organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-[4-(Methyl­sulfan­yl)benzyl­­idene]furan-2-carbohydrazide monohydrate

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and bMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: liyufeng8111@163.com

(Received 14 July 2010; accepted 17 July 2010; online 31 July 2010)

In the title compound, C13H12N2O2S·H2O, the dihedral angle between the aromatic rings is 35.34 (19)° and an intra­molecular N—H⋯O hydrogen bond generates an S(5) ring. In the crystal, mol­ecules are linked by N—H⋯O and O—H⋯O hydrogen bonds, generating (001) sheets.

Related literature

For a related structure, see: Li & Jian (2010[Li, Y.-F. & Jian, F.-F. (2010). Acta Cryst. E66, o2061.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12N2O2S·H2O

  • Mr = 278.32

  • Monoclinic, P 21 /c

  • a = 4.7065 (9) Å

  • b = 12.142 (2) Å

  • c = 23.979 (5) Å

  • β = 91.96 (3)°

  • V = 1369.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 10766 measured reflections

  • 2536 independent reflections

  • 1095 reflections with I > 2σ(I)

  • Rint = 0.093

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.172

  • S = 0.81

  • 2536 reflections

  • 180 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O2 0.86 2.37 2.713 (3) 104
N1—H1B⋯O3i 0.86 2.03 2.864 (4) 162
O3—H3B⋯O1ii 0.87 (5) 2.03 (6) 2.878 (4) 165 (4)
O3—H3C⋯O1 0.76 (8) 2.11 (8) 2.800 (4) 152 (8)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

For a related structure, see: Li & Jian (2010).

Experimental top

A mixture of 4-(methylthio)benzaldehyde (0.1 mol), and furan-2-carbohydrazide (0.1 mol) was stirred in refluxing ethanol (20 ml) for 2 h to afford the title compound (0.090 mol, yield 90%). Colourless blocks of the title compound were obtained by recrystallization from ethanol at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H = 0.97 Å, and Uiso = 1.2–1.5Ueq.

Structure description top

For a related structure, see: Li & Jian (2010).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids.
(E)-N'-[4-(Methylsulfanyl)benzylidene]furan-2-carbohydrazide monohydrate top
Crystal data top
C13H14N2O3SF(000) = 584
Mr = 278.32Dx = 1.350 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1095 reflections
a = 4.7065 (9) Åθ = 3.1–25.5°
b = 12.142 (2) ŵ = 0.24 mm1
c = 23.979 (5) ÅT = 293 K
β = 91.96 (3)°Block, colorless
V = 1369.6 (5) Å30.22 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
1095 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.093
Graphite monochromatorθmax = 25.5°, θmin = 3.1°
phi and ω scansh = 55
10766 measured reflectionsk = 1414
2536 independent reflectionsl = 2729
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H atoms treated by a mixture of independent and constrained refinement
S = 0.81 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
2536 reflections(Δ/σ)max < 0.001
180 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C13H14N2O3SV = 1369.6 (5) Å3
Mr = 278.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.7065 (9) ŵ = 0.24 mm1
b = 12.142 (2) ÅT = 293 K
c = 23.979 (5) Å0.22 × 0.20 × 0.18 mm
β = 91.96 (3)°
Data collection top
Bruker SMART CCD
diffractometer
1095 reflections with I > 2σ(I)
10766 measured reflectionsRint = 0.093
2536 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.172H atoms treated by a mixture of independent and constrained refinement
S = 0.81Δρmax = 0.18 e Å3
2536 reflectionsΔρmin = 0.25 e Å3
180 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C50.1858 (6)0.6495 (3)0.26977 (12)0.0476 (8)
N20.5006 (6)0.6551 (2)0.19538 (11)0.0543 (7)
C40.0079 (6)0.5827 (3)0.30142 (12)0.0469 (8)
O20.0668 (5)0.47801 (18)0.28399 (9)0.0576 (7)
C60.6577 (7)0.5956 (3)0.16494 (13)0.0544 (9)
H6A0.66640.52000.17090.065*
C10.3067 (8)0.5097 (3)0.35996 (15)0.0695 (11)
H1A0.42580.50030.38980.083*
C20.2512 (7)0.4347 (3)0.32055 (14)0.0647 (10)
H2B0.32730.36410.31860.078*
C81.0074 (7)0.5792 (3)0.09165 (14)0.0686 (11)
H8A1.03430.50600.10200.082*
C30.1508 (8)0.6049 (3)0.34769 (14)0.0620 (10)
H3A0.14730.67050.36770.074*
O10.2107 (5)0.7491 (2)0.27923 (10)0.0628 (7)
C70.8238 (7)0.6447 (3)0.12095 (12)0.0541 (9)
N10.3328 (5)0.5959 (2)0.23110 (10)0.0512 (7)
H1B0.32270.52540.22850.061*
C120.7927 (8)0.7535 (3)0.10515 (17)0.0740 (11)
H12A0.67320.79940.12470.089*
C110.9370 (9)0.7947 (4)0.06065 (17)0.0823 (12)
H11A0.91370.86820.05070.099*
C101.1155 (8)0.7288 (4)0.03055 (16)0.0765 (12)
C91.1526 (8)0.6220 (4)0.04680 (16)0.0809 (13)
H9A1.27640.57710.02770.097*
O30.7049 (8)0.8706 (2)0.30372 (13)0.0682 (8)
S11.2735 (3)0.79024 (15)0.02691 (5)0.1234 (7)
C131.4598 (13)0.6810 (6)0.0588 (2)0.161 (3)
H13A1.55310.70840.09100.241*
H13B1.32800.62420.07000.241*
H13C1.59890.65150.03270.241*
H3B0.857 (12)0.841 (4)0.2908 (19)0.12 (2)*
H3C0.602 (17)0.833 (7)0.288 (3)0.21 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C50.0404 (18)0.047 (2)0.056 (2)0.0052 (17)0.0024 (15)0.0034 (17)
N20.0518 (16)0.0511 (18)0.0606 (17)0.0064 (15)0.0103 (14)0.0021 (14)
C40.0471 (18)0.041 (2)0.0529 (18)0.0025 (16)0.0030 (15)0.0020 (15)
O20.0659 (14)0.0447 (14)0.0631 (14)0.0051 (12)0.0166 (12)0.0027 (11)
C60.0518 (19)0.052 (2)0.059 (2)0.0016 (17)0.0055 (17)0.0022 (17)
C10.082 (3)0.063 (3)0.065 (2)0.002 (2)0.023 (2)0.007 (2)
C20.077 (3)0.053 (2)0.065 (2)0.011 (2)0.021 (2)0.0118 (19)
C80.060 (2)0.080 (3)0.066 (2)0.004 (2)0.0084 (19)0.004 (2)
C30.069 (2)0.055 (2)0.062 (2)0.0013 (19)0.0133 (19)0.0036 (18)
O10.0614 (15)0.0406 (15)0.0878 (17)0.0035 (12)0.0195 (13)0.0062 (12)
C70.0426 (18)0.065 (3)0.055 (2)0.0044 (18)0.0002 (16)0.0022 (18)
N10.0509 (16)0.0406 (17)0.0628 (16)0.0010 (13)0.0091 (14)0.0006 (13)
C120.073 (3)0.066 (3)0.083 (3)0.001 (2)0.019 (2)0.004 (2)
C110.083 (3)0.076 (3)0.089 (3)0.011 (2)0.012 (2)0.020 (2)
C100.059 (2)0.109 (4)0.061 (2)0.019 (3)0.0024 (19)0.009 (2)
C90.067 (3)0.109 (4)0.067 (3)0.004 (3)0.017 (2)0.005 (3)
O30.0683 (18)0.0448 (17)0.0929 (19)0.0012 (15)0.0231 (17)0.0016 (14)
S10.1001 (10)0.1929 (17)0.0779 (8)0.0324 (10)0.0135 (7)0.0432 (9)
C130.158 (5)0.237 (8)0.092 (4)0.087 (5)0.068 (4)0.047 (4)
Geometric parameters (Å, º) top
C5—O11.235 (4)C3—H3A0.9300
C5—N11.344 (4)C7—C121.380 (5)
C5—C41.454 (4)N1—H1B0.8600
N2—C61.280 (4)C12—C111.378 (5)
N2—N11.385 (3)C12—H12A0.9300
C4—C31.344 (4)C11—C101.381 (6)
C4—O21.364 (4)C11—H11A0.9300
O2—C21.360 (4)C10—C91.364 (6)
C6—C71.461 (4)C10—S11.754 (4)
C6—H6A0.9300C9—H9A0.9300
C1—C21.344 (5)O3—H3B0.87 (5)
C1—C31.406 (5)O3—H3C0.75 (8)
C1—H1A0.9300S1—C131.777 (6)
C2—H2B0.9300C13—H13A0.9600
C8—C71.384 (4)C13—H13B0.9600
C8—C91.394 (5)C13—H13C0.9600
C8—H8A0.9300
O1—C5—N1123.6 (3)C8—C7—C6119.4 (3)
O1—C5—C4120.5 (3)C5—N1—N2119.6 (3)
N1—C5—C4115.9 (3)C5—N1—H1B120.2
C6—N2—N1114.4 (3)N2—N1—H1B120.2
C3—C4—O2109.7 (3)C11—C12—C7120.6 (4)
C3—C4—C5131.2 (3)C11—C12—H12A119.7
O2—C4—C5119.0 (3)C7—C12—H12A119.7
C2—O2—C4106.9 (2)C12—C11—C10121.3 (4)
N2—C6—C7121.0 (3)C12—C11—H11A119.4
N2—C6—H6A119.5C10—C11—H11A119.4
C7—C6—H6A119.5C9—C10—C11118.4 (4)
C2—C1—C3107.1 (3)C9—C10—S1125.1 (4)
C2—C1—H1A126.4C11—C10—S1116.5 (4)
C3—C1—H1A126.4C10—C9—C8120.9 (4)
C1—C2—O2109.6 (3)C10—C9—H9A119.6
C1—C2—H2B125.2C8—C9—H9A119.6
O2—C2—H2B125.2H3B—O3—H3C96 (6)
C7—C8—C9120.6 (4)C10—S1—C13104.4 (3)
C7—C8—H8A119.7S1—C13—H13A109.5
C9—C8—H8A119.7S1—C13—H13B109.5
C4—C3—C1106.7 (3)H13A—C13—H13B109.5
C4—C3—H3A126.7S1—C13—H13C109.5
C1—C3—H3A126.7H13A—C13—H13C109.5
C12—C7—C8118.2 (3)H13B—C13—H13C109.5
C12—C7—C6122.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O20.862.372.713 (3)104
N1—H1B···O3i0.862.032.864 (4)162
O3—H3B···O1ii0.87 (5)2.03 (6)2.878 (4)165 (4)
O3—H3C···O10.76 (8)2.11 (8)2.800 (4)152 (8)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC13H14N2O3S
Mr278.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)4.7065 (9), 12.142 (2), 23.979 (5)
β (°) 91.96 (3)
V3)1369.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10766, 2536, 1095
Rint0.093
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.172, 0.81
No. of reflections2536
No. of parameters180
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.25

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O20.862.372.713 (3)104
N1—H1B···O3i0.862.032.864 (4)162
O3—H3B···O1ii0.87 (5)2.03 (6)2.878 (4)165 (4)
O3—H3C···O10.76 (8)2.11 (8)2.800 (4)152 (8)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y, z.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, Y.-F. & Jian, F.-F. (2010). Acta Cryst. E66, o2061.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds