organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-{(E)-[4-(Di­methyl­amino)­phen­yl]methyl­­idene}-2,3-di­methyl­aniline

aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 11 July 2010; accepted 13 July 2010; online 17 July 2010)

There are two independent mol­ecules in the asymmetric unit of the title compound, C17H20N2, in which the dihedral angles between the aromatic rings are 30.34 (11) and 41.44 (8)°. In the crystal, weak C—H⋯π inter­actions may help to establish the packing.

Related literature

For related structures, see: Hussain et al. (2010[Hussain, A., Tahir, M. N., Tariq, M. I., Ahmad, S. & Asiri, A. M. (2010). Acta Cryst. E66, o1953.]); Tahir et al. (2010a[Tahir, M. N., Tariq, M. I., Ahmad, S., Sarfraz, M. & Ather, A. Q. (2010a). Acta Cryst. E66, o1562.],b[Tahir, M. N., Tariq, M. I., Ahmad, S., Sarfraz, M. & Ather, A. Q. (2010b). Acta Cryst. E66, o1817.]); Tariq et al. (2010[Tariq, M. I., Ahmad, S., Tahir, M. N., Sarfaraz, M. & Hussain, I. (2010). Acta Cryst. E66, o1561.]).

[Scheme 1]

Experimental

Crystal data
  • C17H20N2

  • Mr = 252.35

  • Triclinic, [P \overline 1]

  • a = 7.6556 (8) Å

  • b = 7.7296 (8) Å

  • c = 25.059 (3) Å

  • α = 93.843 (6)°

  • β = 95.436 (6)°

  • γ = 97.431 (5)°

  • V = 1459.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.28 × 0.18 × 0.16 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.982, Tmax = 0.988

  • 20871 measured reflections

  • 5142 independent reflections

  • 2482 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.188

  • S = 1.02

  • 5142 reflections

  • 352 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg4 are the centroids of the C1–C6, C10–C15 and C27–C32 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7ACg1i 0.96 2.90 3.756 (3) 149
C16—H16CCg4ii 0.96 2.69 3.434 (4) 135
C32—H32⋯Cg2iii 0.93 2.88 3.698 (3) 148
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x+1, y-1, z; (iii) x, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound (I, Fig. 1) is being reported in continuation to synthesize various Schiff bases (Hussain et al., 2010; Tahir et al., 2010a; Tahir et al., 2010b; Tariq et al., 2010) of 2,3-dimethylaniline.

The crystal structures of (II) i.e, 2,3-dimethyl-N-[(E)-4-nitrobenzylidene]aniline (Tariq et al., 2010), (III) N-[(E)-4-chlorobenzylidene]-2,3-dimethylaniline (Tahir et al., 2010a), (IV) (E)-2,3-dimethyl-N-(2-nitrobenzylidene)aniline (Tahir et al., 2010b) and (V) 2,3-dimethyl-N-[(E)-2,4,5-trimethoxybenzylidene]aniline (Hussain et al., 2010) have been published which contain 2,3-dimethylaniline moiety. The title compound differs from these due to substitutions at the benzene ring of the aldehyde moiety.

The title compound consists of two molecules in the crystallographic asymmetric unit which differ from each other geometrically. In one molecule, the group A (C1—C8) of 2,3-dimethylaniline and the group B (C9—C15) of N,N'-dimethylbenzaldehyde are planar with r. m. s deviation of 0.009 and 0.017 Å, respectively. The N,N'-dimethyl group C (C16/N2/C17) is of course planar. The dihedral angle between A/B, A/C and B/C is 41.08 (07)°, 38.24 (19)° and 5.17 (37)°, respectively. In second molecule, the group D (C18—C25) and group E (C26—C32) are also planar with r. m. s deviation of 0.010 and 0.018 Å, respectively. The dihedral angle between D/E is 30.44 (09)°. The N,N'-dimethyl group F (C33/N4/C34) of this molecule makes dihedral angle of 18.40 (17)° with group D, whereas it is oriented at 12.14 (37)° with group E. In first molecule, the N-atom of 2,3-dimethylaniline is at a distance of 0.1105 (37) Å from the mean square plane of group A. In comparison to this, in second molecule, the N3 is at -0.0152 (41) Å from group D and shows that it is in plane to D. The title compound is stabilized due to weak C—H···N and C—H···π interactions (Table 1).

Related literature top

For related structures, see: Hussain et al. (2010); Tahir et al. (2010a,b); Tariq et al. (2010).

Experimental top

Equimolar quantities of 2,3-dimethylaniline and 4-(dimethylamino)benzaldehyde were refluxed in methanol for 2.5 h. The yellow solution obtained was kept at room temperature to affoard colorless prisms of (I) in 12 h.

Refinement top

All H-atoms were positioned geometrically (C–H = 0.93, 0.96 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.2 for aryl and x = 1.5 for methyl H-atoms.

Structure description top

The title compound (I, Fig. 1) is being reported in continuation to synthesize various Schiff bases (Hussain et al., 2010; Tahir et al., 2010a; Tahir et al., 2010b; Tariq et al., 2010) of 2,3-dimethylaniline.

The crystal structures of (II) i.e, 2,3-dimethyl-N-[(E)-4-nitrobenzylidene]aniline (Tariq et al., 2010), (III) N-[(E)-4-chlorobenzylidene]-2,3-dimethylaniline (Tahir et al., 2010a), (IV) (E)-2,3-dimethyl-N-(2-nitrobenzylidene)aniline (Tahir et al., 2010b) and (V) 2,3-dimethyl-N-[(E)-2,4,5-trimethoxybenzylidene]aniline (Hussain et al., 2010) have been published which contain 2,3-dimethylaniline moiety. The title compound differs from these due to substitutions at the benzene ring of the aldehyde moiety.

The title compound consists of two molecules in the crystallographic asymmetric unit which differ from each other geometrically. In one molecule, the group A (C1—C8) of 2,3-dimethylaniline and the group B (C9—C15) of N,N'-dimethylbenzaldehyde are planar with r. m. s deviation of 0.009 and 0.017 Å, respectively. The N,N'-dimethyl group C (C16/N2/C17) is of course planar. The dihedral angle between A/B, A/C and B/C is 41.08 (07)°, 38.24 (19)° and 5.17 (37)°, respectively. In second molecule, the group D (C18—C25) and group E (C26—C32) are also planar with r. m. s deviation of 0.010 and 0.018 Å, respectively. The dihedral angle between D/E is 30.44 (09)°. The N,N'-dimethyl group F (C33/N4/C34) of this molecule makes dihedral angle of 18.40 (17)° with group D, whereas it is oriented at 12.14 (37)° with group E. In first molecule, the N-atom of 2,3-dimethylaniline is at a distance of 0.1105 (37) Å from the mean square plane of group A. In comparison to this, in second molecule, the N3 is at -0.0152 (41) Å from group D and shows that it is in plane to D. The title compound is stabilized due to weak C—H···N and C—H···π interactions (Table 1).

For related structures, see: Hussain et al. (2010); Tahir et al. (2010a,b); Tariq et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 30% probability level.
N-{(E)-[4-(Dimethylamino)phenyl]methylidene}-2,3-dimethylaniline top
Crystal data top
C17H20N2Z = 4
Mr = 252.35F(000) = 544
Triclinic, P1Dx = 1.149 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6556 (8) ÅCell parameters from 2482 reflections
b = 7.7296 (8) Åθ = 2.5–25.1°
c = 25.059 (3) ŵ = 0.07 mm1
α = 93.843 (6)°T = 296 K
β = 95.436 (6)°Prism, colorless
γ = 97.431 (5)°0.28 × 0.18 × 0.16 mm
V = 1459.1 (3) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5142 independent reflections
Radiation source: fine-focus sealed tube2482 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
Detector resolution: 8.20 pixels mm-1θmax = 25.1°, θmin = 2.5°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 99
Tmin = 0.982, Tmax = 0.988l = 2929
20871 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.188 w = 1/[σ2(Fo2) + (0.0834P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
5142 reflectionsΔρmax = 0.49 e Å3
352 parametersΔρmin = 0.50 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.079 (6)
Crystal data top
C17H20N2γ = 97.431 (5)°
Mr = 252.35V = 1459.1 (3) Å3
Triclinic, P1Z = 4
a = 7.6556 (8) ÅMo Kα radiation
b = 7.7296 (8) ŵ = 0.07 mm1
c = 25.059 (3) ÅT = 296 K
α = 93.843 (6)°0.28 × 0.18 × 0.16 mm
β = 95.436 (6)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5142 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2482 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.988Rint = 0.075
20871 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.188H-atom parameters constrained
S = 1.02Δρmax = 0.49 e Å3
5142 reflectionsΔρmin = 0.50 e Å3
352 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5198 (3)0.0581 (3)0.37159 (10)0.0537 (9)
N20.9529 (3)0.1392 (4)0.17264 (10)0.0721 (11)
C10.3947 (4)0.1128 (4)0.40574 (12)0.0515 (11)
C20.4576 (3)0.1876 (3)0.45733 (11)0.0494 (11)
C30.3346 (4)0.2293 (4)0.49253 (12)0.0543 (11)
C40.1557 (4)0.1959 (4)0.47532 (14)0.0660 (12)
C50.0951 (4)0.1219 (4)0.42452 (14)0.0735 (15)
C60.2148 (4)0.0822 (4)0.38967 (12)0.0626 (12)
C70.6526 (4)0.2190 (4)0.47505 (11)0.0648 (11)
C80.3963 (4)0.3060 (4)0.54930 (12)0.0712 (12)
C90.4960 (4)0.0717 (4)0.32134 (12)0.0534 (11)
C100.6111 (3)0.0102 (3)0.28366 (11)0.0478 (10)
C110.7562 (4)0.0742 (3)0.29931 (11)0.0500 (10)
C120.8662 (3)0.1263 (4)0.26331 (11)0.0517 (11)
C130.8376 (4)0.0954 (4)0.20859 (11)0.0501 (11)
C140.6900 (4)0.0152 (4)0.19267 (11)0.0581 (11)
C150.5813 (4)0.0354 (4)0.22929 (11)0.0551 (11)
C161.1113 (4)0.2115 (5)0.18959 (13)0.0881 (16)
C170.9234 (5)0.1121 (5)0.11657 (13)0.0966 (18)
N30.4573 (3)0.3231 (3)0.13425 (10)0.0582 (10)
N40.0318 (3)0.4923 (3)0.33878 (10)0.0677 (10)
C180.5873 (4)0.3266 (4)0.09694 (12)0.0552 (11)
C190.5286 (4)0.2815 (4)0.04280 (13)0.0580 (12)
C200.6535 (5)0.2793 (4)0.00571 (13)0.0687 (12)
C210.8323 (5)0.3209 (4)0.02383 (15)0.0770 (16)
C220.8891 (4)0.3616 (4)0.07720 (15)0.0773 (16)
C230.7672 (4)0.3641 (4)0.11396 (13)0.0685 (14)
C240.3328 (4)0.2381 (5)0.02473 (12)0.0775 (14)
C250.5962 (5)0.2378 (5)0.05378 (13)0.0969 (19)
C260.4823 (4)0.4361 (4)0.17434 (12)0.0580 (11)
C270.3656 (4)0.4420 (4)0.21654 (12)0.0522 (11)
C280.2033 (4)0.3369 (4)0.21470 (11)0.0539 (11)
C290.0937 (4)0.3511 (4)0.25459 (11)0.0541 (11)
C300.1432 (4)0.4714 (4)0.29963 (11)0.0507 (11)
C310.3100 (4)0.5717 (4)0.30267 (12)0.0597 (12)
C320.4155 (4)0.5572 (4)0.26191 (12)0.0581 (11)
C330.0955 (5)0.5875 (5)0.38990 (13)0.0877 (16)
C340.1493 (4)0.4123 (5)0.33187 (13)0.0852 (16)
H40.074490.224250.498690.0791*
H50.025890.098800.413830.0880*
H60.174510.034420.354960.0751*
H7A0.676250.162110.507360.0974*
H7B0.690640.342440.481820.0974*
H7C0.715770.172350.447310.0974*
H8A0.296090.332400.567060.1070*
H8B0.477130.411380.548300.1070*
H8C0.455010.223050.568580.1070*
H90.399780.123870.308000.0639*
H110.778470.095600.335230.0600*
H120.961080.182840.275080.0620*
H140.665350.003990.156660.0699*
H150.483950.088420.217430.0659*
H16A1.179370.135710.218170.1318*
H16B1.180460.222180.159810.1318*
H16C1.079760.324950.202100.1318*
H17A0.823820.192610.100150.1445*
H17B1.026830.131180.099350.1445*
H17C0.899840.005710.112720.1445*
H210.915420.321080.000930.0922*
H221.009470.387420.088480.0926*
H230.805060.390890.150290.0818*
H24A0.294340.329660.004410.1161*
H24B0.268310.227370.055650.1161*
H24C0.311520.129500.002670.1161*
H25A0.698020.253020.073450.1451*
H25B0.514510.315180.065600.1451*
H25C0.539640.118890.060010.1451*
H260.581700.520330.176790.0697*
H280.167840.254630.185620.0645*
H290.014970.279930.251740.0647*
H310.349630.649040.332690.0716*
H320.524810.627180.264720.0695*
H33A0.204140.549260.403690.1311*
H33B0.008660.566010.414780.1311*
H33C0.115920.710430.385230.1311*
H34A0.199290.423020.295840.1281*
H34B0.214860.469460.356920.1281*
H34C0.154990.290640.338230.1281*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0518 (15)0.0591 (16)0.0505 (16)0.0087 (12)0.0085 (12)0.0006 (12)
N20.0697 (18)0.102 (2)0.0511 (17)0.0368 (16)0.0067 (14)0.0055 (15)
C10.0469 (18)0.0497 (18)0.059 (2)0.0090 (14)0.0074 (15)0.0060 (15)
C20.0499 (18)0.0507 (19)0.0490 (19)0.0084 (14)0.0072 (15)0.0090 (14)
C30.057 (2)0.0542 (19)0.055 (2)0.0139 (15)0.0119 (16)0.0076 (15)
C40.054 (2)0.076 (2)0.073 (2)0.0180 (17)0.0192 (17)0.0068 (18)
C50.0444 (19)0.097 (3)0.078 (3)0.0096 (17)0.0077 (18)0.002 (2)
C60.052 (2)0.077 (2)0.057 (2)0.0054 (16)0.0055 (16)0.0008 (16)
C70.0543 (19)0.076 (2)0.063 (2)0.0072 (16)0.0057 (15)0.0011 (17)
C80.075 (2)0.078 (2)0.064 (2)0.0201 (18)0.0142 (17)0.0019 (18)
C90.0502 (18)0.0527 (19)0.056 (2)0.0058 (14)0.0031 (15)0.0012 (15)
C100.0477 (17)0.0463 (18)0.0480 (19)0.0037 (14)0.0033 (14)0.0009 (14)
C110.0545 (18)0.0499 (19)0.0425 (17)0.0011 (14)0.0002 (14)0.0007 (14)
C120.0510 (18)0.0519 (19)0.0510 (19)0.0107 (14)0.0042 (15)0.0016 (14)
C130.0515 (18)0.0473 (18)0.0507 (19)0.0092 (14)0.0017 (15)0.0019 (14)
C140.066 (2)0.066 (2)0.0430 (18)0.0165 (17)0.0015 (16)0.0047 (15)
C150.0554 (19)0.057 (2)0.054 (2)0.0153 (15)0.0008 (16)0.0046 (15)
C160.074 (2)0.117 (3)0.083 (3)0.038 (2)0.0180 (19)0.016 (2)
C170.111 (3)0.137 (4)0.055 (2)0.060 (3)0.018 (2)0.008 (2)
N30.0573 (16)0.0650 (18)0.0542 (17)0.0131 (13)0.0075 (13)0.0073 (14)
N40.0573 (17)0.0783 (19)0.0622 (18)0.0033 (14)0.0069 (14)0.0101 (14)
C180.0513 (19)0.058 (2)0.060 (2)0.0128 (15)0.0114 (16)0.0139 (15)
C190.059 (2)0.059 (2)0.060 (2)0.0192 (15)0.0086 (17)0.0093 (16)
C200.077 (2)0.071 (2)0.064 (2)0.0244 (19)0.0170 (19)0.0084 (17)
C210.069 (2)0.086 (3)0.085 (3)0.022 (2)0.033 (2)0.016 (2)
C220.056 (2)0.093 (3)0.084 (3)0.0107 (19)0.012 (2)0.008 (2)
C230.054 (2)0.085 (3)0.068 (2)0.0129 (17)0.0089 (18)0.0069 (18)
C240.069 (2)0.099 (3)0.064 (2)0.0188 (19)0.0003 (17)0.0016 (19)
C250.106 (3)0.126 (4)0.067 (3)0.035 (3)0.023 (2)0.011 (2)
C260.0519 (19)0.059 (2)0.065 (2)0.0108 (16)0.0071 (16)0.0120 (17)
C270.0496 (18)0.0497 (19)0.057 (2)0.0083 (14)0.0018 (15)0.0041 (15)
C280.0551 (19)0.053 (2)0.0500 (19)0.0039 (15)0.0014 (15)0.0046 (14)
C290.0507 (18)0.0520 (19)0.055 (2)0.0017 (14)0.0007 (15)0.0032 (15)
C300.0458 (18)0.0532 (19)0.0522 (19)0.0054 (14)0.0025 (14)0.0045 (15)
C310.056 (2)0.061 (2)0.055 (2)0.0044 (16)0.0022 (16)0.0118 (15)
C320.0452 (18)0.058 (2)0.067 (2)0.0029 (14)0.0016 (16)0.0005 (17)
C330.092 (3)0.095 (3)0.068 (2)0.006 (2)0.016 (2)0.026 (2)
C340.069 (2)0.090 (3)0.092 (3)0.010 (2)0.0254 (19)0.010 (2)
Geometric parameters (Å, º) top
N1—C11.428 (4)C16—H16B0.9600
N1—C91.269 (4)C16—H16C0.9600
N2—C131.376 (4)C17—H17B0.9600
N2—C161.440 (4)C17—H17C0.9600
N2—C171.436 (4)C17—H17A0.9600
N3—C181.428 (4)C18—C191.395 (4)
N3—C261.269 (4)C18—C231.390 (4)
N4—C331.443 (4)C19—C201.396 (5)
N4—C301.374 (4)C19—C241.512 (4)
N4—C341.433 (4)C20—C211.390 (5)
C1—C61.383 (4)C20—C251.514 (5)
C1—C21.396 (4)C21—C221.369 (5)
C2—C71.500 (4)C22—C231.373 (5)
C2—C31.402 (4)C26—C271.450 (4)
C3—C41.382 (4)C27—C281.389 (4)
C3—C81.512 (4)C27—C321.388 (4)
C4—C51.373 (5)C28—C291.372 (4)
C5—C61.373 (4)C29—C301.403 (4)
C9—C101.449 (4)C30—C311.398 (4)
C10—C111.397 (4)C31—C321.368 (4)
C10—C151.391 (4)C21—H210.9300
C11—C121.367 (4)C22—H220.9300
C12—C131.409 (4)C23—H230.9300
C13—C141.396 (4)C24—H24A0.9600
C14—C151.367 (4)C24—H24B0.9600
C4—H40.9300C24—H24C0.9600
C5—H50.9300C25—H25A0.9600
C6—H60.9300C25—H25B0.9600
C7—H7B0.9600C25—H25C0.9600
C7—H7A0.9600C26—H260.9300
C7—H7C0.9600C28—H280.9300
C8—H8A0.9600C29—H290.9300
C8—H8B0.9600C31—H310.9300
C8—H8C0.9600C32—H320.9300
C9—H90.9300C33—H33A0.9600
C11—H110.9300C33—H33B0.9600
C12—H120.9300C33—H33C0.9600
C14—H140.9300C34—H34A0.9600
C15—H150.9300C34—H34B0.9600
C16—H16A0.9600C34—H34C0.9600
C1—N1—C9120.0 (3)H17A—C17—H17B109.00
C13—N2—C16121.6 (3)N2—C17—H17A109.00
C13—N2—C17121.8 (3)N2—C17—H17B109.00
C16—N2—C17116.6 (3)N2—C17—H17C109.00
C18—N3—C26118.4 (3)N3—C18—C19117.8 (3)
C30—N4—C33121.2 (3)N3—C18—C23121.5 (3)
C30—N4—C34121.6 (3)C19—C18—C23120.7 (3)
C33—N4—C34117.2 (3)C18—C19—C20118.9 (3)
C2—C1—C6120.5 (3)C18—C19—C24120.3 (3)
N1—C1—C6121.1 (3)C20—C19—C24120.8 (3)
N1—C1—C2118.3 (3)C19—C20—C21119.1 (3)
C1—C2—C3118.6 (2)C19—C20—C25120.9 (3)
C3—C2—C7120.8 (2)C21—C20—C25120.0 (3)
C1—C2—C7120.6 (2)C20—C21—C22121.7 (3)
C2—C3—C8120.5 (3)C21—C22—C23119.6 (3)
C4—C3—C8120.1 (3)C18—C23—C22120.1 (3)
C2—C3—C4119.4 (3)N3—C26—C27124.1 (3)
C3—C4—C5121.5 (3)C26—C27—C28123.7 (3)
C4—C5—C6119.4 (3)C26—C27—C32119.6 (3)
C1—C6—C5120.6 (3)C28—C27—C32116.7 (3)
N1—C9—C10123.4 (3)C27—C28—C29121.8 (3)
C9—C10—C15120.4 (2)C28—C29—C30121.0 (3)
C11—C10—C15116.8 (2)N4—C30—C29121.6 (3)
C9—C10—C11122.9 (3)N4—C30—C31121.2 (3)
C10—C11—C12121.9 (3)C29—C30—C31117.2 (3)
C11—C12—C13120.8 (3)C30—C31—C32120.7 (3)
C12—C13—C14117.3 (3)C27—C32—C31122.5 (3)
N2—C13—C12121.2 (3)C20—C21—H21119.00
N2—C13—C14121.5 (3)C22—C21—H21119.00
C13—C14—C15120.9 (3)C21—C22—H22120.00
C10—C15—C14122.3 (3)C23—C22—H22120.00
C3—C4—H4119.00C18—C23—H23120.00
C5—C4—H4119.00C22—C23—H23120.00
C4—C5—H5120.00C19—C24—H24A109.00
C6—C5—H5120.00C19—C24—H24B109.00
C1—C6—H6120.00C19—C24—H24C109.00
C5—C6—H6120.00H24A—C24—H24B110.00
C2—C7—H7B110.00H24A—C24—H24C109.00
C2—C7—H7C109.00H24B—C24—H24C109.00
C2—C7—H7A109.00C20—C25—H25A109.00
H7B—C7—H7C109.00C20—C25—H25B109.00
H7A—C7—H7B109.00C20—C25—H25C109.00
H7A—C7—H7C109.00H25A—C25—H25B109.00
C3—C8—H8C109.00H25A—C25—H25C109.00
H8B—C8—H8C109.00H25B—C25—H25C109.00
H8A—C8—H8B109.00N3—C26—H26118.00
H8A—C8—H8C109.00C27—C26—H26118.00
C3—C8—H8B109.00C27—C28—H28119.00
C3—C8—H8A110.00C29—C28—H28119.00
N1—C9—H9118.00C28—C29—H29120.00
C10—C9—H9118.00C30—C29—H29120.00
C10—C11—H11119.00C30—C31—H31120.00
C12—C11—H11119.00C32—C31—H31120.00
C13—C12—H12120.00C27—C32—H32119.00
C11—C12—H12120.00C31—C32—H32119.00
C13—C14—H14120.00N4—C33—H33A109.00
C15—C14—H14120.00N4—C33—H33B109.00
C14—C15—H15119.00N4—C33—H33C109.00
C10—C15—H15119.00H33A—C33—H33B109.00
N2—C16—H16B109.00H33A—C33—H33C110.00
N2—C16—H16C109.00H33B—C33—H33C109.00
H16A—C16—H16B109.00N4—C34—H34A109.00
H16A—C16—H16C109.00N4—C34—H34B109.00
N2—C16—H16A110.00N4—C34—H34C109.00
H16B—C16—H16C109.00H34A—C34—H34B110.00
H17A—C17—H17C109.00H34A—C34—H34C109.00
H17B—C17—H17C109.00H34B—C34—H34C109.00
C9—N1—C1—C2145.2 (3)C9—C10—C11—C12177.9 (3)
C9—N1—C1—C639.0 (4)C10—C11—C12—C130.4 (4)
C1—N1—C9—C10176.4 (3)C11—C12—C13—N2176.6 (3)
C16—N2—C13—C14175.9 (3)C11—C12—C13—C142.0 (4)
C16—N2—C13—C122.6 (5)N2—C13—C14—C15176.8 (3)
C17—N2—C13—C12178.6 (3)C12—C13—C14—C151.8 (5)
C17—N2—C13—C142.9 (5)C13—C14—C15—C100.0 (5)
C26—N3—C18—C2338.3 (4)N3—C18—C19—C242.5 (4)
C18—N3—C26—C27176.9 (3)C23—C18—C19—C201.7 (5)
C26—N3—C18—C19145.2 (3)N3—C18—C19—C20178.3 (3)
C34—N4—C30—C31169.5 (3)N3—C18—C23—C22178.2 (3)
C33—N4—C30—C3114.2 (4)C19—C18—C23—C221.8 (5)
C33—N4—C30—C29166.9 (3)C23—C18—C19—C24179.0 (3)
C34—N4—C30—C299.5 (4)C24—C19—C20—C21179.7 (3)
C2—C1—C6—C51.2 (5)C18—C19—C20—C210.4 (5)
C6—C1—C2—C7179.3 (3)C18—C19—C20—C25177.7 (3)
N1—C1—C6—C5174.4 (3)C24—C19—C20—C251.5 (5)
N1—C1—C2—C3175.2 (3)C25—C20—C21—C22179.1 (3)
C6—C1—C2—C30.6 (4)C19—C20—C21—C220.9 (5)
N1—C1—C2—C73.5 (4)C20—C21—C22—C230.9 (5)
C7—C2—C3—C4178.8 (3)C21—C22—C23—C180.4 (5)
C7—C2—C3—C80.4 (4)N3—C26—C27—C287.5 (5)
C1—C2—C3—C40.2 (4)N3—C26—C27—C32172.2 (3)
C1—C2—C3—C8178.3 (3)C26—C27—C28—C29177.5 (3)
C8—C3—C4—C5178.2 (3)C32—C27—C28—C292.8 (5)
C2—C3—C4—C50.3 (5)C26—C27—C32—C31178.7 (3)
C3—C4—C5—C60.9 (5)C28—C27—C32—C311.6 (5)
C4—C5—C6—C11.3 (5)C27—C28—C29—C301.1 (5)
N1—C9—C10—C111.8 (4)C28—C29—C30—N4177.2 (3)
N1—C9—C10—C15177.5 (3)C28—C29—C30—C311.7 (4)
C9—C10—C15—C14177.8 (3)N4—C30—C31—C32176.1 (3)
C11—C10—C15—C141.6 (4)C29—C30—C31—C322.9 (4)
C15—C10—C11—C121.4 (4)C30—C31—C32—C271.2 (5)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg4 are the centroids of the C1–C6, C10–C15 and C27–C32 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C7—H7A···Cg1i0.962.903.756 (3)149
C16—H16C···Cg4ii0.962.693.434 (4)135
C32—H32···Cg2iii0.932.883.698 (3)148
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y1, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H20N2
Mr252.35
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.6556 (8), 7.7296 (8), 25.059 (3)
α, β, γ (°)93.843 (6), 95.436 (6), 97.431 (5)
V3)1459.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.28 × 0.18 × 0.16
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.982, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
20871, 5142, 2482
Rint0.075
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.188, 1.02
No. of reflections5142
No. of parameters352
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.50

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg4 are the centroids of the C1–C6, C10–C15 and C27–C32 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C7—H7A···Cg1i0.962.903.756 (3)149
C16—H16C···Cg4ii0.962.693.434 (4)135
C32—H32···Cg2iii0.932.883.698 (3)148
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y1, z; (iii) x, y+1, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHussain, A., Tahir, M. N., Tariq, M. I., Ahmad, S. & Asiri, A. M. (2010). Acta Cryst. E66, o1953.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N., Tariq, M. I., Ahmad, S., Sarfraz, M. & Ather, A. Q. (2010a). Acta Cryst. E66, o1562.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTahir, M. N., Tariq, M. I., Ahmad, S., Sarfraz, M. & Ather, A. Q. (2010b). Acta Cryst. E66, o1817.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTariq, M. I., Ahmad, S., Tahir, M. N., Sarfaraz, M. & Hussain, I. (2010). Acta Cryst. E66, o1561.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds