metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Quinoline-2-carboxyl­ato-κO)(quinoline-2-carb­­oxy­lic acid-κO)bis­­(quinoline-2-carb­­oxy­lic acid-κ2N,O)potassium

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 10 July 2010; accepted 11 July 2010; online 17 July 2010)

The K atom in the title complex, [K(C10H6NO2)(C10H7NO2)3], lies on a twofold rotation axis that relates one N,O-chelating quinoline-2-carb­oxy­lic acid to the other; their N and O atoms are cis to each other in the distorted octa­hedral coordination geometry. The K atom is also coordinated by another monodentate quinoline-2-carb­oxy­lic acid; the acid is disordered with respect to a monodentate quinoline-2-carboxyl­ate anion; the acid and anion are linked by an O—H⋯O hydrogen bond. An O—H⋯N hydrogen bond links adjacent mol­ecules into a linear chain structure along the a axis.

Related literature

For the crystal structure of quinoline-2-carb­oxy­lic acid, see: Dobrzyńska & Jerzykiewicz (2004[Dobrzyńska, D. & Jerzykiewicz, L. B. (2004). J. Chem. Crystallogr. 34, 51-55.]).

[Scheme 1]

Experimental

Crystal data
  • [K(C10H6NO2)(C10H7NO2)3]

  • Mr = 730.76

  • Orthorhombic, I b c a

  • a = 17.8679 (10) Å

  • b = 18.3617 (10) Å

  • c = 20.5162 (11) Å

  • V = 6731.1 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 100 K

  • 0.24 × 0.08 × 0.04 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.949, Tmax = 0.991

  • 40797 measured reflections

  • 3888 independent reflections

  • 3025 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.102

  • S = 1.01

  • 3888 reflections

  • 248 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N2i 0.85 (1) 1.84 (1) 2.671 (2) 167 (2)
O3—H3⋯O3ii 0.84 (1) 1.62 (1) 2.452 (2) 175 (6)
Symmetry codes: (i) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) [x, -y+1, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Quinoline-2-carboxylic acid exists as a 1:1 co-crystal of neutral quinoline-2-carboxylic acid and zwitterionic quinolinium-2-carboxylate, the two components being held together by O–H···O [2.566 (2) Å] and N–H···O [2.685 (2), 2.739 (2) Å] hydrogen bonds (Dobrzyńska & Jerzykiewicz, 2004). The potassium derivative formally exists as a co-crystal with three molecules of quinoline-2-carboxylic acid (Scheme I); however, the crystal structure is better interpreted in terms of the potassium atom being bis-N,O-chelated by two neutral acid molecules, and being coordinated by a third acid along with a carboxylate anion (Fig. 1); O–H···O and O–H···N hydrogen bonds link adjacent molecules into a linear chain structure.

The third acid and the carboxylate anion are disordered with respect to each other.

Related literature top

For the crystal structure of quinoline-2-carboxylic acid, see: Dobrzyńska & Jerzykiewicz (2004).

Experimental top

Quinoline-2-carboxylic acid (1 mmol, 0.17 g) and methyl-8-hydroxy quinoline (1 mmol, 0.16 g) were dissolved completely in warm acetonitrile; the solution was filtered into a clean beaker for the growth of colorless crystals.

As no potasium salt was used in the attempted co-crystallization of the organic compounds, the potassium in the crystal structure is better attributed to the presence of potassium quinoline-2-carboxylate present in the commercially procured carboxylic acid reagent.

Refinement top

Hydrogen atoms were placed in calculated positions (C–H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).

Of the two carboxylic acid hydrogen atoms, that connected to O2 lies on a general position and has full site-occupancy. That connected to O3 is near the Wyckoff 8c site so that the atom should have only half site-occupancy. The refinement of the two hydrogen atoms with a distance restraint of O–H 0.84±0.01 Å gave satisfactory temperature factors.

Structure description top

Quinoline-2-carboxylic acid exists as a 1:1 co-crystal of neutral quinoline-2-carboxylic acid and zwitterionic quinolinium-2-carboxylate, the two components being held together by O–H···O [2.566 (2) Å] and N–H···O [2.685 (2), 2.739 (2) Å] hydrogen bonds (Dobrzyńska & Jerzykiewicz, 2004). The potassium derivative formally exists as a co-crystal with three molecules of quinoline-2-carboxylic acid (Scheme I); however, the crystal structure is better interpreted in terms of the potassium atom being bis-N,O-chelated by two neutral acid molecules, and being coordinated by a third acid along with a carboxylate anion (Fig. 1); O–H···O and O–H···N hydrogen bonds link adjacent molecules into a linear chain structure.

The third acid and the carboxylate anion are disordered with respect to each other.

For the crystal structure of quinoline-2-carboxylic acid, see: Dobrzyńska & Jerzykiewicz (2004).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of a portion of the polymeric chain structure of K(C10H6NO2)(C10H7NO2)3 at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. Symmetry code: i = x, 1 – y, 1/2 – z.
(Quinoline-2-carboxylato-κO)(quinoline-2-carboxylic acid-κO)bis(quinoline-2-carboxylic acid-κ2N,O)potassium top
Crystal data top
[K(C10H6NO2)(C10H7NO2)3]F(000) = 3024
Mr = 730.76Dx = 1.442 Mg m3
Orthorhombic, IbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -I 2b 2cCell parameters from 8761 reflections
a = 17.8679 (10) Åθ = 2.2–27.4°
b = 18.3617 (10) ŵ = 0.22 mm1
c = 20.5162 (11) ÅT = 100 K
V = 6731.1 (6) Å3Prism, colorless
Z = 80.24 × 0.08 × 0.04 mm
Data collection top
Bruker SMART APEX
diffractometer
3888 independent reflections
Radiation source: fine-focus sealed tube3025 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2323
Tmin = 0.949, Tmax = 0.991k = 2323
40797 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0526P)2 + 5.6795P]
where P = (Fo2 + 2Fc2)/3
3888 reflections(Δ/σ)max = 0.001
248 parametersΔρmax = 0.32 e Å3
2 restraintsΔρmin = 0.54 e Å3
Crystal data top
[K(C10H6NO2)(C10H7NO2)3]V = 6731.1 (6) Å3
Mr = 730.76Z = 8
Orthorhombic, IbcaMo Kα radiation
a = 17.8679 (10) ŵ = 0.22 mm1
b = 18.3617 (10) ÅT = 100 K
c = 20.5162 (11) Å0.24 × 0.08 × 0.04 mm
Data collection top
Bruker SMART APEX
diffractometer
3888 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3025 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.991Rint = 0.075
40797 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0352 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.32 e Å3
3888 reflectionsΔρmin = 0.54 e Å3
248 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
K10.21891 (3)0.50000.25000.02083 (13)
O10.11657 (7)0.56758 (6)0.17738 (6)0.0256 (3)
O20.03124 (6)0.65608 (6)0.16390 (6)0.0232 (3)
O30.43403 (7)0.52894 (7)0.30384 (5)0.0257 (3)
O40.32794 (6)0.47403 (6)0.33533 (5)0.0245 (3)
N10.17250 (7)0.64593 (7)0.28227 (6)0.0183 (3)
N20.45505 (7)0.58087 (7)0.42560 (6)0.0171 (3)
C10.09152 (8)0.62730 (9)0.19030 (7)0.0190 (3)
C20.12794 (8)0.67785 (9)0.23938 (7)0.0175 (3)
C30.11455 (9)0.75361 (9)0.23657 (7)0.0193 (3)
H3A0.08040.77330.20570.023*
C40.15184 (8)0.79806 (9)0.27927 (7)0.0195 (3)
H40.14600.84940.27690.023*
C50.19914 (8)0.76670 (8)0.32701 (7)0.0179 (3)
C60.23871 (9)0.80868 (9)0.37409 (8)0.0210 (3)
H60.23480.86030.37380.025*
C70.28244 (9)0.77496 (9)0.41982 (8)0.0236 (4)
H70.30860.80340.45110.028*
C80.28908 (9)0.69785 (9)0.42095 (8)0.0236 (4)
H80.31920.67510.45320.028*
C90.25237 (9)0.65638 (9)0.37590 (7)0.0216 (3)
H90.25720.60490.37690.026*
C100.20707 (8)0.68960 (8)0.32758 (7)0.0173 (3)
C110.38543 (9)0.50923 (8)0.34589 (7)0.0184 (3)
C120.40191 (8)0.53220 (8)0.41573 (7)0.0164 (3)
C130.36025 (9)0.49993 (9)0.46699 (8)0.0203 (3)
H130.32140.46620.45770.024*
C140.37688 (9)0.51806 (9)0.53016 (8)0.0218 (3)
H140.35050.49600.56520.026*
C150.43344 (9)0.56978 (9)0.54274 (7)0.0192 (3)
C160.45424 (10)0.59128 (9)0.60692 (8)0.0238 (4)
H160.43010.57000.64350.029*
C170.50871 (10)0.64237 (10)0.61602 (8)0.0272 (4)
H170.52200.65660.65900.033*
C180.54557 (10)0.67443 (10)0.56217 (8)0.0264 (4)
H180.58330.71000.56930.032*
C190.52729 (9)0.65450 (9)0.49966 (8)0.0225 (3)
H190.55230.67630.46380.027*
C200.47121 (8)0.60139 (8)0.48864 (7)0.0175 (3)
H20.0082 (13)0.6266 (11)0.1393 (10)0.057 (8)*
H30.433 (2)0.512 (3)0.2662 (12)0.051 (14)*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0202 (2)0.0198 (2)0.0225 (2)0.0000.0000.00261 (19)
O10.0249 (6)0.0250 (6)0.0270 (6)0.0012 (5)0.0050 (5)0.0085 (5)
O20.0218 (6)0.0250 (6)0.0227 (6)0.0007 (5)0.0062 (5)0.0032 (5)
O30.0272 (6)0.0359 (7)0.0140 (6)0.0066 (5)0.0024 (5)0.0049 (5)
O40.0262 (6)0.0257 (6)0.0217 (6)0.0064 (5)0.0023 (5)0.0033 (5)
N10.0183 (6)0.0201 (7)0.0163 (6)0.0014 (5)0.0018 (5)0.0021 (5)
N20.0176 (6)0.0182 (7)0.0154 (6)0.0019 (5)0.0001 (5)0.0012 (5)
C10.0183 (7)0.0215 (8)0.0171 (7)0.0022 (6)0.0020 (6)0.0008 (6)
C20.0150 (7)0.0214 (8)0.0161 (7)0.0016 (6)0.0026 (6)0.0026 (6)
C30.0175 (7)0.0225 (8)0.0180 (7)0.0013 (6)0.0008 (6)0.0002 (6)
C40.0180 (7)0.0195 (8)0.0210 (7)0.0012 (6)0.0044 (6)0.0027 (6)
C50.0148 (7)0.0207 (8)0.0182 (7)0.0000 (6)0.0038 (6)0.0034 (6)
C60.0205 (8)0.0215 (8)0.0211 (7)0.0017 (6)0.0036 (6)0.0051 (6)
C70.0212 (8)0.0304 (9)0.0191 (7)0.0024 (7)0.0008 (6)0.0070 (7)
C80.0224 (8)0.0305 (9)0.0178 (7)0.0036 (7)0.0023 (6)0.0014 (6)
C90.0224 (8)0.0225 (8)0.0198 (7)0.0031 (6)0.0012 (6)0.0018 (6)
C100.0168 (7)0.0198 (8)0.0154 (7)0.0005 (6)0.0037 (5)0.0029 (6)
C110.0214 (8)0.0169 (8)0.0169 (7)0.0021 (6)0.0018 (6)0.0009 (6)
C120.0160 (7)0.0171 (7)0.0162 (7)0.0031 (6)0.0001 (5)0.0011 (6)
C130.0213 (8)0.0196 (8)0.0201 (7)0.0021 (6)0.0004 (6)0.0008 (6)
C140.0245 (8)0.0241 (9)0.0168 (7)0.0008 (7)0.0020 (6)0.0022 (6)
C150.0214 (8)0.0198 (8)0.0164 (7)0.0056 (6)0.0011 (6)0.0020 (6)
C160.0285 (9)0.0275 (9)0.0155 (7)0.0066 (7)0.0007 (6)0.0024 (6)
C170.0301 (9)0.0299 (9)0.0216 (8)0.0075 (7)0.0070 (7)0.0094 (7)
C180.0231 (8)0.0255 (9)0.0306 (9)0.0022 (7)0.0066 (7)0.0077 (7)
C190.0210 (8)0.0226 (8)0.0239 (8)0.0006 (7)0.0009 (6)0.0027 (6)
C200.0176 (7)0.0180 (8)0.0170 (7)0.0050 (6)0.0010 (6)0.0018 (6)
Geometric parameters (Å, º) top
K1—O42.6622 (12)C6—C71.369 (2)
K1—O4i2.6622 (12)C6—H60.9500
K1—O1i2.6653 (12)C7—C81.421 (2)
K1—O12.6653 (12)C7—H70.9500
K1—N1i2.8820 (13)C8—C91.365 (2)
K1—N12.8820 (13)C8—H80.9500
O1—C11.2137 (19)C9—C101.418 (2)
O2—C11.3163 (19)C9—H90.9500
O2—H20.846 (10)C11—C121.522 (2)
O3—C111.2765 (19)C12—C131.418 (2)
O3—H30.836 (10)C13—C141.371 (2)
O4—C111.2327 (19)C13—H130.9500
N1—C21.323 (2)C14—C151.411 (2)
N1—C101.3742 (19)C14—H140.9500
N2—C121.320 (2)C15—C201.423 (2)
N2—C201.3777 (19)C15—C161.424 (2)
C1—C21.516 (2)C16—C171.365 (2)
C2—C31.413 (2)C16—H160.9500
C3—C41.370 (2)C17—C181.414 (3)
C3—H3A0.9500C17—H170.9500
C4—C51.416 (2)C18—C191.373 (2)
C4—H40.9500C18—H180.9500
C5—C61.424 (2)C19—C201.416 (2)
C5—C101.423 (2)C19—H190.9500
O4—K1—O4i85.93 (5)C6—C7—H7119.7
O4—K1—O1i92.93 (4)C8—C7—H7119.7
O4i—K1—O1i162.38 (3)C9—C8—C7120.31 (15)
O4—K1—O1162.38 (4)C9—C8—H8119.8
O4i—K1—O192.93 (4)C7—C8—H8119.8
O1i—K1—O193.36 (5)C8—C9—C10120.50 (15)
O4—K1—N1i101.25 (4)C8—C9—H9119.7
O4i—K1—N1i103.07 (4)C10—C9—H9119.7
O1i—K1—N1i59.88 (4)N1—C10—C9118.60 (14)
O1—K1—N1i96.14 (4)N1—C10—C5122.02 (14)
O4—K1—N1103.07 (4)C9—C10—C5119.38 (14)
O4i—K1—N1101.25 (4)O4—C11—O3126.64 (14)
O1i—K1—N196.14 (4)O4—C11—C12118.16 (14)
O1—K1—N159.88 (4)O3—C11—C12115.20 (13)
N1i—K1—N1146.55 (5)N2—C12—C13123.15 (14)
C1—O1—K1123.47 (10)N2—C12—C11118.12 (13)
C1—O2—H2112.7 (17)C13—C12—C11118.73 (13)
C11—O3—H3120 (3)C14—C13—C12119.07 (15)
C11—O4—K1129.15 (10)C14—C13—H13120.5
C2—N1—C10117.50 (13)C12—C13—H13120.5
C2—N1—K1115.60 (10)C13—C14—C15119.46 (15)
C10—N1—K1124.64 (10)C13—C14—H14120.3
C12—N2—C20118.69 (13)C15—C14—H14120.3
O1—C1—O2125.07 (14)C14—C15—C20118.15 (14)
O1—C1—C2122.68 (14)C14—C15—C16122.87 (15)
O2—C1—C2112.25 (13)C20—C15—C16118.97 (15)
N1—C2—C3124.42 (14)C17—C16—C15120.21 (16)
N1—C2—C1115.38 (14)C17—C16—H16119.9
C3—C2—C1120.19 (13)C15—C16—H16119.9
C4—C3—C2118.55 (14)C16—C17—C18120.75 (15)
C4—C3—H3A120.7C16—C17—H17119.6
C2—C3—H3A120.7C18—C17—H17119.6
C3—C4—C5119.35 (15)C19—C18—C17120.52 (16)
C3—C4—H4120.3C19—C18—H18119.7
C5—C4—H4120.3C17—C18—H18119.7
C4—C5—C6123.06 (15)C18—C19—C20120.06 (16)
C4—C5—C10118.02 (14)C18—C19—H19120.0
C6—C5—C10118.92 (14)C20—C19—H19120.0
C7—C6—C5120.24 (15)N2—C20—C19119.10 (14)
C7—C6—H6119.9N2—C20—C15121.42 (14)
C5—C6—H6119.9C19—C20—C15119.47 (14)
C6—C7—C8120.63 (15)
O4—K1—O1—C119.8 (2)C6—C7—C8—C90.6 (2)
O4i—K1—O1—C1105.57 (12)C7—C8—C9—C100.2 (2)
O1i—K1—O1—C190.90 (12)C2—N1—C10—C9177.15 (13)
N1i—K1—O1—C1150.95 (12)K1—N1—C10—C920.70 (18)
N1—K1—O1—C14.26 (11)C2—N1—C10—C53.3 (2)
O4i—K1—O4—C1145.39 (12)K1—N1—C10—C5158.83 (10)
O1i—K1—O4—C11152.23 (13)C8—C9—C10—N1178.53 (14)
O1—K1—O4—C1141.5 (2)C8—C9—C10—C51.0 (2)
N1i—K1—O4—C11147.92 (13)C4—C5—C10—N12.2 (2)
N1—K1—O4—C1155.23 (13)C6—C5—C10—N1177.82 (13)
O4—K1—N1—C2167.93 (10)C4—C5—C10—C9178.25 (14)
O4i—K1—N1—C279.54 (11)C6—C5—C10—C91.7 (2)
O1i—K1—N1—C297.62 (10)K1—O4—C11—O353.0 (2)
O1—K1—N1—C27.30 (10)K1—O4—C11—C12127.14 (12)
N1i—K1—N1—C256.46 (10)C20—N2—C12—C130.2 (2)
O4—K1—N1—C105.47 (12)C20—N2—C12—C11179.12 (13)
O4i—K1—N1—C1082.91 (11)O4—C11—C12—N2167.51 (14)
O1i—K1—N1—C1099.93 (11)O3—C11—C12—N212.7 (2)
O1—K1—N1—C10169.75 (13)O4—C11—C12—C1313.2 (2)
N1i—K1—N1—C10141.09 (12)O3—C11—C12—C13166.67 (14)
K1—O1—C1—O2165.66 (11)N2—C12—C13—C142.0 (2)
K1—O1—C1—C214.9 (2)C11—C12—C13—C14177.30 (14)
C10—N1—C2—C31.0 (2)C12—C13—C14—C151.8 (2)
K1—N1—C2—C3162.79 (11)C13—C14—C15—C200.1 (2)
C10—N1—C2—C1179.71 (12)C13—C14—C15—C16179.71 (15)
K1—N1—C2—C115.95 (16)C14—C15—C16—C17179.08 (15)
O1—C1—C2—N121.4 (2)C20—C15—C16—C171.1 (2)
O2—C1—C2—N1159.12 (13)C15—C16—C17—C180.3 (2)
O1—C1—C2—C3157.39 (15)C16—C17—C18—C190.2 (3)
O2—C1—C2—C322.09 (19)C17—C18—C19—C200.1 (2)
N1—C2—C3—C42.5 (2)C12—N2—C20—C19178.94 (14)
C1—C2—C3—C4176.21 (14)C12—N2—C20—C151.8 (2)
C2—C3—C4—C53.5 (2)C18—C19—C20—N2178.40 (14)
C3—C4—C5—C6178.65 (14)C18—C19—C20—C150.9 (2)
C3—C4—C5—C101.3 (2)C14—C15—C20—N21.9 (2)
C4—C5—C6—C7178.70 (15)C16—C15—C20—N2177.87 (14)
C10—C5—C6—C71.3 (2)C14—C15—C20—C19178.81 (14)
C5—C6—C7—C80.1 (2)C16—C15—C20—C191.4 (2)
Symmetry code: (i) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N2ii0.85 (1)1.84 (1)2.671 (2)167 (2)
O3—H3···O3i0.84 (1)1.62 (1)2.452 (2)175 (6)
Symmetry codes: (i) x, y+1, z+1/2; (ii) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[K(C10H6NO2)(C10H7NO2)3]
Mr730.76
Crystal system, space groupOrthorhombic, Ibca
Temperature (K)100
a, b, c (Å)17.8679 (10), 18.3617 (10), 20.5162 (11)
V3)6731.1 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.24 × 0.08 × 0.04
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.949, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
40797, 3888, 3025
Rint0.075
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.102, 1.01
No. of reflections3888
No. of parameters248
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.54

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N2i0.85 (1)1.84 (1)2.671 (2)167 (2)
O3—H3···O3ii0.84 (1)1.62 (1)2.452 (2)175 (6)
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x, y+1, z+1/2.
 

Acknowledgements

I thank the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDobrzyńska, D. & Jerzykiewicz, L. B. (2004). J. Chem. Crystallogr. 34, 51–55.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds