y, -z+2.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The synthesis of N-substituted-4-piperidones is subject of continuing interest owing to their importance as synthetic building blocks in medicinal chemistry, in particular for the synthesis of pharmacologically active agents (Dyakov et al., 1991; Scherer et al., 1993). In continuation of recent structural studies on N-substituted-4-piperidones (Vijayakumar et al., 2010, Rajesh et al., 2010), the title compound, (I), was investigated.

Two independent molecules comprise the asymmetric unit of (I). One molecule is ordered, Fig. 1, and the other is disordered, Fig. 2. In the disordered molecule, one 4-piperidone ring is disordered over two positions. The major component of the disorder has the central four carbon atoms of the N4-bound 4-piperidone ring in an opposite orientation to that found in the ordered molecule. This is emphasized in Fig. 3 which shows the superimposition of the ordered molecule upon the inverted disordered molecule. The minor component of the disordered ring has a conformation similar to that observed in the ordered molecule, Fig. 1. All 4-piperidone rings have a chair conformation. The carbonyl groups bound to the central benzene ring are almost anti as seen in the O C···CO torsion angles of 146.2 (2) and -159.9 (2) ° for the two independent molecules, respectively. In each case, the 4-piperidone rings lie to opposite sides of the central benzene ring.

The most significant intermolecular contacts in the crystal structure are of the type C–H···O, Table 1, and these consolidate the crystal packing, Fig. 4.

Related literature top

For the background on the use of N-substituted-4-piperidones in organic synthesis, see: Dyakov et al. (1991); Scherer et al. (1993). For related structures, see: Vijayakumar et al. (2010); Rajesh et al. (2010).

Experimental top

To a suspension of 4-piperidone hydrochloride monohydrate (1 mmol) in benzene (20 ml) was added triethyl amine (3 mmol), followed by thorough stirring for 15 min. To that, isophthaloyl dichloride (0.5 mmol) dissolved in benzene (20 ml) was added drop wise with stirring, followed by refluxing for 7 h. The progress of the reaction was monitored by TLC. After the completion of the reaction, excess solvent was removed under reduced pressure. The crude products obtained were purified by column chromatography using an ethyl acetate/petroleum ether mixture (1:1). The sample (50 mg) was crystallized in 1:1 mixture of chloroform/methanol (5 + 5 ml) to yield colourless blocks of (I); m.pt. 415–417 K.

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). Disorder in the N4-bound 4-piperidone ring was resolved over two positions. The major component (anisotropic refinement) had a site occupancy factor = 0.651 (5); the minor component was refined isotropically. The N–C and C–C distances in the disordered rings were refined with distance restraints 1.46±0.005 and 1.51±0.005 Å, respectively. For the treatment of twinned diffraction data, see: Spek (2009).

Structure description top

The synthesis of N-substituted-4-piperidones is subject of continuing interest owing to their importance as synthetic building blocks in medicinal chemistry, in particular for the synthesis of pharmacologically active agents (Dyakov et al., 1991; Scherer et al., 1993). In continuation of recent structural studies on N-substituted-4-piperidones (Vijayakumar et al., 2010, Rajesh et al., 2010), the title compound, (I), was investigated.

Two independent molecules comprise the asymmetric unit of (I). One molecule is ordered, Fig. 1, and the other is disordered, Fig. 2. In the disordered molecule, one 4-piperidone ring is disordered over two positions. The major component of the disorder has the central four carbon atoms of the N4-bound 4-piperidone ring in an opposite orientation to that found in the ordered molecule. This is emphasized in Fig. 3 which shows the superimposition of the ordered molecule upon the inverted disordered molecule. The minor component of the disordered ring has a conformation similar to that observed in the ordered molecule, Fig. 1. All 4-piperidone rings have a chair conformation. The carbonyl groups bound to the central benzene ring are almost anti as seen in the O C···CO torsion angles of 146.2 (2) and -159.9 (2) ° for the two independent molecules, respectively. In each case, the 4-piperidone rings lie to opposite sides of the central benzene ring.

The most significant intermolecular contacts in the crystal structure are of the type C–H···O, Table 1, and these consolidate the crystal packing, Fig. 4.

For the background on the use of N-substituted-4-piperidones in organic synthesis, see: Dyakov et al. (1991); Scherer et al. (1993). For related structures, see: Vijayakumar et al. (2010); Rajesh et al. (2010).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of first independent molecule, showing displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. The molecular structure of second independent molecule, showing displacement ellipsoids at the 35% probability level. Only the major component of the disordered 4-piperidone residue is shown for reasons of clarity.
[Figure 3] Fig. 3. Overlay diagram of the first independent molecule with the inverted disordered molecule (minor component of the disordered molecule excluded).
[Figure 4] Fig. 4. Stacking of supramolecular layers along the c axis in (I). The C–H···O contacts are shown as orange dashed lines.
1-{3-[(4-Oxopiperidin-1-yl)carbonyl]benzoyl}piperidin-4-one top
Crystal data top
C18H20N2O4Z = 4
Mr = 328.36F(000) = 696
Triclinic, P1Dx = 1.345 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.777 (5) ÅCell parameters from 5023 reflections
b = 11.244 (5) Åθ = 1.2–23.5°
c = 13.665 (5) ŵ = 0.10 mm1
α = 101.500 (5)°T = 293 K
β = 92.279 (5)°Block, colourless
γ = 90.009 (5)°0.27 × 0.21 × 0.16 mm
V = 1621.3 (12) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
4023 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.060
Graphite monochromatorθmax = 26.5°, θmin = 2.4°
ω scansh = 1313
33080 measured reflectionsk = 1414
6729 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0747P)2 + 0.149P]
where P = (Fo2 + 2Fc2)/3
6729 reflections(Δ/σ)max = 0.001
451 parametersΔρmax = 0.32 e Å3
12 restraintsΔρmin = 0.32 e Å3
Crystal data top
C18H20N2O4γ = 90.009 (5)°
Mr = 328.36V = 1621.3 (12) Å3
Triclinic, P1Z = 4
a = 10.777 (5) ÅMo Kα radiation
b = 11.244 (5) ŵ = 0.10 mm1
c = 13.665 (5) ÅT = 293 K
α = 101.500 (5)°0.27 × 0.21 × 0.16 mm
β = 92.279 (5)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4023 reflections with I > 2σ(I)
33080 measured reflectionsRint = 0.060
6729 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05412 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 1.05Δρmax = 0.32 e Å3
6729 reflectionsΔρmin = 0.32 e Å3
451 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.0517 (2)0.05185 (19)0.37691 (15)0.0823 (6)
O20.15121 (18)0.57298 (16)0.53412 (13)0.0638 (5)
O30.17857 (18)0.34740 (19)0.82228 (18)0.0876 (7)
O40.55985 (18)0.7338 (2)0.87389 (15)0.0817 (6)
N10.17700 (18)0.37391 (18)0.53706 (13)0.0467 (5)
N20.25096 (19)0.53525 (19)0.86990 (16)0.0571 (6)
C10.2050 (2)0.3415 (2)0.43153 (17)0.0558 (7)
H1A0.28610.30400.42470.067*
H1B0.20690.41410.40340.067*
C20.1071 (3)0.2538 (2)0.37500 (18)0.0587 (7)
H2A0.03170.29850.36680.070*
H2B0.13600.22070.30890.070*
C30.0769 (2)0.1518 (2)0.4244 (2)0.0539 (6)
C40.0729 (3)0.1818 (2)0.53700 (18)0.0604 (7)
H4A0.00730.21650.55570.072*
H4B0.08130.10760.56260.072*
C50.1739 (2)0.2699 (2)0.58474 (18)0.0524 (6)
H5A0.15920.29690.65520.063*
H5B0.25360.22950.57890.063*
C60.1487 (2)0.4878 (2)0.57888 (17)0.0441 (6)
C70.1117 (2)0.5125 (2)0.68628 (16)0.0403 (5)
C80.0031 (2)0.4751 (2)0.71243 (16)0.0421 (5)
H80.05580.42920.66370.050*
C90.0401 (2)0.5051 (2)0.80980 (16)0.0408 (5)
C100.0404 (2)0.5695 (2)0.88251 (17)0.0465 (6)
H100.01660.58930.94840.056*
C110.1561 (2)0.6045 (2)0.85785 (18)0.0485 (6)
H110.21060.64620.90740.058*
C120.1907 (2)0.5776 (2)0.75993 (17)0.0452 (6)
H120.26770.60350.74330.054*
C130.1622 (2)0.4571 (2)0.83514 (17)0.0469 (6)
C140.2436 (2)0.6670 (2)0.8809 (2)0.0612 (7)
H14A0.16560.68900.85590.073*
H14B0.24530.70460.95120.073*
C150.3504 (2)0.7144 (3)0.8245 (2)0.0665 (8)
H15A0.35000.80240.84110.080*
H15B0.33930.68980.75330.080*
C160.4735 (2)0.6676 (3)0.84948 (19)0.0586 (7)
C170.4781 (2)0.5332 (3)0.8422 (2)0.0632 (7)
H17A0.47550.49260.77260.076*
H17B0.55540.51080.86810.076*
C180.3685 (2)0.4922 (3)0.9015 (2)0.0671 (8)
H18A0.37720.52400.97220.081*
H18B0.36810.40430.89100.081*
O50.5437 (2)0.38661 (19)0.38183 (15)0.0794 (6)
O60.64560 (18)0.05160 (16)0.54295 (13)0.0646 (5)
O70.2983 (2)0.31306 (19)0.8416 (2)0.1035 (8)
O80.08234 (17)0.06160 (18)0.88350 (15)0.0737 (6)
N30.67154 (18)0.14907 (18)0.54821 (13)0.0481 (5)
C190.7071 (3)0.1321 (3)0.44466 (18)0.0589 (7)
H19A0.71310.04610.41670.071*
H19B0.78800.16890.44200.071*
C200.6126 (3)0.1891 (2)0.38345 (18)0.0578 (7)
H20A0.64750.19300.31980.069*
H20B0.53990.13670.36990.069*
C210.5730 (2)0.3124 (2)0.43124 (18)0.0510 (6)
C220.5636 (3)0.3373 (2)0.54298 (18)0.0599 (7)
H22A0.48290.31010.55910.072*
H22B0.56930.42420.56810.072*
C230.6631 (2)0.2758 (2)0.59541 (18)0.0539 (6)
H23A0.74240.31570.59300.065*
H23B0.64380.28260.66500.065*
C240.6393 (2)0.0544 (2)0.58790 (17)0.0446 (6)
C250.5937 (2)0.0812 (2)0.69292 (16)0.0402 (5)
C260.4768 (2)0.1274 (2)0.71318 (16)0.0413 (5)
H260.42650.14600.66150.050*
C270.4329 (2)0.1466 (2)0.80919 (16)0.0419 (5)
C280.5098 (3)0.1197 (3)0.88504 (18)0.0594 (7)
H280.48250.13260.95000.071*
C290.6268 (3)0.0741 (3)0.86509 (19)0.0660 (8)
H290.67800.05680.91670.079*
C300.6685 (2)0.0539 (2)0.76915 (19)0.0545 (6)
H300.74700.02190.75600.065*
C310.3084 (2)0.2047 (2)0.82956 (16)0.0462 (6)
N40.2093 (2)0.13604 (18)0.8326 (2)0.0849 (9)0.651 (5)
C320.2036 (4)0.0042 (3)0.7921 (3)0.0601 (13)0.651 (5)
H32A0.28660.02860.78380.072*0.651 (5)
H32B0.15900.01250.72780.072*0.651 (5)
C330.1364 (4)0.0516 (4)0.8672 (5)0.0654 (15)0.651 (5)
H33A0.13300.13920.84610.078*0.651 (5)
H33B0.17950.03180.93220.078*0.651 (5)
C340.0071 (2)0.0008 (2)0.8733 (3)0.0783 (9)0.651 (5)
C350.0043 (3)0.1382 (3)0.9018 (3)0.0468 (10)0.651 (5)
H35A0.08050.16640.89900.056*0.651 (5)
H35B0.03850.16540.96930.056*0.651 (5)
C360.0810 (3)0.1890 (3)0.8286 (4)0.0525 (11)0.651 (5)
H36A0.04390.16670.76160.063*0.651 (5)
H36B0.08520.27690.84710.063*0.651 (5)
N4'0.2093 (2)0.13604 (18)0.8326 (2)0.0849 (9)0.349 (5)
C32'0.2315 (6)0.0198 (5)0.8719 (6)0.051 (2)*0.349 (5)
H32C0.22970.03470.94420.061*0.349 (5)
H32D0.31020.01650.85110.061*0.349 (5)
C33'0.1227 (5)0.0600 (9)0.8235 (7)0.059 (3)*0.349 (5)
H33C0.13220.14200.83500.071*0.349 (5)
H33D0.11710.06290.75200.071*0.349 (5)
C34'0.0071 (2)0.0008 (2)0.8733 (3)0.0783 (9)0.349 (5)
C35'0.0040 (7)0.1174 (5)0.8348 (6)0.061 (2)*0.349 (5)
H35C0.00370.10310.76300.073*0.349 (5)
H35D0.08270.15660.85170.073*0.349 (5)
C36'0.1034 (5)0.1925 (7)0.8885 (6)0.059 (3)*0.349 (5)
H36C0.09530.27720.88410.071*0.349 (5)
H36D0.11090.18610.95820.071*0.349 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1075 (17)0.0681 (14)0.0680 (13)0.0254 (12)0.0079 (12)0.0048 (11)
O20.0859 (14)0.0568 (11)0.0543 (11)0.0098 (10)0.0125 (10)0.0228 (9)
O30.0683 (13)0.0556 (13)0.144 (2)0.0076 (10)0.0246 (13)0.0285 (12)
O40.0487 (11)0.0999 (16)0.0840 (15)0.0016 (11)0.0113 (10)0.0130 (12)
N10.0523 (12)0.0520 (13)0.0373 (11)0.0008 (9)0.0084 (9)0.0115 (9)
N20.0468 (12)0.0563 (14)0.0728 (15)0.0048 (10)0.0209 (11)0.0207 (11)
C10.0608 (16)0.0644 (17)0.0439 (14)0.0018 (13)0.0158 (12)0.0121 (12)
C20.0723 (18)0.0638 (17)0.0410 (14)0.0021 (14)0.0075 (13)0.0116 (12)
C30.0506 (15)0.0531 (16)0.0587 (16)0.0003 (12)0.0070 (12)0.0119 (13)
C40.0790 (19)0.0534 (16)0.0534 (16)0.0028 (14)0.0176 (14)0.0190 (12)
C50.0588 (15)0.0574 (16)0.0448 (14)0.0175 (13)0.0092 (12)0.0181 (12)
C60.0375 (12)0.0536 (15)0.0437 (13)0.0081 (11)0.0028 (10)0.0157 (12)
C70.0413 (12)0.0415 (13)0.0405 (13)0.0006 (10)0.0021 (10)0.0135 (10)
C80.0400 (12)0.0466 (13)0.0400 (13)0.0044 (10)0.0014 (10)0.0101 (10)
C90.0385 (12)0.0412 (13)0.0444 (13)0.0025 (10)0.0023 (10)0.0128 (10)
C100.0505 (14)0.0484 (14)0.0411 (13)0.0033 (11)0.0055 (11)0.0090 (11)
C110.0443 (14)0.0492 (14)0.0492 (15)0.0035 (11)0.0048 (11)0.0044 (11)
C120.0364 (12)0.0477 (14)0.0530 (15)0.0025 (10)0.0016 (11)0.0136 (11)
C130.0472 (14)0.0481 (15)0.0490 (14)0.0042 (12)0.0058 (11)0.0173 (11)
C140.0492 (15)0.0595 (17)0.0718 (18)0.0083 (13)0.0164 (13)0.0027 (13)
C150.0512 (16)0.0593 (17)0.091 (2)0.0015 (13)0.0156 (15)0.0179 (15)
C160.0463 (15)0.076 (2)0.0489 (15)0.0043 (14)0.0039 (12)0.0019 (13)
C170.0489 (15)0.081 (2)0.0613 (17)0.0182 (14)0.0103 (13)0.0177 (14)
C180.0530 (16)0.082 (2)0.0747 (19)0.0085 (14)0.0232 (14)0.0314 (16)
O50.1040 (16)0.0772 (14)0.0626 (12)0.0314 (12)0.0150 (11)0.0252 (11)
O60.0862 (14)0.0492 (11)0.0583 (11)0.0143 (9)0.0210 (10)0.0069 (9)
O70.0663 (14)0.0498 (13)0.199 (3)0.0023 (10)0.0305 (15)0.0313 (14)
O80.0566 (12)0.0771 (14)0.0938 (15)0.0121 (10)0.0025 (10)0.0324 (11)
N30.0531 (12)0.0516 (12)0.0400 (11)0.0026 (9)0.0106 (9)0.0086 (9)
C190.0681 (17)0.0643 (17)0.0466 (15)0.0132 (14)0.0225 (13)0.0127 (12)
C200.0815 (19)0.0520 (16)0.0411 (14)0.0001 (14)0.0112 (13)0.0102 (11)
C210.0489 (14)0.0557 (16)0.0509 (15)0.0004 (12)0.0082 (12)0.0155 (12)
C220.0818 (19)0.0497 (15)0.0492 (15)0.0076 (14)0.0195 (14)0.0089 (12)
C230.0640 (16)0.0520 (15)0.0448 (14)0.0178 (13)0.0076 (12)0.0062 (11)
C240.0390 (12)0.0508 (15)0.0448 (14)0.0072 (11)0.0037 (10)0.0106 (12)
C250.0404 (12)0.0403 (13)0.0404 (13)0.0025 (10)0.0002 (10)0.0096 (10)
C260.0426 (13)0.0470 (13)0.0351 (12)0.0016 (10)0.0016 (10)0.0106 (10)
C270.0459 (13)0.0430 (13)0.0365 (13)0.0039 (10)0.0032 (10)0.0070 (10)
C280.0635 (17)0.0771 (19)0.0380 (14)0.0008 (14)0.0033 (12)0.0123 (12)
C290.0628 (18)0.092 (2)0.0453 (16)0.0058 (16)0.0132 (13)0.0218 (14)
C300.0454 (14)0.0657 (17)0.0528 (16)0.0063 (12)0.0035 (12)0.0141 (12)
C310.0534 (15)0.0453 (15)0.0393 (13)0.0015 (12)0.0091 (11)0.0056 (10)
N40.0552 (14)0.0385 (13)0.161 (3)0.0060 (10)0.0509 (16)0.0108 (14)
C320.047 (2)0.053 (3)0.072 (3)0.0023 (18)0.016 (2)0.010 (2)
C330.063 (3)0.047 (3)0.092 (4)0.005 (2)0.003 (3)0.027 (3)
C340.0522 (17)0.067 (2)0.126 (3)0.0006 (15)0.0085 (17)0.0418 (19)
C350.042 (2)0.054 (2)0.045 (2)0.0069 (17)0.0108 (17)0.0095 (17)
C360.051 (2)0.048 (2)0.064 (3)0.0118 (18)0.016 (2)0.022 (2)
N4'0.0552 (14)0.0385 (13)0.161 (3)0.0060 (10)0.0509 (16)0.0108 (14)
C34'0.0522 (17)0.067 (2)0.126 (3)0.0006 (15)0.0085 (17)0.0418 (19)
Geometric parameters (Å, º) top
O1—C31.205 (3)C19—C201.514 (4)
O2—C61.236 (3)C19—H19A0.9700
O3—C131.222 (3)C19—H19B0.9700
O4—C161.207 (3)C20—C211.481 (3)
N1—C61.335 (3)C20—H20A0.9700
N1—C51.449 (3)C20—H20B0.9700
N1—C11.459 (3)C21—C221.504 (3)
N2—C131.335 (3)C22—C231.510 (4)
N2—C141.461 (3)C22—H22A0.9700
N2—C181.467 (3)C22—H22B0.9700
C1—C21.521 (4)C23—H23A0.9700
C1—H1A0.9700C23—H23B0.9700
C1—H1B0.9700C24—C251.509 (3)
C2—C31.484 (4)C25—C301.375 (3)
C2—H2A0.9700C25—C261.379 (3)
C2—H2B0.9700C26—C271.389 (3)
C3—C41.510 (4)C26—H260.9300
C4—C51.509 (4)C27—C281.382 (3)
C4—H4A0.9700C27—C311.504 (3)
C4—H4B0.9700C28—C291.377 (4)
C5—H5A0.9700C28—H280.9300
C5—H5B0.9700C29—C301.379 (3)
C6—C71.508 (3)C29—H290.9300
C7—C121.382 (3)C30—H300.9300
C7—C81.390 (3)C31—N4'1.324 (3)
C8—C91.381 (3)C31—N41.324 (3)
C8—H80.9300N4—C321.476 (3)
C9—C101.381 (3)N4—C361.509 (3)
C9—C131.501 (3)C32—C331.513 (4)
C10—C111.381 (3)C32—H32A0.9700
C10—H100.9300C32—H32B0.9700
C11—C121.378 (3)C33—C341.505 (4)
C11—H110.9300C33—H33A0.9700
C12—H120.9300C33—H33B0.9700
C14—C151.516 (4)C34—C351.534 (4)
C14—H14A0.9700C35—C361.517 (4)
C14—H14B0.9700C35—H35A0.9700
C15—C161.504 (4)C35—H35B0.9700
C15—H15A0.9700C36—H36A0.9700
C15—H15B0.9700C36—H36B0.9700
C16—C171.495 (4)N4'—C36'1.471 (5)
C17—C181.530 (4)N4'—C32'1.524 (4)
C17—H17A0.9700C32'—C33'1.522 (5)
C17—H17B0.9700C32'—H32C0.9700
C18—H18A0.9700C32'—H32D0.9700
C18—H18B0.9700C33'—C34'1.532 (5)
O5—C211.208 (3)C33'—H33C0.9700
O6—C241.230 (3)C33'—H33D0.9700
O7—C311.202 (3)C34'—C35'1.526 (5)
O8—C34'1.210 (3)C35'—C36'1.509 (5)
O8—C341.210 (3)C35'—H35C0.9700
N3—C241.339 (3)C35'—H35D0.9700
N3—C231.446 (3)C36'—H36C0.9700
N3—C191.456 (3)C36'—H36D0.9700
C6—N1—C5126.11 (19)O5—C21—C22122.1 (2)
C6—N1—C1120.8 (2)C20—C21—C22116.6 (2)
C5—N1—C1112.87 (19)C21—C22—C23113.4 (2)
C13—N2—C14125.6 (2)C21—C22—H22A108.9
C13—N2—C18120.7 (2)C23—C22—H22A108.9
C14—N2—C18113.6 (2)C21—C22—H22B108.9
N1—C1—C2110.16 (19)C23—C22—H22B108.9
N1—C1—H1A109.6H22A—C22—H22B107.7
C2—C1—H1A109.6N3—C23—C22110.4 (2)
N1—C1—H1B109.6N3—C23—H23A109.6
C2—C1—H1B109.6C22—C23—H23A109.6
H1A—C1—H1B108.1N3—C23—H23B109.6
C3—C2—C1114.2 (2)C22—C23—H23B109.6
C3—C2—H2A108.7H23A—C23—H23B108.1
C1—C2—H2A108.7O6—C24—N3123.1 (2)
C3—C2—H2B108.7O6—C24—C25119.5 (2)
C1—C2—H2B108.7N3—C24—C25117.4 (2)
H2A—C2—H2B107.6C30—C25—C26119.5 (2)
O1—C3—C2121.7 (2)C30—C25—C24119.0 (2)
O1—C3—C4122.0 (2)C26—C25—C24121.44 (19)
C2—C3—C4116.3 (2)C25—C26—C27121.3 (2)
C5—C4—C3112.7 (2)C25—C26—H26119.4
C5—C4—H4A109.1C27—C26—H26119.4
C3—C4—H4A109.1C28—C27—C26118.4 (2)
C5—C4—H4B109.1C28—C27—C31121.8 (2)
C3—C4—H4B109.1C26—C27—C31119.7 (2)
H4A—C4—H4B107.8C29—C28—C27120.4 (2)
N1—C5—C4110.7 (2)C29—C28—H28119.8
N1—C5—H5A109.5C27—C28—H28119.8
C4—C5—H5A109.5C28—C29—C30120.5 (2)
N1—C5—H5B109.5C28—C29—H29119.7
C4—C5—H5B109.5C30—C29—H29119.7
H5A—C5—H5B108.1C25—C30—C29119.9 (2)
O2—C6—N1123.4 (2)C25—C30—H30120.1
O2—C6—C7118.9 (2)C29—C30—H30120.1
N1—C6—C7117.74 (19)O7—C31—N4'119.9 (2)
C12—C7—C8119.0 (2)O7—C31—N4119.9 (2)
C12—C7—C6119.9 (2)O7—C31—C27120.2 (2)
C8—C7—C6121.05 (19)N4'—C31—C27119.9 (2)
C9—C8—C7120.9 (2)N4—C31—C27119.9 (2)
C9—C8—H8119.5C31—N4—C32123.9 (2)
C7—C8—H8119.5C31—N4—C36120.1 (2)
C8—C9—C10119.2 (2)C32—N4—C36109.7 (3)
C8—C9—C13118.8 (2)N4—C32—C33106.3 (3)
C10—C9—C13121.8 (2)N4—C32—H32A110.5
C9—C10—C11120.4 (2)C33—C32—H32A110.5
C9—C10—H10119.8N4—C32—H32B110.5
C11—C10—H10119.8C33—C32—H32B110.5
C12—C11—C10120.1 (2)H32A—C32—H32B108.7
C12—C11—H11120.0C34—C33—C32107.6 (3)
C10—C11—H11120.0C34—C33—H33A110.2
C11—C12—C7120.4 (2)C32—C33—H33A110.2
C11—C12—H12119.8C34—C33—H33B110.2
C7—C12—H12119.8C32—C33—H33B110.2
O3—C13—N2121.6 (2)H33A—C33—H33B108.5
O3—C13—C9119.2 (2)O8—C34—C33122.2 (3)
N2—C13—C9119.2 (2)O8—C34—C35121.2 (3)
N2—C14—C15111.3 (2)C33—C34—C35113.4 (3)
N2—C14—H14A109.4C36—C35—C34108.4 (3)
C15—C14—H14A109.4C36—C35—H35A110.0
N2—C14—H14B109.4C34—C35—H35A110.0
C15—C14—H14B109.4C36—C35—H35B110.0
H14A—C14—H14B108.0C34—C35—H35B110.0
C16—C15—C14111.7 (2)H35A—C35—H35B108.4
C16—C15—H15A109.3N4—C36—C35107.2 (3)
C14—C15—H15A109.3N4—C36—H36A110.3
C16—C15—H15B109.3C35—C36—H36A110.3
C14—C15—H15B109.3N4—C36—H36B110.3
H15A—C15—H15B107.9C35—C36—H36B110.3
O4—C16—C17123.7 (3)H36A—C36—H36B108.5
O4—C16—C15122.3 (3)C31—N4'—C36'117.8 (3)
C17—C16—C15114.0 (2)C31—N4'—C32'116.2 (3)
C16—C17—C18110.4 (2)C36'—N4'—C32'104.0 (5)
C16—C17—H17A109.6N4'—C32'—C33'102.3 (6)
C18—C17—H17A109.6N4'—C32'—H32C111.3
C16—C17—H17B109.6C33'—C32'—H32C111.3
C18—C17—H17B109.6N4'—C32'—H32D111.3
H17A—C17—H17B108.1C33'—C32'—H32D111.3
N2—C18—C17110.5 (2)H32C—C32'—H32D109.2
N2—C18—H18A109.6C32'—C33'—C34'105.5 (5)
C17—C18—H18A109.6C32'—C33'—H33C110.6
N2—C18—H18B109.6C34'—C33'—H33C110.6
C17—C18—H18B109.6C32'—C33'—H33D110.6
H18A—C18—H18B108.1C34'—C33'—H33D110.6
C24—N3—C23126.11 (19)H33C—C33'—H33D108.8
C24—N3—C19121.0 (2)O8—C34'—C35'122.6 (4)
C23—N3—C19112.53 (19)O8—C34'—C33'120.7 (4)
N3—C19—C20110.6 (2)C35'—C34'—C33'103.4 (6)
N3—C19—H19A109.5C36'—C35'—C34'103.0 (5)
C20—C19—H19A109.5C36'—C35'—H35C111.2
N3—C19—H19B109.5C34'—C35'—H35C111.2
C20—C19—H19B109.5C36'—C35'—H35D111.2
H19A—C19—H19B108.1C34'—C35'—H35D111.2
C21—C20—C19114.7 (2)H35C—C35'—H35D109.1
C21—C20—H20A108.6N4'—C36'—C35'101.6 (5)
C19—C20—H20A108.6N4'—C36'—H36C111.4
C21—C20—H20B108.6C35'—C36'—H36C111.4
C19—C20—H20B108.6N4'—C36'—H36D111.4
H20A—C20—H20B107.6C35'—C36'—H36D111.4
O5—C21—C20121.2 (2)H36C—C36'—H36D109.3
C6—N1—C1—C2115.3 (2)C19—N3—C23—C2262.4 (3)
C5—N1—C1—C260.0 (3)C21—C22—C23—N348.9 (3)
N1—C1—C2—C346.9 (3)C23—N3—C24—O6178.1 (2)
C1—C2—C3—O1145.0 (3)C19—N3—C24—O65.1 (4)
C1—C2—C3—C438.2 (3)C23—N3—C24—C252.1 (3)
O1—C3—C4—C5144.0 (3)C19—N3—C24—C25175.1 (2)
C2—C3—C4—C539.2 (3)O6—C24—C25—C3071.4 (3)
C6—N1—C5—C4112.9 (3)N3—C24—C25—C30108.4 (3)
C1—N1—C5—C462.0 (3)O6—C24—C25—C26105.7 (3)
C3—C4—C5—N149.6 (3)N3—C24—C25—C2674.5 (3)
C5—N1—C6—O2178.9 (2)C30—C25—C26—C270.2 (3)
C1—N1—C6—O24.4 (3)C24—C25—C26—C27176.9 (2)
C5—N1—C6—C71.0 (3)C25—C26—C27—C280.8 (3)
C1—N1—C6—C7175.6 (2)C25—C26—C27—C31176.0 (2)
O2—C6—C7—C1270.4 (3)C26—C27—C28—C290.6 (4)
N1—C6—C7—C12109.7 (2)C31—C27—C28—C29175.6 (2)
O2—C6—C7—C8107.0 (3)C27—C28—C29—C300.3 (4)
N1—C6—C7—C872.9 (3)C26—C25—C30—C290.7 (4)
C12—C7—C8—C91.9 (3)C24—C25—C30—C29177.9 (2)
C6—C7—C8—C9175.5 (2)C28—C29—C30—C251.0 (4)
C7—C8—C9—C102.4 (3)C28—C27—C31—O794.2 (3)
C7—C8—C9—C13176.9 (2)C26—C27—C31—O780.7 (3)
C8—C9—C10—C110.7 (3)C28—C27—C31—N4'86.9 (3)
C13—C9—C10—C11175.0 (2)C26—C27—C31—N4'98.2 (3)
C9—C10—C11—C121.5 (4)C28—C27—C31—N486.9 (3)
C10—C11—C12—C71.9 (4)C26—C27—C31—N498.2 (3)
C8—C7—C12—C110.3 (3)O7—C31—N4—C32162.4 (3)
C6—C7—C12—C11177.7 (2)C27—C31—N4—C3216.6 (5)
C14—N2—C13—O3175.3 (3)O7—C31—N4—C3613.3 (5)
C18—N2—C13—O34.9 (4)C27—C31—N4—C36165.6 (3)
C14—N2—C13—C93.8 (4)C31—N4—C32—C33138.5 (4)
C18—N2—C13—C9176.1 (2)C36—N4—C32—C3369.7 (4)
C8—C9—C13—O360.7 (3)N4—C32—C33—C3462.4 (5)
C10—C9—C13—O3113.7 (3)C32—C33—C34—O8142.8 (4)
C8—C9—C13—N2118.4 (3)C32—C33—C34—C3557.2 (5)
C10—C9—C13—N267.2 (3)O8—C34—C35—C36145.0 (4)
C13—N2—C14—C15123.8 (3)C33—C34—C35—C3654.7 (5)
C18—N2—C14—C1556.4 (3)C31—N4—C36—C35139.9 (3)
N2—C14—C15—C1650.7 (3)C32—N4—C36—C3567.1 (4)
C14—C15—C16—O4129.6 (3)C34—C35—C36—N456.5 (4)
C14—C15—C16—C1749.9 (3)O7—C31—N4'—C36'24.0 (6)
O4—C16—C17—C18128.2 (3)C27—C31—N4'—C36'157.1 (5)
C15—C16—C17—C1851.3 (3)O7—C31—N4'—C32'148.4 (4)
C13—N2—C18—C17122.2 (3)C27—C31—N4'—C32'32.7 (5)
C14—N2—C18—C1758.0 (3)C31—N4'—C32'—C33'155.4 (4)
C16—C17—C18—N253.9 (3)C36'—N4'—C32'—C33'73.5 (6)
C24—N3—C19—C20113.6 (2)N4'—C32'—C33'—C34'68.4 (8)
C23—N3—C19—C2060.3 (3)C32'—C33'—C34'—O8149.6 (5)
N3—C19—C20—C2145.5 (3)C32'—C33'—C34'—C35'68.6 (8)
C19—C20—C21—O5148.6 (3)O8—C34'—C35'—C36'148.0 (5)
C19—C20—C21—C2235.2 (3)C33'—C34'—C35'—C36'71.1 (7)
O5—C21—C22—C23147.1 (3)C31—N4'—C36'—C35'152.4 (5)
C20—C21—C22—C2336.7 (3)C32'—N4'—C36'—C35'77.4 (7)
C24—N3—C23—C22111.1 (3)C34'—C35'—C36'—N4'75.8 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4b···O1i0.972.583.383 (4)141
C22—H22b···O5ii0.972.443.295 (4)146
C35—H35b···O8iii0.972.553.297 (5)134
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1; (iii) x, y, z+2.

Experimental details

Crystal data
Chemical formulaC18H20N2O4
Mr328.36
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.777 (5), 11.244 (5), 13.665 (5)
α, β, γ (°)101.500 (5), 92.279 (5), 90.009 (5)
V3)1621.3 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.27 × 0.21 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
33080, 6729, 4023
Rint0.060
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.157, 1.05
No. of reflections6729
No. of parameters451
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.32

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009), ORTEP-3 (Farrugia, 1997), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4b···O1i0.972.583.383 (4)141
C22—H22b···O5ii0.972.443.295 (4)146
C35—H35b···O8iii0.972.553.297 (5)134
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1; (iii) x, y, z+2.
 

Footnotes

Additional correspondence author, e-mail: kvpsvijayakumar@gmail.com.

Acknowledgements

VV is grateful to the DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDyakov, M. Y., Sokolova, T. D., Peretokin, A. S., Moskovkin, A. S. & Unkovskii, B. V. (1991). Chem. Heterocycl. Compd, 27, 183–186.  CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationRajesh, K., Vijayakumar, V., Sarveswari, S., Narasimhamurthy, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1306–o1307.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationScherer, T., Hielkema, W., Krijnen, B., Hermant, R. M., Eijckelhoff, C., Kerkhof, F., Ng, A. K. F., Verleg, R., van der Tol, E. B., Brouwer, A. M. & Verhoeven, J. W. (1993). Recl Trav. Chim. Pays Bas, 112, 535–548.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVijayakumar, V., Rajesh, K., Suresh, J., Narasimhamurthy, T. & Lakshman, P. L. N. (2010). Acta Cryst. E66, o170.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds