supplementary materials


hb5552 scheme

Acta Cryst. (2010). E66, m959-m960    [ doi:10.1107/S1600536810027820 ]

Dibromido(2,3,5,6-tetra-2-pyridylpyrazine-[kappa]3N2,N1,N6)zinc(II)

R. Ahmadi, K. Kalateh and V. Amani

Abstract top

In the title compound, [ZnBr2(C24H16N6)], the ZnII ion is coordinated by the N,N',N''-tridentate 2,3,5,6-tetra-2-pyridylpyrazine ligand and two bromide ions, generating a distorted ZnN3Br2 trigonal-bipyramidal geometry for the metal ion, with both bromide ions in equatorial sites. The dihedral angles between the pyrazine ring and the coordinated pyridine rings are 13.3 (2) and 24.8 (2)°; those between the pyrazine ring and the uncoordinated pyradine rings are 31.3 (2) and 44.2 (2)°. In the crystal, inversion dimers linked by pairs of weak C-H...Br hydrogen bonds occur.

Comment top

Goodwin & Lyons (1959) reported the synthesis of 2,3,5,6-tetra(2-pyridinyl)pyrazine (tppz). Bock et al. (1992) and Greaves & Stoeckli-Evans (1992) determined the structure of tppz by single-crystal X-ray diffraction methods. tppz is a good bis-tridentate bridging ligand, and numerous complexes with tppz have been prepared, such as that of ruthenium (Hadadzadeh et al., 2006), platinum (Sakai & Kurashima, 2003), mercury (Zhang et al., 2005), copper (Carranza et al., 2004), iron (Laine et al., 1995), nickel (Graf et al., 1997), palladium (Yamada et al., 2000), cadmium (Seyed Sadjadi et al., 2008) and lead (Morsali & Ramazani, 2005). For further investigation of 2,3,5,6-tetra(2-pyridinyl)pyrazine, we synthesis the title complex, (I), and report herein its crystal structure.

In the title compound, (Fig. 1), the ZnII atom is five-coordinated in a distorted trigonal-bipyramidal configuration by three N atoms from one 2,3,5,6-tetra(2-pyridinyl)pyrazine and two terminal Br. The Zn—N and Zn—Br bond lengths and angles (Table 1) are within normal range of [ZnCl2 (tppz)], (Graf et al., 1993) and [ZnBr2(6,6'-dmbpy)], (Alizadeh et al., 2009) [where 6,6'-dmbpy is 6,6'-dimethyl-2, 2'-bipyridine] respectively.

In the crystal structure, intermolecular C—H···Br hydrogen bonds (Table 2, Fig. 2) may stabilize the structure.

Related literature top

For the synthesis of the ligand, see: Goodwin & Lyons (1959). For the structure of the free ligand, see Bock et al. (1992); Greaves & Stoeckli-Evans (1992). For related structures, see: Alizadeh et al. (2009); Carranza et al. (2004); Graf et al. (1993, 1997); Hadadzadeh et al. (2006); Laine et al. (1995); Morsali & Ramazani (2005); Sakai & Kurashima (2003); Seyed Sadjadi et al. (2008); Yamada et al. (2000); Zhanget al. (2005).

Experimental top

A solution of 2,3,5,6-tetra(2-pyridinyl)pyrazine (0.40 g, 1.00 mmol) in HCCl3 (20 ml) was added to a solution of ZnBr2 (0.23 g, 1.00 mmol) in methanol (20 ml) at room temperature. The suitable crystals for X-ray diffraction experiment were obtained by methanol diffusion to a colorless solution in DMSO. Yellow prisms of (I) were isolated after one week (yield; 0.45 g, 73.3%).

Refinement top

All H atoms were positioned geometrically, with C—H = 0.93Å and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Unit-cell packing diagram for (I).
Dibromido(2,3,5,6-tetra-2-pyridylpyrazine- κ3N2,N1,N6)zinc(II) top
Crystal data top
[ZnBr2(C24H16N6)]Z = 2
Mr = 613.62F(000) = 604
Triclinic, P1Dx = 1.708 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.3985 (8) ÅCell parameters from 998 reflections
b = 10.5378 (8) Åθ = 1.8–29.3°
c = 12.3034 (10) ŵ = 4.40 mm1
α = 64.898 (6)°T = 298 K
β = 83.187 (6)°Prism, yellow
γ = 77.901 (6)°0.50 × 0.40 × 0.28 mm
V = 1193.05 (16) Å3
Data collection top
Bruker SMART CCD
diffractometer
6412 independent reflections
Radiation source: fine-focus sealed tube4954 reflections with I > 2σ(I)
graphiteRint = 0.049
phi and ω scansθmax = 29.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1414
Tmin = 0.206, Tmax = 0.369k = 1314
13823 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0524P)2 + 0.8386P]
where P = (Fo2 + 2Fc2)/3
6412 reflections(Δ/σ)max = 0.010
298 parametersΔρmax = 0.89 e Å3
0 restraintsΔρmin = 0.91 e Å3
Crystal data top
[ZnBr2(C24H16N6)]γ = 77.901 (6)°
Mr = 613.62V = 1193.05 (16) Å3
Triclinic, P1Z = 2
a = 10.3985 (8) ÅMo Kα radiation
b = 10.5378 (8) ŵ = 4.40 mm1
c = 12.3034 (10) ÅT = 298 K
α = 64.898 (6)°0.50 × 0.40 × 0.28 mm
β = 83.187 (6)°
Data collection top
Bruker SMART CCD
diffractometer
6412 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
4954 reflections with I > 2σ(I)
Tmin = 0.206, Tmax = 0.369Rint = 0.049
13823 measured reflectionsθmax = 29.2°
Refinement top
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.126Δρmax = 0.89 e Å3
S = 1.14Δρmin = 0.91 e Å3
6412 reflectionsAbsolute structure: ?
298 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.69495 (4)0.37649 (4)0.71272 (4)0.03753 (11)
Br20.62972 (5)0.62861 (4)0.64284 (4)0.05470 (13)
Br10.52355 (5)0.24651 (6)0.74414 (5)0.07140 (16)
N51.1123 (3)0.0445 (4)0.5766 (3)0.0452 (7)
N31.1520 (3)0.1584 (3)0.7992 (3)0.0397 (6)
C71.0799 (3)0.2101 (4)0.8729 (3)0.0379 (7)
C200.9186 (3)0.3265 (3)0.5446 (3)0.0352 (7)
C161.3156 (3)0.0461 (4)0.6499 (3)0.0397 (7)
H161.35980.07840.69180.048*
C60.9439 (3)0.2551 (4)0.8580 (3)0.0350 (7)
C171.1801 (3)0.0874 (4)0.6368 (3)0.0363 (7)
N60.7888 (3)0.3729 (3)0.5459 (3)0.0407 (7)
N20.8986 (3)0.2850 (3)0.7503 (2)0.0339 (6)
C81.1517 (4)0.2208 (4)0.9655 (3)0.0423 (8)
C190.9768 (3)0.2574 (4)0.6653 (3)0.0341 (6)
C50.8400 (4)0.2731 (4)0.9463 (3)0.0377 (7)
C181.1009 (3)0.1719 (4)0.6992 (3)0.0353 (7)
N41.1146 (3)0.3429 (4)0.9781 (3)0.0457 (7)
N10.7200 (3)0.3285 (4)0.9022 (3)0.0475 (7)
C131.1800 (4)0.0388 (5)0.5255 (4)0.0499 (9)
H131.13460.06690.48110.060*
C151.3823 (4)0.0435 (4)0.5994 (3)0.0453 (8)
H151.47240.07510.60870.054*
C210.9930 (4)0.3513 (4)0.4381 (3)0.0448 (8)
H211.08370.32100.43880.054*
C30.7577 (5)0.2571 (5)1.1400 (4)0.0567 (11)
H30.77110.23261.22040.068*
C230.7940 (5)0.4678 (5)0.3319 (4)0.0584 (11)
H230.74930.51500.26050.070*
C121.1751 (5)0.3588 (5)1.0604 (4)0.0592 (11)
H121.15160.44391.06960.071*
C10.6194 (5)0.3486 (6)0.9748 (4)0.0646 (13)
H10.53560.38510.94400.078*
C220.9278 (5)0.4225 (5)0.3307 (3)0.0525 (10)
H220.97460.43960.25810.063*
C91.2494 (5)0.1128 (6)1.0304 (5)0.0731 (16)
H91.27490.03021.01740.088*
C240.7276 (4)0.4421 (5)0.4402 (4)0.0548 (10)
H240.63710.47350.44100.066*
C20.6354 (5)0.3171 (6)1.0948 (4)0.0660 (13)
H20.56480.33641.14270.079*
C111.2693 (7)0.2565 (7)1.1313 (6)0.0866 (19)
H111.30670.27061.18930.104*
C101.3082 (7)0.1332 (8)1.1165 (7)0.103 (3)
H101.37370.06291.16350.123*
C141.3150 (4)0.0862 (4)0.5348 (4)0.0486 (9)
H141.35870.14530.49830.058*
C40.8616 (4)0.2330 (5)1.0660 (3)0.0488 (9)
H40.94500.19031.09640.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03347 (19)0.0393 (2)0.0397 (2)0.00120 (15)0.00453 (14)0.01878 (17)
Br20.0683 (3)0.0393 (2)0.0545 (2)0.00334 (18)0.00494 (19)0.02253 (18)
Br10.0635 (3)0.0628 (3)0.0887 (4)0.0252 (2)0.0112 (2)0.0232 (3)
N50.0386 (15)0.0507 (18)0.0572 (19)0.0007 (13)0.0060 (13)0.0352 (16)
N30.0376 (14)0.0409 (16)0.0463 (16)0.0017 (12)0.0089 (12)0.0254 (13)
C70.0416 (17)0.0347 (16)0.0412 (17)0.0010 (13)0.0091 (14)0.0208 (14)
C200.0408 (17)0.0304 (15)0.0355 (16)0.0001 (13)0.0045 (13)0.0167 (13)
C160.0341 (16)0.0428 (19)0.0438 (18)0.0068 (14)0.0001 (13)0.0196 (15)
C60.0415 (17)0.0304 (15)0.0329 (15)0.0010 (13)0.0051 (12)0.0143 (13)
C170.0326 (15)0.0370 (17)0.0432 (17)0.0034 (13)0.0016 (13)0.0213 (14)
N60.0410 (15)0.0462 (17)0.0352 (14)0.0037 (13)0.0065 (11)0.0209 (13)
N20.0347 (13)0.0361 (14)0.0325 (13)0.0015 (11)0.0033 (10)0.0171 (11)
C80.0427 (18)0.046 (2)0.0423 (18)0.0025 (15)0.0101 (14)0.0226 (16)
C190.0357 (15)0.0329 (16)0.0375 (16)0.0008 (12)0.0026 (12)0.0201 (13)
C50.0475 (18)0.0317 (16)0.0321 (15)0.0049 (14)0.0008 (13)0.0124 (13)
C180.0331 (15)0.0352 (16)0.0409 (17)0.0011 (13)0.0040 (12)0.0202 (14)
N40.0570 (19)0.0462 (18)0.0403 (16)0.0087 (15)0.0024 (13)0.0240 (14)
N10.0447 (17)0.057 (2)0.0392 (16)0.0019 (14)0.0025 (13)0.0222 (15)
C130.054 (2)0.054 (2)0.056 (2)0.0044 (18)0.0046 (17)0.037 (2)
C150.0332 (16)0.048 (2)0.048 (2)0.0018 (15)0.0086 (14)0.0184 (17)
C210.048 (2)0.044 (2)0.0414 (18)0.0037 (16)0.0009 (15)0.0192 (16)
C30.073 (3)0.061 (3)0.0342 (18)0.024 (2)0.0111 (18)0.0161 (18)
C230.078 (3)0.055 (3)0.0374 (19)0.002 (2)0.0141 (19)0.0172 (18)
C120.077 (3)0.063 (3)0.054 (2)0.021 (2)0.003 (2)0.035 (2)
C10.048 (2)0.087 (4)0.051 (2)0.005 (2)0.0068 (18)0.030 (2)
C220.071 (3)0.051 (2)0.0328 (18)0.007 (2)0.0037 (17)0.0168 (16)
C90.077 (3)0.065 (3)0.089 (4)0.025 (3)0.046 (3)0.049 (3)
C240.052 (2)0.063 (3)0.045 (2)0.0123 (19)0.0168 (17)0.0246 (19)
C20.066 (3)0.082 (3)0.046 (2)0.012 (3)0.020 (2)0.028 (2)
C110.105 (4)0.097 (4)0.082 (4)0.007 (4)0.044 (3)0.054 (3)
C100.110 (5)0.094 (5)0.113 (5)0.028 (4)0.079 (4)0.053 (4)
C140.053 (2)0.047 (2)0.048 (2)0.0031 (17)0.0114 (16)0.0272 (17)
C40.058 (2)0.056 (2)0.0307 (17)0.0159 (19)0.0017 (15)0.0132 (16)
Geometric parameters (Å, °) top
Zn1—N22.151 (3)N1—C11.335 (5)
Zn1—N62.177 (3)C13—C141.388 (6)
Zn1—N12.202 (3)C13—H130.9300
Zn1—Br12.3692 (7)C15—C141.376 (6)
Zn1—Br22.3880 (6)C15—H150.9300
N5—C131.330 (5)C21—C221.388 (6)
N5—C171.339 (4)C21—H210.9300
N3—C71.330 (4)C3—C21.363 (7)
N3—C181.339 (4)C3—C41.381 (6)
C7—C61.403 (5)C3—H30.9300
C7—C81.487 (5)C23—C241.372 (6)
C20—N61.336 (4)C23—C221.372 (7)
C20—C211.392 (5)C23—H230.9300
C20—C191.488 (4)C12—C111.357 (8)
C16—C151.371 (5)C12—H120.9300
C16—C171.392 (5)C1—C21.392 (6)
C16—H160.9300C1—H10.9300
C6—N21.344 (4)C22—H220.9300
C6—C51.481 (5)C9—C101.394 (7)
C17—C181.477 (4)C9—H90.9300
N6—C241.351 (5)C24—H240.9300
N2—C191.341 (4)C2—H20.9300
C8—N41.333 (5)C11—C101.359 (9)
C8—C91.379 (6)C11—H110.9300
C19—C181.404 (4)C10—H100.9300
C5—N11.334 (5)C14—H140.9300
C5—C41.382 (5)C4—H40.9300
N4—C121.338 (5)
N2—Zn1—N673.75 (10)C5—N1—Zn1118.2 (2)
N2—Zn1—N172.96 (11)C1—N1—Zn1122.6 (3)
N6—Zn1—N1146.71 (11)N5—C13—C14123.5 (4)
N2—Zn1—Br1125.38 (8)N5—C13—H13118.3
N6—Zn1—Br1102.12 (9)C14—C13—H13118.3
N1—Zn1—Br197.43 (10)C16—C15—C14119.5 (3)
N2—Zn1—Br2118.61 (8)C16—C15—H15120.2
N6—Zn1—Br297.55 (9)C14—C15—H15120.2
N1—Zn1—Br297.76 (10)C22—C21—C20118.0 (4)
Br1—Zn1—Br2115.93 (2)C22—C21—H21121.0
C13—N5—C17117.3 (3)C20—C21—H21121.0
C7—N3—C18120.4 (3)C2—C3—C4119.8 (4)
N3—C7—C6119.5 (3)C2—C3—H3120.1
N3—C7—C8116.7 (3)C4—C3—H3120.1
C6—C7—C8123.8 (3)C24—C23—C22118.8 (4)
N6—C20—C21122.2 (3)C24—C23—H23120.6
N6—C20—C19114.2 (3)C22—C23—H23120.6
C21—C20—C19123.5 (3)N4—C12—C11123.1 (4)
C15—C16—C17118.4 (3)N4—C12—H12118.4
C15—C16—H16120.8C11—C12—H12118.4
C17—C16—H16120.8N1—C1—C2122.4 (4)
N2—C6—C7117.2 (3)N1—C1—H1118.8
N2—C6—C5114.1 (3)C2—C1—H1118.8
C7—C6—C5128.7 (3)C23—C22—C21119.9 (4)
N5—C17—C16123.0 (3)C23—C22—H22120.0
N5—C17—C18115.8 (3)C21—C22—H22120.0
C16—C17—C18120.9 (3)C8—C9—C10116.9 (5)
C20—N6—C24118.6 (3)C8—C9—H9121.6
C20—N6—Zn1117.8 (2)C10—C9—H9121.6
C24—N6—Zn1122.1 (3)N6—C24—C23122.4 (4)
C19—N2—C6121.7 (3)N6—C24—H24118.8
C19—N2—Zn1118.5 (2)C23—C24—H24118.8
C6—N2—Zn1119.7 (2)C3—C2—C1118.0 (4)
N4—C8—C9123.8 (4)C3—C2—H2121.0
N4—C8—C7114.3 (3)C1—C2—H2121.0
C9—C8—C7121.9 (4)C12—C11—C10119.3 (4)
N2—C19—C18117.6 (3)C12—C11—H11120.3
N2—C19—C20113.7 (3)C10—C11—H11120.3
C18—C19—C20128.6 (3)C11—C10—C9119.6 (5)
N1—C5—C4121.3 (3)C11—C10—H10120.2
N1—C5—C6114.6 (3)C9—C10—H10120.2
C4—C5—C6124.1 (3)C15—C14—C13118.2 (3)
N3—C18—C19118.8 (3)C15—C14—H14120.9
N3—C18—C17115.5 (3)C13—C14—H14120.9
C19—C18—C17125.6 (3)C3—C4—C5119.1 (4)
C8—N4—C12117.2 (4)C3—C4—H4120.4
C5—N1—C1119.2 (3)C5—C4—H4120.4
C18—N3—C7—C611.8 (5)C7—C6—C5—C46.9 (6)
C18—N3—C7—C8166.3 (3)C7—N3—C18—C198.3 (5)
N3—C7—C6—N220.0 (5)C7—N3—C18—C17168.8 (3)
C8—C7—C6—N2157.9 (3)N2—C19—C18—N320.2 (5)
N3—C7—C6—C5159.1 (4)C20—C19—C18—N3158.3 (3)
C8—C7—C6—C522.9 (6)N2—C19—C18—C17156.6 (3)
C13—N5—C17—C161.5 (6)C20—C19—C18—C1724.9 (6)
C13—N5—C17—C18176.1 (4)N5—C17—C18—N3149.6 (3)
C15—C16—C17—N50.5 (6)C16—C17—C18—N325.1 (5)
C15—C16—C17—C18173.9 (3)N5—C17—C18—C1927.2 (5)
C21—C20—N6—C242.2 (6)C16—C17—C18—C19158.1 (4)
C19—C20—N6—C24177.5 (3)C9—C8—N4—C121.2 (7)
C21—C20—N6—Zn1164.1 (3)C7—C8—N4—C12179.7 (4)
C19—C20—N6—Zn111.1 (4)C4—C5—N1—C11.6 (6)
N2—Zn1—N6—C203.2 (3)C6—C5—N1—C1179.8 (4)
N1—Zn1—N6—C202.2 (4)C4—C5—N1—Zn1176.4 (3)
Br1—Zn1—N6—C20126.8 (3)C6—C5—N1—Zn11.9 (4)
Br2—Zn1—N6—C20114.5 (3)N2—Zn1—N1—C51.4 (3)
N2—Zn1—N6—C24169.0 (4)N6—Zn1—N1—C50.4 (4)
N1—Zn1—N6—C24168.1 (3)Br1—Zn1—N1—C5126.2 (3)
Br1—Zn1—N6—C2467.3 (3)Br2—Zn1—N1—C5116.2 (3)
Br2—Zn1—N6—C2451.3 (3)N2—Zn1—N1—C1176.5 (4)
C7—C6—N2—C197.8 (5)N6—Zn1—N1—C1177.5 (4)
C5—C6—N2—C19171.5 (3)Br1—Zn1—N1—C151.7 (4)
C7—C6—N2—Zn1173.3 (2)Br2—Zn1—N1—C165.9 (4)
C5—C6—N2—Zn17.5 (4)C17—N5—C13—C142.1 (7)
N6—Zn1—N2—C196.5 (3)C17—C16—C15—C141.9 (6)
N1—Zn1—N2—C19174.1 (3)N6—C20—C21—C222.2 (6)
Br1—Zn1—N2—C1987.0 (3)C19—C20—C21—C22177.1 (4)
Br2—Zn1—N2—C1996.3 (2)C8—N4—C12—C111.1 (7)
N6—Zn1—N2—C6174.5 (3)C5—N1—C1—C21.6 (8)
N1—Zn1—N2—C64.9 (3)Zn1—N1—C1—C2179.5 (4)
Br1—Zn1—N2—C692.0 (3)C24—C23—C22—C210.5 (7)
Br2—Zn1—N2—C684.7 (3)C20—C21—C22—C230.8 (6)
N3—C7—C8—N4135.7 (4)N4—C8—C9—C102.2 (9)
C6—C7—C8—N442.3 (5)C7—C8—C9—C10178.8 (6)
N3—C7—C8—C943.4 (6)C20—N6—C24—C230.8 (7)
C6—C7—C8—C9138.6 (5)Zn1—N6—C24—C23164.9 (4)
C6—N2—C19—C1811.8 (5)C22—C23—C24—N60.5 (7)
Zn1—N2—C19—C18167.2 (2)C4—C3—C2—C11.6 (8)
C6—N2—C19—C20167.0 (3)N1—C1—C2—C33.2 (8)
Zn1—N2—C19—C2014.1 (4)N4—C12—C11—C102.2 (10)
N6—C20—C19—N216.2 (4)C12—C11—C10—C91.1 (12)
C21—C20—C19—N2159.0 (3)C8—C9—C10—C111.0 (12)
N6—C20—C19—C18165.2 (4)C16—C15—C14—C131.4 (6)
C21—C20—C19—C1819.6 (6)N5—C13—C14—C150.7 (7)
N2—C6—C5—N15.9 (5)C2—C3—C4—C51.3 (7)
C7—C6—C5—N1174.9 (4)N1—C5—C4—C33.1 (6)
N2—C6—C5—C4172.3 (4)C6—C5—C4—C3178.9 (4)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
C11—H11···Br2i0.932.883.791 (7)166
Symmetry codes: (i) −x+2, −y+1, −z+2.
Table 1
Selected geometric parameters (Å, °)
top
Zn1—N22.151 (3)Zn1—Br12.3692 (7)
Zn1—N62.177 (3)Zn1—Br22.3880 (6)
Zn1—N12.202 (3)
N2—Zn1—N673.75 (10)N1—Zn1—Br197.43 (10)
N2—Zn1—N172.96 (11)N2—Zn1—Br2118.61 (8)
N6—Zn1—N1146.71 (11)N6—Zn1—Br297.55 (9)
N2—Zn1—Br1125.38 (8)N1—Zn1—Br297.76 (10)
N6—Zn1—Br1102.12 (9)Br1—Zn1—Br2115.93 (2)
Table 2
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
C11—H11···Br2i0.932.883.791 (7)166
Symmetry codes: (i) −x+2, −y+1, −z+2.
Acknowledgements top

We are grateful to the Islamic Azad University, Shahr-e-Rey Branch, for financial support.

references
References top

Alizadeh, R., Khoshtarkib, Z., Chegeni, K., Ebadi, A. & Amani, V. (2009). Acta Cryst. E65, m1311.

Bock, H., Vaupel, T., Nather, C., Ruppert, K. & Havlas, Z. (1992). Angew. Chem. Int. Ed. 31, 299–301.

Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Carranza, J., Sletten, J., Brennan, C., Lloret, F., Canoa, J. & Julve, M. (2004). Dalton Trans. pp. 3997–4005.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Goodwin, H. A. & Lyons, F. (1959). J. Am. Chem. Soc. 81, 6415–6422.

Graf, M., Greaves, B. & Stoeckli-Evans, H. (1993). Inorg. Chim. Acta, 204, 239–246.

Graf, M., Stoeckli-Evans, H., Escuer, A. & Vicente, R. (1997). Inorg. Chim. Acta, 257, 89–97.

Greaves, B. & Stoeckli-Evans, H. (1992). Acta Cryst. C48, 2269–2271.

Hadadzadeh, H., Yap, G. P. A. & Crutchley, R. J. (2006). Acta Cryst. E62, m2002–m2004.

Laine, P., Gourdon, A. & Launay, J.-P. (1995). Inorg. Chem. 34, 5156–5165.

Morsali, A. & Ramazani, A. (2005). Z. Anorg. Allg. Chem. 631, 1759–1760.

Sakai, K. & Kurashima, M. (2003). Acta Cryst. E59, m411–m413.

Seyed Sadjadi, M., Ebadi, A., Zare, K., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1050–m1051.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Yamada, Y., Miyashita, Y., Fujisawa, K. & Okamoto, K. (2000). Bull. Chem. Soc. Jpn, 73, 1843–1844.

Zhang, L., Zhao, X.-H. & Zhao, Y. (2005). Acta Cryst. E61, m1760–m1761.