organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Ethyl-4-phen­­oxy-1-(2,2,2-tri­fluoro­eth­yl)-1H-pyrazol-5-ol

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India
*Correspondence e-mail: hkfun@usm.my

(Received 30 June 2010; accepted 1 July 2010; online 7 July 2010)

The title compound, C13H13F3N2O2, crystallizes with two independent mol­ecules in the asymmetric unit, with different conformations of their ethyl side chains. The dihedral angles formed between the 1H-pyrazole and benzene rings in the two mol­ecules are 79.44 (6) and 77.81 (6)°. In the crystal, mol­ecules are linked by O⋯H—N hydrogen bonds into chains propagating along [001] and the packing is further stabilized by ππ inter­actions [centroid–centroid separations = 3.5409 (10) and 3.6335 (10) Å].

Related literature

For the synthesis, see: Ragavan et al. (2009[Ragavan, R. V., Vijayakumar, V. & Kumari, N. S. (2009). Eur. J. Med. Chem. 44, 3852-3857.], 2010[Ragavan, R. V., Vijayakumar, V. & Kumari, N. S. (2010). Eur. J. Med. Chem. 45, 1173-1180.]). For background on the biological activity of 3-ethyl-4-phen­oxy-1-(2,2,2-trifluoro­eth­yl)-1H-pyrazol-5-ol, see: Brogden (1986[Brogden, R. N. (1986). Pyrazolone Derivatives Drugs, 32, 60-70.]); Gursoy et al. (2000[Gursoy, A., Demirayak, S., Capan, G., Erol, K. & Vural, K. (2000). Eur. J. Med. Chem. 35, 359-364.]); Watanabe et al. (1984[Watanabe, T., Yuki, S., Egawa, M. & Nishi, H. (1984). J. Pharmacol. Exp. Ther. 268, 1597-1604.]); Kawai et al. (1997[Kawai, H., Nakai, H., Suga, M., Yuki, S., Watanabe, T. & Saito, K. I. (1997). J. Pharmcol. Exp. Ther. 281, 921-927.]); Wu et al. (2002[Wu, T. W., Zeng, L. H., Wu, J. & Fung, K. P. (2002). Life Sci. 71, 2249-2255.]). For related structures, see: Shahani et al. (2009[Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2009). Acta Cryst. E65, o3249-o3250.], 2010a[Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2010a). Acta Cryst. E66, o142-o143.],b[Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2010b). Acta Cryst. E66, o1357-o1358.],c[Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2010c). Acta Cryst. E66, o1482-o1483.],d[Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2010d). Acta Cryst. E66, o1697-o1698.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For related literature, see: Coersmeier et al. (1986[Coersmeier, C., Wittenberg, H. R., Aehringhaus, U., Dreyling, K. W., Peskar, B. M., Brune, K. & Pesker, B. A. (1986). Agents Actions Suppl. 19, 137-153.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13F3N2O2

  • Mr = 286.25

  • Monoclinic, P 21 /c

  • a = 9.3490 (18) Å

  • b = 14.712 (3) Å

  • c = 20.319 (4) Å

  • β = 113.889 (8)°

  • V = 2555.3 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 100 K

  • 0.38 × 0.26 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.952, Tmax = 0.981

  • 35406 measured reflections

  • 9653 independent reflections

  • 7544 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.156

  • S = 1.07

  • 9653 reflections

  • 365 parameters

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Selected torsion angles (°)

N1A—C8A—C12A—C13A 40.62 (16)
N1B—C8B—C12B—C13B 111.06 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2A—H1OA⋯N1Bi 0.82 1.79 2.5996 (15) 169
O2B—H1OB⋯N1Aii 0.82 1.76 2.5781 (14) 177
Symmetry codes: (i) x-1, y, z; (ii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrazolone derivatives have a broad spectrum of biological activities being used as analgesic, antipyretic and anti-inflammatory therapeutical drugs (Brogden, 1986; Gursoy et al., 2000). A class of new compounds with pyrazolone moiety was synthesized and reported for their antibacterial and antifungal activities (Ragavan et al., 2009, 2010). A new pyrazolone derivative, edaravone (3-methyl-1-phenyl-2-pyrazoline-5-one), is being used as a drug in clinical practice for brain ischemia (Watanabe et al., 1984; Kawai et al., 1997) and the same has been found to be effective against myocardial ischemia (Wu et al., 2002).

There are two independent molecules (A and B) in the asymmetric unit (Fig. 1). The maximum deviations in 1H-pyrazole rings (N1/N2/C7–C9) are 0.002 (1) and 0.003 (1) Å, respectively, for atom C7A of molecule A and atoms N2B and C8B of molecule B. The dihedral angles formed between the 1H-pyrazole rings and benzene rings in molecules A and B are 79.44 (6) and 77.81 (6)°, respectively. The bond lengths (Allen et al.,1987) and angles are within normal ranges and comparable to those closely related structures (Shahani et al., 2009, 2010a,b,c,d).

In the crystal packing (Fig. 2), intermolecular O2A···H1OA—N1B, O2B···H1OB—N1A hydrogen bonds (Table 1) link the molecules into one-dimensional chains along [001] direction. The interesting feature of the crystal packing is provided by weak ππ interactions [Cg1···Cg4 = 3.5409 (10) Å, symmetry code, 1+x, 3/2-y, -1/2+z], [Cg2···Cg3 = 3.6335 (10) Å, symmetry code, -1 + x, y, z], Cg1 and Cg4 are the centroids of the benzene rings (C1A–C6A & C1B–C6B), Cg2 and Cg3 are the centroids of the 1H-pyrazole rings (N1A/N2A/C7A–C9A & N1B/N2B/C7B–C9B).

Related literature top

For the synthesis, see: Ragavan et al. (2009, 2010). For background on the biological activity of 3-ethyl-4-phenoxy-1-(2,2,2-trifluoroethyl)-1H-pyrazol-5-ol, see: Brogden (1986); Gursoy et al. (2000); Watanabe et al. (1984); Kawai et al. (1997); Wu et al. (2002). For related structures, see: Shahani et al. (2009, 2010a,b,c,d). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). For related literature, see: Coersmeier et al. (1986).

Experimental top

The title compound has been synthesized according to the available procedure in the literature (Ragavan et al., 2009, 2010) and purified by column chromatography using ethyl acetate and methanol mixture (1:99). The obtained solid was recrystallized using absolute ethanol to yield colourless blocks of (I). Yield: 49%; Mp. 463–465 K.

Refinement top

H atoms were positioned geometrically [range of C–H = 0.93–0.97 Å, O–H = 0.82 Å] and refined using a riding model, with Uiso(H) = 1.5 Ueq(O) and 1.2 or 1.5 Ueq(C). A rotating group model was used for the methyl groups.

Structure description top

Pyrazolone derivatives have a broad spectrum of biological activities being used as analgesic, antipyretic and anti-inflammatory therapeutical drugs (Brogden, 1986; Gursoy et al., 2000). A class of new compounds with pyrazolone moiety was synthesized and reported for their antibacterial and antifungal activities (Ragavan et al., 2009, 2010). A new pyrazolone derivative, edaravone (3-methyl-1-phenyl-2-pyrazoline-5-one), is being used as a drug in clinical practice for brain ischemia (Watanabe et al., 1984; Kawai et al., 1997) and the same has been found to be effective against myocardial ischemia (Wu et al., 2002).

There are two independent molecules (A and B) in the asymmetric unit (Fig. 1). The maximum deviations in 1H-pyrazole rings (N1/N2/C7–C9) are 0.002 (1) and 0.003 (1) Å, respectively, for atom C7A of molecule A and atoms N2B and C8B of molecule B. The dihedral angles formed between the 1H-pyrazole rings and benzene rings in molecules A and B are 79.44 (6) and 77.81 (6)°, respectively. The bond lengths (Allen et al.,1987) and angles are within normal ranges and comparable to those closely related structures (Shahani et al., 2009, 2010a,b,c,d).

In the crystal packing (Fig. 2), intermolecular O2A···H1OA—N1B, O2B···H1OB—N1A hydrogen bonds (Table 1) link the molecules into one-dimensional chains along [001] direction. The interesting feature of the crystal packing is provided by weak ππ interactions [Cg1···Cg4 = 3.5409 (10) Å, symmetry code, 1+x, 3/2-y, -1/2+z], [Cg2···Cg3 = 3.6335 (10) Å, symmetry code, -1 + x, y, z], Cg1 and Cg4 are the centroids of the benzene rings (C1A–C6A & C1B–C6B), Cg2 and Cg3 are the centroids of the 1H-pyrazole rings (N1A/N2A/C7A–C9A & N1B/N2B/C7B–C9B).

For the synthesis, see: Ragavan et al. (2009, 2010). For background on the biological activity of 3-ethyl-4-phenoxy-1-(2,2,2-trifluoroethyl)-1H-pyrazol-5-ol, see: Brogden (1986); Gursoy et al. (2000); Watanabe et al. (1984); Kawai et al. (1997); Wu et al. (2002). For related structures, see: Shahani et al. (2009, 2010a,b,c,d). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). For related literature, see: Coersmeier et al. (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 45% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of (I), viewed approximately along a axis, showing one-dimensional chains along the [001] direction. Intermolecular hydrogen bonds are shown as dashed lines.
3-Ethyl-4-phenoxy-1-(2,2,2-trifluoroethyl)-1H-pyrazol-5-ol top
Crystal data top
C13H13F3N2O2F(000) = 1184
Mr = 286.25Dx = 1.488 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9950 reflections
a = 9.3490 (18) Åθ = 2.5–33.1°
b = 14.712 (3) ŵ = 0.13 mm1
c = 20.319 (4) ÅT = 100 K
β = 113.889 (8)°Block, colourless
V = 2555.3 (9) Å30.38 × 0.26 × 0.15 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD
diffractometer
9653 independent reflections
Radiation source: fine-focus sealed tube7544 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 33.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1413
Tmin = 0.952, Tmax = 0.981k = 2222
35406 measured reflectionsl = 3031
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0895P)2 + 0.5995P]
where P = (Fo2 + 2Fc2)/3
9653 reflections(Δ/σ)max < 0.001
365 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
C13H13F3N2O2V = 2555.3 (9) Å3
Mr = 286.25Z = 8
Monoclinic, P21/cMo Kα radiation
a = 9.3490 (18) ŵ = 0.13 mm1
b = 14.712 (3) ÅT = 100 K
c = 20.319 (4) Å0.38 × 0.26 × 0.15 mm
β = 113.889 (8)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
9653 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
7544 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.981Rint = 0.034
35406 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.07Δρmax = 0.68 e Å3
9653 reflectionsΔρmin = 0.55 e Å3
365 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F1A0.31537 (13)0.95145 (9)0.55763 (5)0.0481 (3)
F2A0.30166 (11)1.01373 (6)0.45960 (6)0.0391 (2)
F3A0.39030 (10)0.87810 (6)0.48585 (6)0.0382 (2)
O1A0.02252 (9)0.65761 (6)0.57549 (4)0.01824 (16)
O2A0.02449 (11)0.86757 (6)0.54830 (5)0.01993 (16)
H1OA0.03680.85170.58430.030*
N1A0.14431 (11)0.73591 (6)0.45565 (5)0.01659 (17)
N2A0.09635 (11)0.81452 (6)0.47642 (5)0.01577 (17)
C1A0.24276 (14)0.64218 (8)0.66821 (6)0.0199 (2)
H1AA0.28570.67220.64020.024*
C2A0.33808 (16)0.61131 (9)0.73676 (7)0.0260 (2)
H2AA0.44520.62230.75510.031*
C3A0.27568 (18)0.56449 (9)0.77815 (7)0.0292 (3)
H3AA0.34050.54380.82380.035*
C4A0.11638 (18)0.54869 (9)0.75105 (7)0.0267 (3)
H4AA0.07440.51660.77850.032*
C5A0.01825 (15)0.58036 (8)0.68319 (6)0.0212 (2)
H5AA0.08900.57020.66540.025*
C6A0.08262 (13)0.62747 (7)0.64225 (6)0.01685 (19)
C7A0.03786 (12)0.70534 (7)0.53426 (6)0.01559 (18)
C8A0.10829 (12)0.66915 (7)0.49077 (6)0.01611 (18)
C9A0.03091 (12)0.79864 (7)0.52395 (5)0.01559 (18)
C10A0.11837 (13)0.90055 (7)0.44853 (6)0.01736 (19)
H10A0.04460.94420.45250.021*
H10B0.09720.89400.39790.021*
C11A0.28240 (15)0.93581 (9)0.48839 (7)0.0248 (2)
C12A0.13741 (14)0.57127 (8)0.48058 (6)0.0201 (2)
H12A0.05300.54940.43720.024*
H12B0.13440.53680.52070.024*
C13A0.29193 (16)0.55208 (9)0.47496 (9)0.0284 (3)
H13A0.30390.48770.47130.043*
H13B0.37650.57490.51710.043*
H13C0.29280.58160.43300.043*
F1B1.40543 (10)0.97140 (6)0.72206 (5)0.0347 (2)
F2B1.29257 (11)0.98298 (6)0.79574 (5)0.0353 (2)
F3B1.15899 (10)0.99932 (6)0.68199 (5)0.0337 (2)
O1B0.86609 (10)0.71693 (6)0.80232 (5)0.01864 (16)
O2B1.21261 (10)0.76971 (6)0.84486 (4)0.01944 (16)
H1OB1.18800.76730.87920.029*
N1B0.96106 (11)0.83472 (7)0.67117 (5)0.01796 (18)
N2B1.10254 (11)0.82572 (7)0.72879 (5)0.01590 (17)
C1B0.75881 (14)0.85277 (8)0.83482 (6)0.0203 (2)
H1BA0.80110.89090.81080.024*
C2B0.67177 (15)0.88829 (9)0.87052 (7)0.0243 (2)
H2BA0.65600.95070.87030.029*
C3B0.60848 (15)0.83187 (10)0.90634 (7)0.0265 (2)
H3BA0.55080.85630.93010.032*
C4B0.63163 (15)0.73870 (10)0.90657 (7)0.0250 (2)
H4BA0.58900.70060.93040.030*
C5B0.71822 (14)0.70211 (8)0.87132 (6)0.0198 (2)
H5BA0.73390.63970.87150.024*
C6B0.78125 (12)0.75984 (8)0.83571 (6)0.01636 (19)
C7B0.92916 (13)0.76861 (7)0.76383 (6)0.01631 (19)
C8B0.85532 (13)0.80022 (8)0.69294 (6)0.0185 (2)
C9B1.08731 (13)0.78561 (7)0.78566 (6)0.01529 (18)
C10B1.24605 (13)0.85110 (7)0.72379 (6)0.01700 (19)
H10C1.24290.83130.67770.020*
H10D1.33230.82000.76120.020*
C11B1.27517 (14)0.95189 (8)0.73120 (7)0.0229 (2)
C12B0.68516 (15)0.80124 (9)0.64426 (7)0.0249 (2)
H12C0.67000.83900.60280.030*
H12D0.62770.82880.66960.030*
C13B0.6182 (2)0.70828 (12)0.61840 (12)0.0492 (5)
H13D0.50890.71370.58790.074*
H13E0.63110.67070.65900.074*
H13F0.67200.68130.59180.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F1A0.0471 (6)0.0628 (7)0.0289 (5)0.0242 (5)0.0099 (4)0.0171 (5)
F2A0.0398 (5)0.0210 (4)0.0647 (7)0.0077 (3)0.0296 (5)0.0043 (4)
F3A0.0216 (4)0.0297 (4)0.0623 (6)0.0010 (3)0.0160 (4)0.0024 (4)
O1A0.0181 (3)0.0218 (4)0.0161 (3)0.0019 (3)0.0082 (3)0.0050 (3)
O2A0.0276 (4)0.0192 (4)0.0184 (4)0.0039 (3)0.0149 (3)0.0020 (3)
N1A0.0206 (4)0.0159 (4)0.0158 (4)0.0008 (3)0.0100 (3)0.0014 (3)
N2A0.0199 (4)0.0153 (4)0.0150 (4)0.0001 (3)0.0101 (3)0.0011 (3)
C1A0.0217 (5)0.0171 (5)0.0202 (5)0.0014 (4)0.0077 (4)0.0001 (4)
C2A0.0282 (6)0.0220 (5)0.0226 (5)0.0066 (4)0.0051 (4)0.0006 (4)
C3A0.0440 (7)0.0223 (5)0.0177 (5)0.0108 (5)0.0089 (5)0.0034 (4)
C4A0.0456 (7)0.0193 (5)0.0206 (5)0.0066 (5)0.0188 (5)0.0048 (4)
C5A0.0309 (6)0.0169 (5)0.0200 (5)0.0010 (4)0.0148 (4)0.0026 (4)
C6A0.0230 (5)0.0143 (4)0.0141 (4)0.0012 (4)0.0084 (4)0.0006 (3)
C7A0.0175 (4)0.0167 (4)0.0142 (4)0.0018 (3)0.0081 (3)0.0018 (3)
C8A0.0170 (4)0.0170 (4)0.0152 (4)0.0015 (3)0.0074 (3)0.0006 (3)
C9A0.0175 (4)0.0181 (5)0.0128 (4)0.0005 (3)0.0077 (3)0.0009 (3)
C10A0.0202 (5)0.0166 (4)0.0173 (4)0.0000 (4)0.0098 (4)0.0029 (3)
C11A0.0253 (5)0.0220 (5)0.0289 (6)0.0051 (4)0.0127 (5)0.0011 (4)
C12A0.0226 (5)0.0167 (5)0.0232 (5)0.0024 (4)0.0116 (4)0.0012 (4)
C13A0.0291 (6)0.0194 (5)0.0423 (7)0.0025 (4)0.0202 (6)0.0021 (5)
F1B0.0263 (4)0.0322 (4)0.0462 (5)0.0103 (3)0.0154 (4)0.0059 (4)
F2B0.0439 (5)0.0260 (4)0.0346 (5)0.0037 (4)0.0145 (4)0.0125 (3)
F3B0.0298 (4)0.0219 (4)0.0432 (5)0.0013 (3)0.0084 (4)0.0115 (3)
O1B0.0237 (4)0.0165 (3)0.0220 (4)0.0016 (3)0.0158 (3)0.0007 (3)
O2B0.0189 (4)0.0267 (4)0.0143 (3)0.0009 (3)0.0083 (3)0.0028 (3)
N1B0.0187 (4)0.0217 (4)0.0146 (4)0.0016 (3)0.0078 (3)0.0006 (3)
N2B0.0175 (4)0.0183 (4)0.0141 (4)0.0015 (3)0.0086 (3)0.0000 (3)
C1B0.0225 (5)0.0193 (5)0.0210 (5)0.0012 (4)0.0107 (4)0.0003 (4)
C2B0.0240 (5)0.0245 (6)0.0252 (5)0.0026 (4)0.0108 (4)0.0031 (4)
C3B0.0221 (5)0.0351 (7)0.0264 (6)0.0010 (5)0.0141 (5)0.0052 (5)
C4B0.0229 (5)0.0321 (6)0.0257 (6)0.0047 (5)0.0158 (5)0.0004 (5)
C5B0.0198 (5)0.0214 (5)0.0208 (5)0.0032 (4)0.0109 (4)0.0007 (4)
C6B0.0155 (4)0.0196 (5)0.0154 (4)0.0018 (3)0.0078 (3)0.0009 (3)
C7B0.0187 (4)0.0171 (4)0.0163 (4)0.0014 (4)0.0104 (4)0.0004 (3)
C8B0.0191 (5)0.0207 (5)0.0169 (4)0.0022 (4)0.0085 (4)0.0001 (4)
C9B0.0191 (4)0.0153 (4)0.0146 (4)0.0001 (3)0.0101 (4)0.0006 (3)
C10B0.0187 (4)0.0171 (4)0.0189 (4)0.0010 (4)0.0114 (4)0.0004 (4)
C11B0.0225 (5)0.0189 (5)0.0269 (6)0.0023 (4)0.0098 (4)0.0009 (4)
C12B0.0214 (5)0.0276 (6)0.0238 (5)0.0013 (4)0.0072 (4)0.0018 (4)
C13B0.0315 (8)0.0303 (8)0.0669 (12)0.0082 (6)0.0004 (8)0.0036 (8)
Geometric parameters (Å, º) top
F1A—C11A1.3326 (17)F1B—C11B1.3354 (15)
F2A—C11A1.3319 (16)F2B—C11B1.3351 (16)
F3A—C11A1.3354 (16)F3B—C11B1.3367 (15)
O1A—C7A1.3773 (13)O1B—C7B1.3822 (13)
O1A—C6A1.3866 (13)O1B—C6B1.3871 (13)
O2A—C9A1.3224 (13)O2B—C9B1.3162 (13)
O2A—H1OA0.8200O2B—H1OB0.8200
N1A—C8A1.3349 (14)N1B—C8B1.3360 (14)
N1A—N2A1.3675 (13)N1B—N2B1.3725 (13)
N2A—C9A1.3566 (13)N2B—C9B1.3554 (13)
N2A—C10A1.4352 (14)N2B—C10B1.4354 (14)
C1A—C6A1.3881 (16)C1B—C6B1.3822 (16)
C1A—C2A1.3910 (17)C1B—C2B1.3928 (17)
C1A—H1AA0.9300C1B—H1BA0.9300
C2A—C3A1.386 (2)C2B—C3B1.3848 (19)
C2A—H2AA0.9300C2B—H2BA0.9300
C3A—C4A1.382 (2)C3B—C4B1.387 (2)
C3A—H3AA0.9300C3B—H3BA0.9300
C4A—C5A1.3911 (17)C4B—C5B1.3884 (17)
C4A—H4AA0.9300C4B—H4BA0.9300
C5A—C6A1.3929 (15)C5B—C6B1.3919 (15)
C5A—H5AA0.9300C5B—H5BA0.9300
C7A—C9A1.3861 (15)C7B—C9B1.3836 (15)
C7A—C8A1.4032 (15)C7B—C8B1.4009 (15)
C8A—C12A1.4954 (16)C8B—C12B1.4949 (17)
C10A—C11A1.5070 (17)C10B—C11B1.5042 (16)
C10A—H10A0.9700C10B—H10C0.9700
C10A—H10B0.9700C10B—H10D0.9700
C12A—C13A1.5209 (18)C12B—C13B1.507 (2)
C12A—H12A0.9700C12B—H12C0.9700
C12A—H12B0.9700C12B—H12D0.9700
C13A—H13A0.9600C13B—H13D0.9600
C13A—H13B0.9600C13B—H13E0.9600
C13A—H13C0.9600C13B—H13F0.9600
C7A—O1A—C6A117.08 (9)C7B—O1B—C6B119.07 (9)
C9A—O2A—H1OA109.5C9B—O2B—H1OB109.5
C8A—N1A—N2A105.79 (9)C8B—N1B—N2B105.52 (9)
C9A—N2A—N1A111.89 (9)C9B—N2B—N1B111.82 (9)
C9A—N2A—C10A127.67 (9)C9B—N2B—C10B126.69 (9)
N1A—N2A—C10A120.44 (9)N1B—N2B—C10B121.34 (9)
C6A—C1A—C2A119.00 (11)C6B—C1B—C2B118.81 (11)
C6A—C1A—H1AA120.5C6B—C1B—H1BA120.6
C2A—C1A—H1AA120.5C2B—C1B—H1BA120.6
C3A—C2A—C1A120.90 (13)C3B—C2B—C1B120.87 (12)
C3A—C2A—H2AA119.5C3B—C2B—H2BA119.6
C1A—C2A—H2AA119.5C1B—C2B—H2BA119.6
C4A—C3A—C2A119.49 (12)C2B—C3B—C4B119.64 (11)
C4A—C3A—H3AA120.3C2B—C3B—H3BA120.2
C2A—C3A—H3AA120.3C4B—C3B—H3BA120.2
C3A—C4A—C5A120.68 (12)C3B—C4B—C5B120.27 (11)
C3A—C4A—H4AA119.7C3B—C4B—H4BA119.9
C5A—C4A—H4AA119.7C5B—C4B—H4BA119.9
C4A—C5A—C6A119.18 (12)C4B—C5B—C6B119.31 (11)
C4A—C5A—H5AA120.4C4B—C5B—H5BA120.3
C6A—C5A—H5AA120.4C6B—C5B—H5BA120.3
O1A—C6A—C1A123.38 (10)C1B—C6B—O1B123.89 (10)
O1A—C6A—C5A115.90 (10)C1B—C6B—C5B121.09 (10)
C1A—C6A—C5A120.72 (11)O1B—C6B—C5B115.02 (10)
O1A—C7A—C9A126.23 (10)O1B—C7B—C9B124.29 (10)
O1A—C7A—C8A127.02 (10)O1B—C7B—C8B128.23 (10)
C9A—C7A—C8A106.62 (9)C9B—C7B—C8B106.69 (9)
N1A—C8A—C7A109.98 (10)N1B—C8B—C7B110.12 (10)
N1A—C8A—C12A122.34 (10)N1B—C8B—C12B120.60 (10)
C7A—C8A—C12A127.65 (10)C7B—C8B—C12B129.26 (10)
O2A—C9A—N2A119.48 (10)O2B—C9B—N2B119.65 (10)
O2A—C9A—C7A134.79 (10)O2B—C9B—C7B134.49 (10)
N2A—C9A—C7A105.72 (9)N2B—C9B—C7B105.84 (9)
N2A—C10A—C11A111.64 (10)N2B—C10B—C11B112.69 (9)
N2A—C10A—H10A109.3N2B—C10B—H10C109.1
C11A—C10A—H10A109.3C11B—C10B—H10C109.1
N2A—C10A—H10B109.3N2B—C10B—H10D109.1
C11A—C10A—H10B109.3C11B—C10B—H10D109.1
H10A—C10A—H10B108.0H10C—C10B—H10D107.8
F2A—C11A—F1A107.48 (11)F2B—C11B—F1B107.93 (11)
F2A—C11A—F3A106.96 (11)F2B—C11B—F3B107.15 (11)
F1A—C11A—F3A107.17 (12)F1B—C11B—F3B107.11 (10)
F2A—C11A—C10A110.45 (11)F2B—C11B—C10B112.41 (10)
F1A—C11A—C10A112.14 (11)F1B—C11B—C10B109.64 (10)
F3A—C11A—C10A112.37 (11)F3B—C11B—C10B112.36 (10)
C8A—C12A—C13A114.89 (10)C8B—C12B—C13B113.70 (12)
C8A—C12A—H12A108.5C8B—C12B—H12C108.8
C13A—C12A—H12A108.5C13B—C12B—H12C108.8
C8A—C12A—H12B108.5C8B—C12B—H12D108.8
C13A—C12A—H12B108.5C13B—C12B—H12D108.8
H12A—C12A—H12B107.5H12C—C12B—H12D107.7
C12A—C13A—H13A109.5C12B—C13B—H13D109.5
C12A—C13A—H13B109.5C12B—C13B—H13E109.5
H13A—C13A—H13B109.5H13D—C13B—H13E109.5
C12A—C13A—H13C109.5C12B—C13B—H13F109.5
H13A—C13A—H13C109.5H13D—C13B—H13F109.5
H13B—C13A—H13C109.5H13E—C13B—H13F109.5
C8A—N1A—N2A—C9A0.04 (12)C8B—N1B—N2B—C9B0.58 (12)
C8A—N1A—N2A—C10A179.76 (10)C8B—N1B—N2B—C10B176.38 (10)
C6A—C1A—C2A—C3A1.65 (18)C6B—C1B—C2B—C3B0.03 (18)
C1A—C2A—C3A—C4A0.35 (19)C1B—C2B—C3B—C4B0.16 (19)
C2A—C3A—C4A—C5A0.87 (19)C2B—C3B—C4B—C5B0.2 (2)
C3A—C4A—C5A—C6A0.75 (18)C3B—C4B—C5B—C6B0.10 (19)
C7A—O1A—C6A—C1A0.79 (15)C2B—C1B—C6B—O1B179.77 (11)
C7A—O1A—C6A—C5A179.25 (10)C2B—C1B—C6B—C5B0.16 (17)
C2A—C1A—C6A—O1A178.28 (10)C7B—O1B—C6B—C1B1.95 (16)
C2A—C1A—C6A—C5A1.76 (17)C7B—O1B—C6B—C5B178.11 (10)
C4A—C5A—C6A—O1A179.46 (10)C4B—C5B—C6B—C1B0.10 (17)
C4A—C5A—C6A—C1A0.58 (17)C4B—C5B—C6B—O1B179.84 (10)
C6A—O1A—C7A—C9A103.42 (13)C6B—O1B—C7B—C9B109.05 (12)
C6A—O1A—C7A—C8A81.34 (14)C6B—O1B—C7B—C8B82.47 (14)
N2A—N1A—C8A—C7A0.27 (12)N2B—N1B—C8B—C7B0.54 (13)
N2A—N1A—C8A—C12A177.87 (10)N2B—N1B—C8B—C12B178.04 (10)
O1A—C7A—C8A—N1A176.39 (10)O1B—C7B—C8B—N1B169.75 (10)
C9A—C7A—C8A—N1A0.39 (12)C9B—C7B—C8B—N1B0.33 (13)
O1A—C7A—C8A—C12A1.62 (18)O1B—C7B—C8B—C12B11.8 (2)
C9A—C7A—C8A—C12A177.61 (11)C9B—C7B—C8B—C12B178.10 (12)
N1A—N2A—C9A—O2A178.67 (9)N1B—N2B—C9B—O2B178.28 (9)
C10A—N2A—C9A—O2A1.64 (17)C10B—N2B—C9B—O2B2.75 (16)
N1A—N2A—C9A—C7A0.20 (12)N1B—N2B—C9B—C7B0.37 (12)
C10A—N2A—C9A—C7A179.49 (10)C10B—N2B—C9B—C7B175.90 (10)
O1A—C7A—C9A—O2A2.2 (2)O1B—C7B—C9B—O2B7.8 (2)
C8A—C7A—C9A—O2A178.26 (12)C8B—C7B—C9B—O2B178.33 (12)
O1A—C7A—C9A—N2A176.39 (10)O1B—C7B—C9B—N2B170.60 (10)
C8A—C7A—C9A—N2A0.35 (12)C8B—C7B—C9B—N2B0.03 (12)
C9A—N2A—C10A—C11A98.24 (13)C9B—N2B—C10B—C11B104.92 (13)
N1A—N2A—C10A—C11A81.44 (12)N1B—N2B—C10B—C11B79.95 (13)
N2A—C10A—C11A—F2A177.43 (10)N2B—C10B—C11B—F2B63.40 (13)
N2A—C10A—C11A—F1A62.72 (14)N2B—C10B—C11B—F1B176.55 (10)
N2A—C10A—C11A—F3A58.09 (14)N2B—C10B—C11B—F3B57.56 (14)
N1A—C8A—C12A—C13A40.62 (16)N1B—C8B—C12B—C13B111.06 (16)
C7A—C8A—C12A—C13A141.59 (12)C7B—C8B—C12B—C13B70.65 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2A—H1OA···N1Bi0.821.792.5996 (15)169
O2B—H1OB···N1Aii0.821.762.5781 (14)177
Symmetry codes: (i) x1, y, z; (ii) x+1, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H13F3N2O2
Mr286.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.3490 (18), 14.712 (3), 20.319 (4)
β (°) 113.889 (8)
V3)2555.3 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.38 × 0.26 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.952, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
35406, 9653, 7544
Rint0.034
(sin θ/λ)max1)0.768
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.156, 1.07
No. of reflections9653
No. of parameters365
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.55

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected torsion angles (º) top
N1A—C8A—C12A—C13A40.62 (16)N1B—C8B—C12B—C13B111.06 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2A—H1OA···N1Bi0.821.792.5996 (15)169
O2B—H1OB···N1Aii0.821.762.5781 (14)177
Symmetry codes: (i) x1, y, z; (ii) x+1, y+3/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

TS and HKF thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/8111012). TS also thanks the Research University Grant (1001/PFIZIK/811151) for the position of Graduate Research Assistant. VV is grateful to DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrogden, R. N. (1986). Pyrazolone Derivatives Drugs, 32, 60–70.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoersmeier, C., Wittenberg, H. R., Aehringhaus, U., Dreyling, K. W., Peskar, B. M., Brune, K. & Pesker, B. A. (1986). Agents Actions Suppl. 19, 137–153.  CAS PubMed Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGursoy, A., Demirayak, S., Capan, G., Erol, K. & Vural, K. (2000). Eur. J. Med. Chem. 35, 359–364.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKawai, H., Nakai, H., Suga, M., Yuki, S., Watanabe, T. & Saito, K. I. (1997). J. Pharmcol. Exp. Ther. 281, 921–927.  CAS Google Scholar
First citationRagavan, R. V., Vijayakumar, V. & Kumari, N. S. (2009). Eur. J. Med. Chem. 44, 3852–3857.  PubMed CAS Google Scholar
First citationRagavan, R. V., Vijayakumar, V. & Kumari, N. S. (2010). Eur. J. Med. Chem. 45, 1173–1180.  Web of Science CrossRef CAS PubMed Google Scholar
First citationShahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2009). Acta Cryst. E65, o3249–o3250.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2010a). Acta Cryst. E66, o142–o143.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2010b). Acta Cryst. E66, o1357–o1358.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2010c). Acta Cryst. E66, o1482–o1483.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2010d). Acta Cryst. E66, o1697–o1698.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatanabe, T., Yuki, S., Egawa, M. & Nishi, H. (1984). J. Pharmacol. Exp. Ther. 268, 1597–1604.  Google Scholar
First citationWu, T. W., Zeng, L. H., Wu, J. & Fung, K. P. (2002). Life Sci. 71, 2249–2255.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds