organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3,4-Di­methyl­phen­yl)benzene­sulfonamide

aMaterials Chemistry Laboratory, Department of Chemistry, Government College, University, Lahore 54000, Pakistan, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 28 June 2010; accepted 6 July 2010; online 10 July 2010)

The structure of the title compound, C14H15NO2S, shows the sulfonamide N atom to be approximately perpendicular to the plane through the S-bound benzene ring [the N—S—C—C torsion angle is −87.4 (3)°] and to lie to the opposide side of this ring to the two sulfonamide O atoms. The N-bound benzene ring is splayed out with respect to the rest of the mol­ecule so that overall, the mol­ecule adopts a twisted conformation. The dihedral angle between the two benzene rings is 64.5 (3)°. In the crystal, supra­molecular chains aligned along the b axis are formed via N—H⋯O hydrogen bonds.

Related literature

For background to the pharmacological uses of sulfonamides, see: Korolkovas (1988[Korolkovas, A. (1988). Essentials of Medicinal Chemistry, 2nd ed., pp. 699-716. New York: Wiley.]); Mandell & Sande (1992[Mandell, G. L. & Sande, M. A. (1992). In Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, 8th ed., pp. 1047-1057. Singapore: McGraw-Hill.]). For the structure of the S-tosyl derivative, see: Gowda et al. (2009[Gowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o877.]). For related structures, see: Khan et al. (2010[Khan, I. U., Mariam, I., Zia-ur-Rehman, M., Arif Sajjad, M. & Sharif, S. (2010). Acta Cryst. E66, o1088.]); Sharif et al. (2010[Sharif, S., Iqbal, H., Khan, I. U., John, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1288.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15NO2S

  • Mr = 261.33

  • Monoclinic, C 2/c

  • a = 24.2129 (12) Å

  • b = 9.2616 (5) Å

  • c = 16.5584 (16) Å

  • β = 132.014 (2)°

  • V = 2758.9 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 K

  • 0.31 × 0.08 × 0.07 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.795, Tmax = 0.947

  • 11486 measured reflections

  • 2864 independent reflections

  • 2112 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.196

  • S = 1.09

  • 2864 reflections

  • 168 parameters

  • 37 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯O2i 0.85 (3) 2.07 (2) 2.921 (3) 177 (5)
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In continuation of on-going structural studies of sulfonamides (Khan et al., 2010; Sharif et al., 2010), of interest owing to their putative anti-microbial activity (Korolkovas, 1988; Mandell & Sande, 1992), the crystal and molecular structure of the title compound, (I), was investigated.

In (I), both sulfonamido-O atoms lie to one side of the S-bound benzene ring [the O1–S1–C1–C6 and O2–S1–C1–C2 torsion angles are 19.3 (4) and -28.0 (3) °, respectively] and are on the opposite side of this ring to the sulfonamido-N1 atom, Fig. 1. The latter is approximately perpendicular to the benzene ring [N1–S1–C1–C2 is -87.4 (3) °] with the N-bound benzene ring clearly displaced to one side of the molecule; the dihedral angle formed between the two benzene rings is 64.5 (3) °. Although not isomorphous, the overall molecular conformation found in the closely related derivative, with an S-bound tolsyl group, is almost identical (Gowda et al. 2009).

The presence of N1–H···O2 hydrogen bonding, Table 1, leads to the formation of supramolecular chains along the b axis, Fig. 2.

Related literature top

For background to the pharmacological uses of sulfonamides, see: Korolkovas (1988); Mandell & Sande (1992). For the structure of the S-tolsyl derivative, see: Gowda et al. (2009). For related structures, see: Khan et al. (2010); Sharif et al. (2010).

Experimental top

To 3,4-dimethyl aniline (484 mg, 4 mmol) in distilled water (10 ml) was added benzene sulfonyl chloride (510 ml, 4 mmol) with stirring at room temperature while maintaining the pH of the reaction mixture at 8 using 3% sodium carbonate. The progress of the reaction was monitored by TLC. The precipitate formed was washed with water, dried and crystallized from a methanol/ethyl acetate mixture (50:50 V/V) to yield colourless prisms of (I); m. pt 414 K.

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atom was refined with the distance restraint N–H = 0.86±0.01 Å, and with Uiso(H) = 1.2Ueq(N). High thermal motion was noted for several atoms in the S-bound benzene ring but multiple positions were not resolved. The anisotropic displacement parameters for this ring were refined with the ISOR command to constrain these to be approximately isotropic.

Structure description top

In continuation of on-going structural studies of sulfonamides (Khan et al., 2010; Sharif et al., 2010), of interest owing to their putative anti-microbial activity (Korolkovas, 1988; Mandell & Sande, 1992), the crystal and molecular structure of the title compound, (I), was investigated.

In (I), both sulfonamido-O atoms lie to one side of the S-bound benzene ring [the O1–S1–C1–C6 and O2–S1–C1–C2 torsion angles are 19.3 (4) and -28.0 (3) °, respectively] and are on the opposite side of this ring to the sulfonamido-N1 atom, Fig. 1. The latter is approximately perpendicular to the benzene ring [N1–S1–C1–C2 is -87.4 (3) °] with the N-bound benzene ring clearly displaced to one side of the molecule; the dihedral angle formed between the two benzene rings is 64.5 (3) °. Although not isomorphous, the overall molecular conformation found in the closely related derivative, with an S-bound tolsyl group, is almost identical (Gowda et al. 2009).

The presence of N1–H···O2 hydrogen bonding, Table 1, leads to the formation of supramolecular chains along the b axis, Fig. 2.

For background to the pharmacological uses of sulfonamides, see: Korolkovas (1988); Mandell & Sande (1992). For the structure of the S-tolsyl derivative, see: Gowda et al. (2009). For related structures, see: Khan et al. (2010); Sharif et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. A view of the supramolecular chain mediated by N–H···O hydrogen bonding (orange dashed lines) in (I). Colour code: S, yellow; O, red; N, blue; C, grey; and H, green.
N-(3,4-Dimethylphenyl)benzenesulfonamide top
Crystal data top
C14H15NO2SF(000) = 1104
Mr = 261.33Dx = 1.258 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2975 reflections
a = 24.2129 (12) Åθ = 2.5–24.2°
b = 9.2616 (5) ŵ = 0.23 mm1
c = 16.5584 (16) ÅT = 293 K
β = 132.014 (2)°Prism, colourless
V = 2758.9 (3) Å30.31 × 0.08 × 0.07 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
2864 independent reflections
Radiation source: fine-focus sealed tube2112 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 26.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3030
Tmin = 0.795, Tmax = 0.947k = 1111
11486 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.196H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.1221P)2 + 0.6451P]
where P = (Fo2 + 2Fc2)/3
2864 reflections(Δ/σ)max < 0.001
168 parametersΔρmax = 0.56 e Å3
37 restraintsΔρmin = 0.65 e Å3
Crystal data top
C14H15NO2SV = 2758.9 (3) Å3
Mr = 261.33Z = 8
Monoclinic, C2/cMo Kα radiation
a = 24.2129 (12) ŵ = 0.23 mm1
b = 9.2616 (5) ÅT = 293 K
c = 16.5584 (16) Å0.31 × 0.08 × 0.07 mm
β = 132.014 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2864 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2112 reflections with I > 2σ(I)
Tmin = 0.795, Tmax = 0.947Rint = 0.036
11486 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05537 restraints
wR(F2) = 0.196H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.56 e Å3
2864 reflectionsΔρmin = 0.65 e Å3
168 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.21969 (4)0.08206 (8)0.26474 (6)0.0437 (3)
O10.16507 (13)0.0323 (3)0.15598 (16)0.0610 (6)
O20.22892 (12)0.2337 (2)0.28664 (18)0.0567 (6)
N10.29812 (14)0.0196 (3)0.3083 (2)0.0492 (6)
H1n0.291 (2)0.063 (2)0.280 (3)0.059*
C10.20212 (16)0.0052 (3)0.3427 (2)0.0448 (7)
C20.2297 (2)0.0696 (4)0.4375 (3)0.0690 (10)
H20.25860.15260.46130.083*
C30.2149 (3)0.0117 (5)0.4979 (3)0.0875 (13)
H30.23370.05570.56250.105*
C40.1730 (3)0.1089 (5)0.4635 (4)0.0935 (14)
H40.16430.14970.50540.112*
C50.1437 (4)0.1704 (6)0.3671 (5)0.1114 (18)
H50.11290.25070.34180.134*
C60.1591 (3)0.1147 (5)0.3065 (4)0.0851 (13)
H60.14030.15880.24200.102*
C70.36691 (17)0.0393 (3)0.4183 (2)0.0470 (7)
C80.39442 (19)0.1756 (3)0.4603 (3)0.0537 (8)
H80.36730.25620.41780.064*
C90.46209 (19)0.1938 (4)0.5652 (3)0.0607 (9)
C100.50388 (19)0.0737 (4)0.6287 (3)0.0638 (10)
C110.4750 (2)0.0623 (4)0.5834 (3)0.0683 (10)
H110.50220.14360.62460.082*
C120.4080 (2)0.0805 (4)0.4804 (3)0.0581 (8)
H120.39020.17280.45230.070*
C130.4905 (3)0.3462 (5)0.6065 (4)0.1030 (16)
H13A0.50750.35590.67780.154*
H13B0.45110.41390.55810.154*
H13C0.53090.36530.60960.154*
C140.5778 (2)0.0900 (6)0.7430 (3)0.0921 (15)
H14A0.60530.16720.74540.138*
H14B0.60540.00170.76540.138*
H14C0.56970.11150.79120.138*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0524 (5)0.0421 (5)0.0424 (4)0.0023 (3)0.0340 (4)0.0028 (3)
O10.0623 (14)0.0769 (16)0.0388 (12)0.0017 (12)0.0317 (11)0.0011 (10)
O20.0678 (14)0.0410 (12)0.0680 (14)0.0076 (10)0.0483 (13)0.0091 (10)
N10.0572 (15)0.0462 (14)0.0533 (15)0.0004 (12)0.0407 (13)0.0075 (12)
C10.0560 (16)0.0416 (15)0.0466 (15)0.0004 (12)0.0384 (14)0.0012 (12)
C20.089 (2)0.072 (2)0.0622 (19)0.0237 (18)0.0574 (19)0.0184 (16)
C30.118 (3)0.102 (3)0.071 (2)0.024 (2)0.075 (2)0.019 (2)
C40.132 (3)0.098 (3)0.091 (3)0.025 (3)0.092 (3)0.005 (2)
C50.155 (4)0.101 (3)0.118 (3)0.054 (3)0.108 (3)0.021 (2)
C60.121 (3)0.079 (2)0.084 (2)0.038 (2)0.080 (2)0.026 (2)
C70.0513 (16)0.0521 (17)0.0538 (17)0.0004 (13)0.0418 (15)0.0004 (14)
C80.0551 (18)0.0536 (19)0.0588 (19)0.0010 (14)0.0408 (17)0.0001 (14)
C90.0553 (19)0.071 (2)0.064 (2)0.0095 (17)0.0436 (18)0.0090 (18)
C100.0481 (19)0.094 (3)0.058 (2)0.0018 (18)0.0389 (17)0.0061 (19)
C110.062 (2)0.075 (3)0.074 (2)0.0142 (18)0.048 (2)0.0238 (19)
C120.061 (2)0.0554 (19)0.067 (2)0.0035 (15)0.0462 (18)0.0068 (16)
C130.078 (3)0.098 (4)0.091 (3)0.020 (3)0.039 (3)0.022 (3)
C140.058 (2)0.142 (4)0.068 (3)0.008 (2)0.038 (2)0.011 (3)
Geometric parameters (Å, º) top
S1—O11.420 (2)C7—C81.379 (4)
S1—O21.430 (2)C7—C121.381 (4)
S1—N11.621 (3)C8—C91.386 (5)
S1—C11.758 (3)C8—H80.9300
N1—C71.436 (4)C9—C101.394 (5)
N1—H1n0.85 (3)C9—C131.518 (6)
C1—C61.356 (5)C10—C111.392 (5)
C1—C21.364 (4)C10—C141.508 (5)
C2—C31.379 (5)C11—C121.365 (5)
C2—H20.9300C11—H110.9300
C3—C41.351 (6)C12—H120.9300
C3—H30.9300C13—H13A0.9600
C4—C51.363 (6)C13—H13B0.9600
C4—H40.9300C13—H13C0.9600
C5—C61.384 (6)C14—H14A0.9600
C5—H50.9300C14—H14B0.9600
C6—H60.9300C14—H14C0.9600
O1—S1—O2119.67 (15)C12—C7—N1119.2 (3)
O1—S1—N1105.54 (14)C7—C8—C9120.7 (3)
O2—S1—N1107.46 (13)C7—C8—H8119.7
O1—S1—C1108.80 (14)C9—C8—H8119.7
O2—S1—C1106.57 (13)C8—C9—C10120.1 (3)
N1—S1—C1108.39 (14)C8—C9—C13118.5 (4)
C7—N1—S1122.54 (19)C10—C9—C13121.4 (4)
C7—N1—H1N117 (2)C11—C10—C9117.8 (3)
S1—N1—H1N109 (2)C11—C10—C14120.9 (4)
C6—C1—C2120.5 (3)C9—C10—C14121.3 (4)
C6—C1—S1119.9 (2)C12—C11—C10122.2 (3)
C2—C1—S1119.6 (2)C12—C11—H11118.9
C1—C2—C3120.0 (4)C10—C11—H11118.9
C1—C2—H2120.0C11—C12—C7119.5 (3)
C3—C2—H2120.0C11—C12—H12120.2
C4—C3—C2120.1 (4)C7—C12—H12120.2
C4—C3—H3120.0C9—C13—H13A109.5
C2—C3—H3120.0C9—C13—H13B109.5
C3—C4—C5119.7 (4)H13A—C13—H13B109.5
C3—C4—H4120.1C9—C13—H13C109.5
C5—C4—H4120.1H13A—C13—H13C109.5
C4—C5—C6120.7 (4)H13B—C13—H13C109.5
C4—C5—H5119.7C10—C14—H14A109.5
C6—C5—H5119.7C10—C14—H14B109.5
C1—C6—C5119.0 (4)H14A—C14—H14B109.5
C1—C6—H6120.5C10—C14—H14C109.5
C5—C6—H6120.5H14A—C14—H14C109.5
C8—C7—C12119.7 (3)H14B—C14—H14C109.5
C8—C7—N1121.0 (3)
O1—S1—N1—C7176.1 (2)C4—C5—C6—C12.1 (9)
O2—S1—N1—C755.1 (3)S1—N1—C7—C860.8 (4)
C1—S1—N1—C759.7 (3)S1—N1—C7—C12123.0 (3)
O1—S1—C1—C619.3 (4)C12—C7—C8—C91.6 (4)
O2—S1—C1—C6149.6 (3)N1—C7—C8—C9177.7 (3)
N1—S1—C1—C695.0 (4)C7—C8—C9—C101.4 (5)
O1—S1—C1—C2158.3 (3)C7—C8—C9—C13178.7 (3)
O2—S1—C1—C228.0 (3)C8—C9—C10—C110.5 (5)
N1—S1—C1—C287.4 (3)C13—C9—C10—C11177.8 (4)
C6—C1—C2—C30.9 (6)C8—C9—C10—C14179.9 (3)
S1—C1—C2—C3178.6 (3)C13—C9—C10—C142.6 (5)
C1—C2—C3—C40.1 (7)C9—C10—C11—C120.2 (5)
C2—C3—C4—C52.1 (9)C14—C10—C11—C12179.4 (3)
C3—C4—C5—C63.1 (10)C10—C11—C12—C70.1 (5)
C2—C1—C6—C50.1 (7)C8—C7—C12—C110.9 (5)
S1—C1—C6—C5177.6 (4)N1—C7—C12—C11177.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O2i0.85 (3)2.07 (2)2.921 (3)177 (5)
Symmetry code: (i) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H15NO2S
Mr261.33
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)24.2129 (12), 9.2616 (5), 16.5584 (16)
β (°) 132.014 (2)
V3)2758.9 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.31 × 0.08 × 0.07
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.795, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
11486, 2864, 2112
Rint0.036
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.196, 1.09
No. of reflections2864
No. of parameters168
No. of restraints37
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.56, 0.65

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O2i0.85 (3)2.07 (2)2.921 (3)177 (5)
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: iuklodhi@yahoo.com.

Acknowledgements

We are grateful to Mr Munawar Hussain, Engineering Cell GC University, Lahore, for providing support services to the Materials Chemistry Laboratory.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o877.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhan, I. U., Mariam, I., Zia-ur-Rehman, M., Arif Sajjad, M. & Sharif, S. (2010). Acta Cryst. E66, o1088.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKorolkovas, A. (1988). Essentials of Medicinal Chemistry, 2nd ed., pp. 699–716. New York: Wiley.  Google Scholar
First citationMandell, G. L. & Sande, M. A. (1992). In Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, 8th ed., pp. 1047–1057. Singapore: McGraw–Hill.  Google Scholar
First citationSharif, S., Iqbal, H., Khan, I. U., John, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1288.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds