organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-5-methyl­pyridinium 3-carb­­oxy-4-hy­dr­oxy­benzene­sulfonate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 19 July 2010; accepted 26 July 2010; online 31 July 2010)

The asymmetric unit of the title salt, C6H9N2+·C7H5O6S, contains two crystallographically independent 2-amino-5-methylpyridinium cations and two sulfosalicylate anions. In the crystal structure, the sulfonate group of each 3-carb­oxy-4-hy­droxy­benzene­sulfonate anion inter­acts with the corresponding 2-amino-5-methyl­pyridinium cation via a pair of N—H⋯O hydrogen bonds, forming an R22(8) ring motif. The ionic units are linked by N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds. Furthermore, the crystal structure is stabilized by ππ inter­actions between the benzene and pyridine rings [centroid–centroid distances = 3.5579 (8) and 3.8309 (8) Å]. There are also intra­molecular O—H⋯O hydrogen bonds in the anions, which generate S(6) ring motifs.

Related literature

For details of weak inter­actions, see: Moghimi et al. (2002[Moghimi, A., Ranibar, M., Aghabozorg, H., Jalali, F., Shamsipur, M., Yap, G. P. A. & Rahbarnoohi, H. (2002). J. Mol. Struct. 605, 133-149.]); Aghabozorg et al. (2005[Aghabozorg, H., Akbari Saei, A. & Ramezanipour, F. (2005). Acta Cryst. E61, o3242-o3244.]). For applications of sulfosalicylic acid, see: Smith et al. (2004[Smith, G., Wermuth, U. D. & White, J. M. (2004). Acta Cryst. C60, o575-o581.]); Raj et al. (2003[Raj, S. B., Sethuraman, V., Francis, S., Hemamalini, M., Muthiah, P. T., Bocelli, G., Cantoni, A., Rychlewska, U. & Warzajtis, B. (2003). CrystEngComm, 5, 70-76.]); Muthiah et al. (2003[Muthiah, P. T., Hemamalini, M., Bocelli, G. & Cantoni, A. (2003). Acta Cryst. E59, o2015-o2017.]); Wang & Wei (2007[Wang, Z.-L. & Wei, L.-H. (2007). Acta Cryst. E63, o1448-o1449.]). For related structures, see: Nahringbauer & Kvick (1977[Nahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902-2905.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N2+·C7H5O6S

  • Mr = 326.32

  • Triclinic, [P \overline 1]

  • a = 7.8635 (1) Å

  • b = 10.8827 (1) Å

  • c = 16.3907 (2) Å

  • α = 84.612 (1)°

  • β = 81.802 (1)°

  • γ = 86.290 (1)°

  • V = 1380.31 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 100 K

  • 0.27 × 0.16 × 0.15 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.931, Tmax = 0.960

  • 28351 measured reflections

  • 7325 independent reflections

  • 6209 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.092

  • S = 1.04

  • 7325 reflections

  • 439 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4A—H1OA⋯O6A 0.88 (2) 1.84 (2) 2.6135 (14) 147 (2)
O4A—H1OA⋯O1Bi 0.88 (2) 2.39 (2) 2.9581 (14) 123.2 (18)
O5A—H2OA⋯O2Bii 0.86 (2) 1.80 (2) 2.6609 (14) 172 (2)
O4B—H1OB⋯O5B 0.86 (3) 1.83 (2) 2.5918 (14) 147 (2)
O4B—H1OB⋯O2Aiii 0.86 (3) 2.45 (2) 3.0349 (14) 125.4 (18)
O6B—H2OB⋯O1A 0.86 (2) 1.81 (2) 2.6664 (14) 178 (2)
N1A—H1NA⋯O3Aiv 0.894 (19) 2.066 (19) 2.9057 (15) 156.0 (17)
N2A—H2NA⋯O2Aiv 0.878 (19) 2.167 (19) 3.0043 (16) 159.1 (17)
N2A—H2NA⋯O5Bv 0.878 (19) 2.417 (19) 2.8235 (16) 108.7 (13)
N2A—H3NA⋯O1Av 0.88 (2) 2.17 (2) 3.0472 (16) 175.6 (15)
N1B—H1NB⋯O3Bii 0.87 (2) 2.02 (2) 2.8547 (16) 161 (2)
N2B—H2NB⋯O1Bii 0.90 (2) 2.04 (2) 2.9188 (17) 166 (2)
N2B—H2NB⋯O6Avi 0.90 (2) 2.45 (2) 2.8254 (16) 105.9 (17)
N2B—H3NB⋯O2Bi 0.87 (2) 2.26 (2) 3.1270 (17) 177.1 (18)
C7A—H7AA⋯O4Biii 0.93 2.58 3.4257 (16) 152
C7B—H7BA⋯O4Ai 0.93 2.48 3.3116 (16) 148
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y, z+1; (iii) -x+2, -y, -z+1; (iv) x, y+1, z; (v) -x+2, -y+1, -z+1; (vi) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Weak interactions, such as hydrogen bonding and ππ stacking, have attracted much interest as a result of their significance in chemistry and biology, especially in the field of crystal engineering (Moghimi et al., 2002; Aghabozorg et al., 2005). 5-Sulfosalicylic acid (3-carboxy-4-hydroxybenzenesulfonic acid), is a particularly strong organic acid which is capable of protonating N-containing heterocycles and other Lewis bases (Smith et al.; 2004, Raj et al., 2003; Muthiah et al., 2003; Wang & Wei, 2007). As part of our research programme aiming to gain further insight into hydrogen-bonding interactions involving 2-amino-5-methylpyridine and 3-carboxy-4-hydroxybenzenesulfonic acid, the present work has been undertaken.

The asymmetric unit of the title salt consists of two crystallographically independent 2-amino-5-methylpyridinium cations (A & B) and two sulfosalicylate anions (A & B) (Fig. 1). Each 2-amino-5-methylpyridinium cation is planar, with a maximum deviation of 0.003 (1) Å for C5A atom (molecule A) and 0.008 (1) Å for atom C2B (molecule B). In the cations, protonation at atoms N1A and N1B lead to slight increases in the C1A—N1A—C2A [123.30 (12)°] and C1B—N1B—C2B [123.07 (12)°] angles compared to those observed in an unprotonated structure (Nahringbauer & Kvick, 1977). The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal structure (Fig. 2), the sulfonate group of each 3-carboxy-4- hydroxybenzenesulfonate anion interacts with the corresponding 2-amino- 5-methylpyridinium cation via a pair of N—H···O hydrogen bonds, forming an R22(8) ring motif (Bernstein et al., 1995). The ionic units are linked by N—H···O and O—H···O (Table 1) hydrogen bonds. The 3-carboxy 4-hydroxybenzenesulfonate anions self-assemble via O—H···O and C—H···O interactions, leading to the formation of a sheet-like structure, as shown in Fig. 3. There are intramolecular hydrogen bonds between the -OH and -COOH groups in sulfosalicylate anions, which generate S(6) ring motifs. The crystal structure is further stabilized by ππ interactions between the cations and anions [centroid-to-centroid distance = 3.5579 (8) Å (1-x, 1-y, 1-z) and 3.8309 (8) Å (2-x, 1-y, 1-z)].

Related literature top

For details of weak interactions, see: Moghimi et al. (2002); Aghabozorg et al. (2005). For applications of sulfosalicylic acid, see: Smith et al. (2004); Raj et al. (2003); Muthiah et al. (2003); Wang & Wei (2007). For related structures, see: Nahringbauer & Kvick (1977). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A hot methanol solution (20 ml) of 2-amino-5-methylpyridine (27 mg, Aldrich) and sulfosalicylic acid (54 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement top

Atoms H1OA, H2OA, H1OB, H2OB, H1NA, H2NA, H3NA, H1NB, H2NB and H3NB were located in a difference Fourier map and were refined freely [N—H = 0.87 (2)–0.90 (2) Å and O—H = 0.86 (2)–0.88 (2) Å]. The remaining hydrogen atoms were positioned geometrically [C—H = 0.93 or 0.96 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C).

Structure description top

Weak interactions, such as hydrogen bonding and ππ stacking, have attracted much interest as a result of their significance in chemistry and biology, especially in the field of crystal engineering (Moghimi et al., 2002; Aghabozorg et al., 2005). 5-Sulfosalicylic acid (3-carboxy-4-hydroxybenzenesulfonic acid), is a particularly strong organic acid which is capable of protonating N-containing heterocycles and other Lewis bases (Smith et al.; 2004, Raj et al., 2003; Muthiah et al., 2003; Wang & Wei, 2007). As part of our research programme aiming to gain further insight into hydrogen-bonding interactions involving 2-amino-5-methylpyridine and 3-carboxy-4-hydroxybenzenesulfonic acid, the present work has been undertaken.

The asymmetric unit of the title salt consists of two crystallographically independent 2-amino-5-methylpyridinium cations (A & B) and two sulfosalicylate anions (A & B) (Fig. 1). Each 2-amino-5-methylpyridinium cation is planar, with a maximum deviation of 0.003 (1) Å for C5A atom (molecule A) and 0.008 (1) Å for atom C2B (molecule B). In the cations, protonation at atoms N1A and N1B lead to slight increases in the C1A—N1A—C2A [123.30 (12)°] and C1B—N1B—C2B [123.07 (12)°] angles compared to those observed in an unprotonated structure (Nahringbauer & Kvick, 1977). The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal structure (Fig. 2), the sulfonate group of each 3-carboxy-4- hydroxybenzenesulfonate anion interacts with the corresponding 2-amino- 5-methylpyridinium cation via a pair of N—H···O hydrogen bonds, forming an R22(8) ring motif (Bernstein et al., 1995). The ionic units are linked by N—H···O and O—H···O (Table 1) hydrogen bonds. The 3-carboxy 4-hydroxybenzenesulfonate anions self-assemble via O—H···O and C—H···O interactions, leading to the formation of a sheet-like structure, as shown in Fig. 3. There are intramolecular hydrogen bonds between the -OH and -COOH groups in sulfosalicylate anions, which generate S(6) ring motifs. The crystal structure is further stabilized by ππ interactions between the cations and anions [centroid-to-centroid distance = 3.5579 (8) Å (1-x, 1-y, 1-z) and 3.8309 (8) Å (2-x, 1-y, 1-z)].

For details of weak interactions, see: Moghimi et al. (2002); Aghabozorg et al. (2005). For applications of sulfosalicylic acid, see: Smith et al. (2004); Raj et al. (2003); Muthiah et al. (2003); Wang & Wei (2007). For related structures, see: Nahringbauer & Kvick (1977). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Hydrogen bonding patterns in compound (I).
[Figure 3] Fig. 3. Supramolecular sheet made up of 3-carboxy-4-hydroxybenzenesulfonate anions. .
2-Amino-5-methylpyridinium 3-carboxy-4-hydroxybenzenesulfonate top
Crystal data top
C6H9N2+·C7H5O6SZ = 4
Mr = 326.32F(000) = 680
Triclinic, P1Dx = 1.570 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8635 (1) ÅCell parameters from 9890 reflections
b = 10.8827 (1) Åθ = 2.4–30.2°
c = 16.3907 (2) ŵ = 0.27 mm1
α = 84.612 (1)°T = 100 K
β = 81.802 (1)°Block, colourless
γ = 86.290 (1)°0.27 × 0.16 × 0.15 mm
V = 1380.31 (3) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7325 independent reflections
Radiation source: fine-focus sealed tube6209 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 29.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.931, Tmax = 0.960k = 1414
28351 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0439P)2 + 0.7462P]
where P = (Fo2 + 2Fc2)/3
7325 reflections(Δ/σ)max = 0.001
439 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C6H9N2+·C7H5O6Sγ = 86.290 (1)°
Mr = 326.32V = 1380.31 (3) Å3
Triclinic, P1Z = 4
a = 7.8635 (1) ÅMo Kα radiation
b = 10.8827 (1) ŵ = 0.27 mm1
c = 16.3907 (2) ÅT = 100 K
α = 84.612 (1)°0.27 × 0.16 × 0.15 mm
β = 81.802 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7325 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
6209 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.960Rint = 0.027
28351 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.45 e Å3
7325 reflectionsΔρmin = 0.42 e Å3
439 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1A0.70541 (15)0.97702 (11)0.37753 (7)0.0143 (2)
N2A0.87358 (16)0.87759 (12)0.47109 (8)0.0187 (2)
C1A0.65985 (18)1.00244 (13)0.30014 (8)0.0157 (3)
H1AA0.56591.05670.29280.019*
C2A0.83866 (17)0.89880 (12)0.39405 (8)0.0148 (3)
C3A0.93427 (18)0.84175 (13)0.32623 (9)0.0184 (3)
H3AA1.02720.78710.33470.022*
C4A0.88974 (19)0.86717 (13)0.24861 (9)0.0196 (3)
H4AA0.95320.82920.20470.024*
C5A0.74866 (18)0.95025 (13)0.23365 (9)0.0177 (3)
C6A0.6994 (2)0.97934 (16)0.14844 (9)0.0254 (3)
H6AA0.60161.03710.15080.038*
H6AB0.67110.90480.12760.038*
H6AC0.79411.01480.11240.038*
N1B0.80370 (15)0.51730 (11)0.82703 (7)0.0164 (2)
N2B0.62446 (18)0.60847 (12)0.93174 (8)0.0203 (3)
C1B0.85961 (18)0.50127 (13)0.74565 (8)0.0171 (3)
H1BA0.95400.44740.73220.021*
C2B0.66881 (18)0.59477 (12)0.85203 (9)0.0163 (3)
C3B0.58139 (18)0.65888 (13)0.78921 (9)0.0185 (3)
H3BA0.48660.71200.80360.022*
C4B0.63620 (19)0.64269 (13)0.70806 (9)0.0195 (3)
H4BA0.57790.68520.66760.023*
C5B0.78034 (18)0.56232 (13)0.68388 (9)0.0179 (3)
C6B0.8423 (2)0.54427 (16)0.59433 (9)0.0256 (3)
H6BA0.95110.49830.58990.038*
H6BB0.85520.62340.56350.038*
H6BC0.76000.49960.57250.038*
S1A0.65009 (4)0.18717 (3)0.536127 (19)0.01282 (8)
O1A0.79222 (12)0.26353 (9)0.49587 (6)0.0174 (2)
O2A0.71260 (13)0.07391 (9)0.57916 (6)0.0191 (2)
O3A0.53262 (13)0.16622 (9)0.47817 (6)0.0181 (2)
O4A0.25189 (13)0.48004 (9)0.79013 (6)0.0177 (2)
O5A0.64439 (13)0.22501 (9)0.85364 (6)0.0190 (2)
O6A0.42614 (14)0.35554 (10)0.89784 (6)0.0220 (2)
C7A0.56636 (17)0.25282 (12)0.69411 (8)0.0127 (2)
H7AA0.64740.19120.70790.015*
C8A0.53508 (17)0.27527 (12)0.61292 (8)0.0128 (2)
C9A0.41623 (17)0.36980 (12)0.59126 (8)0.0146 (2)
H9AA0.39820.38610.53640.018*
C10A0.32577 (18)0.43881 (12)0.65118 (8)0.0153 (3)
H10A0.24780.50210.63640.018*
C11A0.35090 (17)0.41392 (12)0.73440 (8)0.0133 (2)
C12A0.47654 (17)0.32248 (12)0.75539 (8)0.0127 (2)
C13A0.51185 (17)0.30248 (12)0.84203 (8)0.0144 (2)
S1B0.85292 (4)0.31409 (3)0.00943 (2)0.01532 (8)
O1B0.79350 (15)0.43064 (10)0.04277 (6)0.0251 (2)
O2B0.70905 (13)0.23442 (10)0.00786 (6)0.0218 (2)
O3B0.95916 (14)0.32797 (10)0.07089 (6)0.0210 (2)
O4B1.26682 (13)0.03415 (9)0.24475 (6)0.0184 (2)
O5B1.06979 (13)0.13883 (9)0.36187 (6)0.0189 (2)
O6B0.84902 (13)0.26692 (9)0.33138 (6)0.0166 (2)
C7B0.93897 (17)0.25027 (12)0.16353 (8)0.0133 (2)
H7BA0.84890.30520.18160.016*
C8B0.98051 (17)0.23526 (12)0.08005 (8)0.0144 (2)
C9B1.11603 (19)0.15321 (14)0.05255 (9)0.0199 (3)
H9BA1.14310.14350.00370.024*
C10B1.21005 (19)0.08647 (14)0.10831 (9)0.0197 (3)
H10B1.30000.03190.08950.024*
C11B1.17031 (17)0.10077 (12)0.19298 (8)0.0146 (3)
C12B1.03250 (17)0.18283 (12)0.22094 (8)0.0129 (2)
C13B0.98732 (17)0.19430 (12)0.31039 (8)0.0135 (2)
H1OA0.281 (3)0.455 (2)0.8388 (14)0.043 (6)*
H2OA0.656 (3)0.225 (2)0.9052 (14)0.042 (6)*
H1OB1.228 (3)0.051 (2)0.2945 (16)0.053 (7)*
H2OB0.833 (3)0.264 (2)0.3844 (15)0.047 (6)*
H1NA0.640 (2)1.0158 (17)0.4175 (12)0.025 (5)*
H2NA0.814 (2)0.9185 (17)0.5103 (12)0.023 (5)*
H3NA0.970 (3)0.8352 (17)0.4780 (11)0.022 (5)*
H1NB0.858 (3)0.474 (2)0.8631 (13)0.036 (6)*
H2NB0.683 (3)0.565 (2)0.9689 (14)0.040 (6)*
H3NB0.531 (3)0.6531 (18)0.9467 (12)0.029 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0140 (5)0.0164 (5)0.0126 (5)0.0000 (4)0.0004 (4)0.0044 (4)
N2A0.0164 (6)0.0243 (6)0.0155 (6)0.0031 (5)0.0034 (5)0.0036 (5)
C1A0.0158 (6)0.0167 (6)0.0152 (6)0.0020 (5)0.0031 (5)0.0015 (5)
C2A0.0140 (6)0.0143 (6)0.0164 (6)0.0022 (5)0.0014 (5)0.0022 (5)
C3A0.0165 (6)0.0170 (6)0.0213 (7)0.0016 (5)0.0001 (5)0.0050 (5)
C4A0.0206 (7)0.0199 (7)0.0180 (7)0.0031 (5)0.0035 (5)0.0078 (5)
C5A0.0196 (7)0.0196 (6)0.0147 (6)0.0064 (5)0.0012 (5)0.0034 (5)
C6A0.0289 (8)0.0334 (8)0.0148 (7)0.0055 (7)0.0023 (6)0.0044 (6)
N1B0.0175 (6)0.0181 (6)0.0130 (5)0.0004 (4)0.0030 (4)0.0015 (4)
N2B0.0216 (6)0.0233 (6)0.0149 (6)0.0020 (5)0.0006 (5)0.0007 (5)
C1B0.0164 (6)0.0193 (6)0.0155 (6)0.0016 (5)0.0005 (5)0.0023 (5)
C2B0.0168 (6)0.0153 (6)0.0166 (6)0.0031 (5)0.0013 (5)0.0002 (5)
C3B0.0161 (6)0.0178 (6)0.0213 (7)0.0003 (5)0.0038 (5)0.0006 (5)
C4B0.0209 (7)0.0190 (7)0.0198 (7)0.0038 (5)0.0085 (6)0.0033 (5)
C5B0.0182 (7)0.0213 (7)0.0149 (6)0.0065 (5)0.0027 (5)0.0001 (5)
C6B0.0286 (8)0.0335 (8)0.0152 (7)0.0066 (7)0.0035 (6)0.0012 (6)
S1A0.01335 (15)0.01459 (15)0.01021 (14)0.00201 (11)0.00056 (11)0.00296 (11)
O1A0.0158 (5)0.0214 (5)0.0144 (5)0.0015 (4)0.0018 (4)0.0034 (4)
O2A0.0237 (5)0.0166 (5)0.0157 (5)0.0069 (4)0.0010 (4)0.0019 (4)
O3A0.0169 (5)0.0235 (5)0.0151 (5)0.0014 (4)0.0035 (4)0.0078 (4)
O4A0.0200 (5)0.0201 (5)0.0125 (5)0.0077 (4)0.0026 (4)0.0053 (4)
O5A0.0229 (5)0.0211 (5)0.0143 (5)0.0066 (4)0.0085 (4)0.0050 (4)
O6A0.0271 (6)0.0263 (5)0.0125 (5)0.0095 (4)0.0047 (4)0.0065 (4)
C7A0.0124 (6)0.0130 (6)0.0131 (6)0.0009 (5)0.0025 (5)0.0019 (4)
C8A0.0132 (6)0.0134 (6)0.0114 (6)0.0001 (5)0.0005 (5)0.0027 (4)
C9A0.0162 (6)0.0165 (6)0.0111 (6)0.0010 (5)0.0031 (5)0.0001 (5)
C10A0.0161 (6)0.0156 (6)0.0141 (6)0.0038 (5)0.0039 (5)0.0009 (5)
C11A0.0136 (6)0.0131 (6)0.0133 (6)0.0012 (5)0.0011 (5)0.0038 (5)
C12A0.0142 (6)0.0125 (6)0.0118 (6)0.0002 (5)0.0030 (5)0.0017 (4)
C13A0.0170 (6)0.0132 (6)0.0135 (6)0.0006 (5)0.0043 (5)0.0024 (5)
S1B0.01759 (16)0.01824 (16)0.01035 (15)0.00332 (12)0.00421 (12)0.00176 (11)
O1B0.0344 (6)0.0232 (5)0.0183 (5)0.0122 (5)0.0093 (5)0.0059 (4)
O2B0.0212 (5)0.0286 (6)0.0165 (5)0.0029 (4)0.0080 (4)0.0019 (4)
O3B0.0228 (5)0.0264 (5)0.0124 (5)0.0021 (4)0.0017 (4)0.0015 (4)
O4B0.0186 (5)0.0211 (5)0.0150 (5)0.0075 (4)0.0045 (4)0.0012 (4)
O5B0.0220 (5)0.0216 (5)0.0127 (4)0.0058 (4)0.0041 (4)0.0004 (4)
O6B0.0187 (5)0.0192 (5)0.0107 (4)0.0049 (4)0.0003 (4)0.0012 (4)
C7B0.0128 (6)0.0137 (6)0.0136 (6)0.0003 (5)0.0022 (5)0.0023 (5)
C8B0.0153 (6)0.0161 (6)0.0122 (6)0.0020 (5)0.0042 (5)0.0024 (5)
C9B0.0221 (7)0.0252 (7)0.0125 (6)0.0056 (6)0.0032 (5)0.0059 (5)
C10B0.0193 (7)0.0236 (7)0.0155 (6)0.0085 (6)0.0015 (5)0.0059 (5)
C11B0.0141 (6)0.0153 (6)0.0145 (6)0.0018 (5)0.0034 (5)0.0016 (5)
C12B0.0135 (6)0.0132 (6)0.0125 (6)0.0003 (5)0.0023 (5)0.0021 (5)
C13B0.0155 (6)0.0123 (6)0.0125 (6)0.0010 (5)0.0015 (5)0.0011 (4)
Geometric parameters (Å, º) top
N1A—C2A1.3483 (18)S1A—O1A1.4771 (10)
N1A—C1A1.3655 (17)S1A—C8A1.7639 (13)
N1A—H1NA0.89 (2)O4A—C11A1.3440 (16)
N2A—C2A1.3264 (18)O4A—H1OA0.88 (2)
N2A—H2NA0.88 (2)O5A—C13A1.3213 (16)
N2A—H3NA0.88 (2)O5A—H2OA0.86 (2)
C1A—C5A1.359 (2)O6A—C13A1.2238 (17)
C1A—H1AA0.9300C7A—C8A1.3840 (18)
C2A—C3A1.4203 (19)C7A—C12A1.3977 (18)
C3A—C4A1.366 (2)C7A—H7AA0.9300
C3A—H3AA0.9300C8A—C9A1.3998 (18)
C4A—C5A1.419 (2)C9A—C10A1.3801 (19)
C4A—H4AA0.9300C9A—H9AA0.9300
C5A—C6A1.502 (2)C10A—C11A1.4047 (18)
C6A—H6AA0.9600C10A—H10A0.9300
C6A—H6AB0.9600C11A—C12A1.4107 (18)
C6A—H6AC0.9600C12A—C13A1.4791 (18)
N1B—C2B1.3524 (18)S1B—O1B1.4513 (11)
N1B—C1B1.3673 (18)S1B—O3B1.4558 (10)
N1B—H1NB0.87 (2)S1B—O2B1.4737 (11)
N2B—C2B1.3231 (18)S1B—C8B1.7651 (13)
N2B—H2NB0.90 (2)O4B—C11B1.3485 (16)
N2B—H3NB0.87 (2)O4B—H1OB0.86 (3)
C1B—C5B1.3621 (19)O5B—C13B1.2275 (16)
C1B—H1BA0.9300O6B—C13B1.3262 (16)
C2B—C3B1.4229 (19)O6B—H2OB0.86 (2)
C3B—C4B1.363 (2)C7B—C8B1.3833 (18)
C3B—H3BA0.9300C7B—C12B1.4009 (18)
C4B—C5B1.420 (2)C7B—H7BA0.9300
C4B—H4BA0.9300C8B—C9B1.3969 (19)
C5B—C6B1.506 (2)C9B—C10B1.3813 (19)
C6B—H6BA0.9600C9B—H9BA0.9300
C6B—H6BB0.9600C10B—C11B1.3994 (19)
C6B—H6BC0.9600C10B—H10B0.9300
S1A—O2A1.4545 (10)C11B—C12B1.4113 (18)
S1A—O3A1.4580 (10)C12B—C13B1.4736 (18)
C2A—N1A—C1A123.30 (12)O3A—S1A—O1A111.39 (6)
C2A—N1A—H1NA121.4 (12)O2A—S1A—C8A106.31 (6)
C1A—N1A—H1NA115.3 (12)O3A—S1A—C8A107.62 (6)
C2A—N2A—H2NA119.6 (12)O1A—S1A—C8A105.57 (6)
C2A—N2A—H3NA116.7 (12)C11A—O4A—H1OA107.3 (15)
H2NA—N2A—H3NA122.3 (17)C13A—O5A—H2OA105.9 (15)
C5A—C1A—N1A121.50 (13)C8A—C7A—C12A120.22 (12)
C5A—C1A—H1AA119.2C8A—C7A—H7AA119.9
N1A—C1A—H1AA119.2C12A—C7A—H7AA119.9
N2A—C2A—N1A119.77 (13)C7A—C8A—C9A120.24 (12)
N2A—C2A—C3A123.29 (13)C7A—C8A—S1A119.75 (10)
N1A—C2A—C3A116.94 (12)C9A—C8A—S1A119.99 (10)
C4A—C3A—C2A120.04 (13)C10A—C9A—C8A120.17 (12)
C4A—C3A—H3AA120.0C10A—C9A—H9AA119.9
C2A—C3A—H3AA120.0C8A—C9A—H9AA119.9
C3A—C4A—C5A121.37 (13)C9A—C10A—C11A120.30 (12)
C3A—C4A—H4AA119.3C9A—C10A—H10A119.8
C5A—C4A—H4AA119.3C11A—C10A—H10A119.8
C1A—C5A—C4A116.84 (13)O4A—C11A—C10A117.21 (12)
C1A—C5A—C6A121.41 (14)O4A—C11A—C12A123.50 (12)
C4A—C5A—C6A121.74 (13)C10A—C11A—C12A119.29 (12)
C5A—C6A—H6AA109.5C7A—C12A—C11A119.64 (12)
C5A—C6A—H6AB109.5C7A—C12A—C13A121.04 (12)
H6AA—C6A—H6AB109.5C11A—C12A—C13A119.32 (12)
C5A—C6A—H6AC109.5O6A—C13A—O5A123.14 (12)
H6AA—C6A—H6AC109.5O6A—C13A—C12A122.18 (12)
H6AB—C6A—H6AC109.5O5A—C13A—C12A114.67 (12)
C2B—N1B—C1B123.07 (12)O1B—S1B—O3B113.74 (7)
C2B—N1B—H1NB120.3 (14)O1B—S1B—O2B111.56 (7)
C1B—N1B—H1NB116.6 (14)O3B—S1B—O2B111.44 (6)
C2B—N2B—H2NB119.5 (14)O1B—S1B—C8B106.35 (6)
C2B—N2B—H3NB118.2 (13)O3B—S1B—C8B107.66 (6)
H2NB—N2B—H3NB121.9 (19)O2B—S1B—C8B105.54 (6)
C5B—C1B—N1B121.57 (13)C11B—O4B—H1OB108.1 (17)
C5B—C1B—H1BA119.2C13B—O6B—H2OB106.8 (15)
N1B—C1B—H1BA119.2C8B—C7B—C12B120.05 (12)
N2B—C2B—N1B119.93 (13)C8B—C7B—H7BA120.0
N2B—C2B—C3B123.15 (13)C12B—C7B—H7BA120.0
N1B—C2B—C3B116.91 (13)C7B—C8B—C9B120.24 (12)
C4B—C3B—C2B120.18 (13)C7B—C8B—S1B119.28 (10)
C4B—C3B—H3BA119.9C9B—C8B—S1B120.38 (10)
C2B—C3B—H3BA119.9C10B—C9B—C8B120.42 (13)
C3B—C4B—C5B121.44 (13)C10B—C9B—H9BA119.8
C3B—C4B—H4BA119.3C8B—C9B—H9BA119.8
C5B—C4B—H4BA119.3C9B—C10B—C11B120.15 (13)
C1B—C5B—C4B116.81 (13)C9B—C10B—H10B119.9
C1B—C5B—C6B121.38 (14)C11B—C10B—H10B119.9
C4B—C5B—C6B121.80 (13)O4B—C11B—C10B117.80 (12)
C5B—C6B—H6BA109.5O4B—C11B—C12B122.69 (12)
C5B—C6B—H6BB109.5C10B—C11B—C12B119.50 (12)
H6BA—C6B—H6BB109.5C7B—C12B—C11B119.63 (12)
C5B—C6B—H6BC109.5C7B—C12B—C13B121.07 (12)
H6BA—C6B—H6BC109.5C11B—C12B—C13B119.29 (12)
H6BB—C6B—H6BC109.5O5B—C13B—O6B122.40 (12)
O2A—S1A—O3A113.38 (6)O5B—C13B—C12B122.43 (12)
O2A—S1A—O1A112.01 (6)O6B—C13B—C12B115.15 (11)
C2A—N1A—C1A—C5A0.6 (2)C8A—C7A—C12A—C11A1.5 (2)
C1A—N1A—C2A—N2A179.12 (13)C8A—C7A—C12A—C13A178.13 (12)
C1A—N1A—C2A—C3A0.21 (19)O4A—C11A—C12A—C7A176.05 (12)
N2A—C2A—C3A—C4A179.36 (13)C10A—C11A—C12A—C7A3.99 (19)
N1A—C2A—C3A—C4A0.0 (2)O4A—C11A—C12A—C13A4.4 (2)
C2A—C3A—C4A—C5A0.0 (2)C10A—C11A—C12A—C13A175.62 (12)
N1A—C1A—C5A—C4A0.6 (2)C7A—C12A—C13A—O6A174.32 (13)
N1A—C1A—C5A—C6A179.37 (13)C11A—C12A—C13A—O6A6.1 (2)
C3A—C4A—C5A—C1A0.4 (2)C7A—C12A—C13A—O5A6.87 (19)
C3A—C4A—C5A—C6A179.63 (14)C11A—C12A—C13A—O5A172.73 (12)
C2B—N1B—C1B—C5B0.8 (2)C12B—C7B—C8B—C9B0.2 (2)
C1B—N1B—C2B—N2B178.11 (13)C12B—C7B—C8B—S1B176.22 (10)
C1B—N1B—C2B—C3B1.5 (2)O1B—S1B—C8B—C7B33.14 (13)
N2B—C2B—C3B—C4B178.47 (14)O3B—S1B—C8B—C7B155.40 (11)
N1B—C2B—C3B—C4B1.2 (2)O2B—S1B—C8B—C7B85.48 (12)
C2B—C3B—C4B—C5B0.0 (2)O1B—S1B—C8B—C9B150.46 (12)
N1B—C1B—C5B—C4B0.4 (2)O3B—S1B—C8B—C9B28.20 (14)
N1B—C1B—C5B—C6B179.94 (13)O2B—S1B—C8B—C9B90.92 (13)
C3B—C4B—C5B—C1B0.8 (2)C7B—C8B—C9B—C10B0.1 (2)
C3B—C4B—C5B—C6B179.74 (14)S1B—C8B—C9B—C10B176.49 (12)
C12A—C7A—C8A—C9A1.5 (2)C8B—C9B—C10B—C11B0.1 (2)
C12A—C7A—C8A—S1A179.70 (10)C9B—C10B—C11B—O4B179.52 (13)
O2A—S1A—C8A—C7A21.40 (13)C9B—C10B—C11B—C12B0.6 (2)
O3A—S1A—C8A—C7A143.18 (11)C8B—C7B—C12B—C11B0.7 (2)
O1A—S1A—C8A—C7A97.74 (11)C8B—C7B—C12B—C13B178.08 (12)
O2A—S1A—C8A—C9A160.40 (11)O4B—C11B—C12B—C7B179.22 (12)
O3A—S1A—C8A—C9A38.61 (12)C10B—C11B—C12B—C7B1.0 (2)
O1A—S1A—C8A—C9A80.46 (12)O4B—C11B—C12B—C13B1.9 (2)
C7A—C8A—C9A—C10A1.9 (2)C10B—C11B—C12B—C13B177.88 (13)
S1A—C8A—C9A—C10A179.89 (11)C7B—C12B—C13B—O5B178.04 (13)
C8A—C9A—C10A—C11A0.7 (2)C11B—C12B—C13B—O5B3.1 (2)
C9A—C10A—C11A—O4A176.43 (12)C7B—C12B—C13B—O6B3.28 (18)
C9A—C10A—C11A—C12A3.6 (2)C11B—C12B—C13B—O6B175.54 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4A—H1OA···O6A0.88 (2)1.84 (2)2.6135 (14)147 (2)
O4A—H1OA···O1Bi0.88 (2)2.39 (2)2.9581 (14)123.2 (18)
O5A—H2OA···O2Bii0.86 (2)1.80 (2)2.6609 (14)172 (2)
O4B—H1OB···O5B0.86 (3)1.83 (2)2.5918 (14)147 (2)
O4B—H1OB···O2Aiii0.86 (3)2.45 (2)3.0349 (14)125.4 (18)
O6B—H2OB···O1A0.86 (2)1.81 (2)2.6664 (14)178 (2)
N1A—H1NA···O3Aiv0.894 (19)2.066 (19)2.9057 (15)156.0 (17)
N2A—H2NA···O2Aiv0.878 (19)2.167 (19)3.0043 (16)159.1 (17)
N2A—H2NA···O5Bv0.878 (19)2.417 (19)2.8235 (16)108.7 (13)
N2A—H3NA···O1Av0.88 (2)2.17 (2)3.0472 (16)175.6 (15)
N1B—H1NB···O3Bii0.87 (2)2.02 (2)2.8547 (16)161 (2)
N2B—H2NB···O1Bii0.90 (2)2.04 (2)2.9188 (17)166 (2)
N2B—H2NB···O6Avi0.90 (2)2.45 (2)2.8254 (16)105.9 (17)
N2B—H3NB···O2Bi0.87 (2)2.26 (2)3.1270 (17)177.1 (18)
C7A—H7AA···O4Biii0.932.583.4257 (16)152
C7B—H7BA···O4Ai0.932.483.3116 (16)148
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x+2, y, z+1; (iv) x, y+1, z; (v) x+2, y+1, z+1; (vi) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC6H9N2+·C7H5O6S
Mr326.32
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.8635 (1), 10.8827 (1), 16.3907 (2)
α, β, γ (°)84.612 (1), 81.802 (1), 86.290 (1)
V3)1380.31 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.27 × 0.16 × 0.15
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.931, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
28351, 7325, 6209
Rint0.027
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.092, 1.04
No. of reflections7325
No. of parameters439
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.42

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4A—H1OA···O6A0.88 (2)1.84 (2)2.6135 (14)147 (2)
O4A—H1OA···O1Bi0.88 (2)2.39 (2)2.9581 (14)123.2 (18)
O5A—H2OA···O2Bii0.86 (2)1.80 (2)2.6609 (14)172 (2)
O4B—H1OB···O5B0.86 (3)1.83 (2)2.5918 (14)147 (2)
O4B—H1OB···O2Aiii0.86 (3)2.45 (2)3.0349 (14)125.4 (18)
O6B—H2OB···O1A0.86 (2)1.81 (2)2.6664 (14)178 (2)
N1A—H1NA···O3Aiv0.894 (19)2.066 (19)2.9057 (15)156.0 (17)
N2A—H2NA···O2Aiv0.878 (19)2.167 (19)3.0043 (16)159.1 (17)
N2A—H2NA···O5Bv0.878 (19)2.417 (19)2.8235 (16)108.7 (13)
N2A—H3NA···O1Av0.88 (2)2.17 (2)3.0472 (16)175.6 (15)
N1B—H1NB···O3Bii0.87 (2)2.02 (2)2.8547 (16)161 (2)
N2B—H2NB···O1Bii0.90 (2)2.04 (2)2.9188 (17)166 (2)
N2B—H2NB···O6Avi0.90 (2)2.45 (2)2.8254 (16)105.9 (17)
N2B—H3NB···O2Bi0.87 (2)2.26 (2)3.1270 (17)177.1 (18)
C7A—H7AA···O4Biii0.932.583.4257 (16)152
C7B—H7BA···O4Ai0.932.483.3116 (16)148
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x+2, y, z+1; (iv) x, y+1, z; (v) x+2, y+1, z+1; (vi) x+1, y+1, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAghabozorg, H., Akbari Saei, A. & Ramezanipour, F. (2005). Acta Cryst. E61, o3242–o3244.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMoghimi, A., Ranibar, M., Aghabozorg, H., Jalali, F., Shamsipur, M., Yap, G. P. A. & Rahbarnoohi, H. (2002). J. Mol. Struct. 605, 133–149.  Web of Science CSD CrossRef CAS Google Scholar
First citationMuthiah, P. T., Hemamalini, M., Bocelli, G. & Cantoni, A. (2003). Acta Cryst. E59, o2015–o2017.  CSD CrossRef IUCr Journals Google Scholar
First citationNahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902–2905.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationRaj, S. B., Sethuraman, V., Francis, S., Hemamalini, M., Muthiah, P. T., Bocelli, G., Cantoni, A., Rychlewska, U. & Warzajtis, B. (2003). CrystEngComm, 5, 70–76.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2004). Acta Cryst. C60, o575–o581.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z.-L. & Wei, L.-H. (2007). Acta Cryst. E63, o1448–o1449.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds