organic compounds Acta Crystallographica Section E **Structure Reports Online** ISSN 1600-5368 # Ethyl 2-(2,3,4,5,6-Pentabromophenyl)-acetate Anne M. Sauer,^a Art G. Mack,^a Hassan Y. Elnagar^a and Frank R. Fronczek^b* ^aAlbemarle Process Development Center, Albemarle Corporation, PO Box 341, Baton Rouge, LA 70821, USA, and ^bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA Correspondence e-mail: ffroncz@lsu.edu Received 3 June 2010; accepted 29 June 2010 Key indicators: single-crystal X-ray study; T = 90 K; mean $\sigma(C-C) = 0.006 \text{ Å}$; R factor = 0.025; wR factor = 0.053; data-to-parameter ratio = 24.6. The title compound PBPEA, $C_{10}H_7Br_5O_2$, has its ethyl acetate portion nearly orthogonal to the benzene ring, with a C–C–C–C torsion angle of 88.3 (5)°. The packing involves an intermolecular contact with a Br···Br distance of 3.491 (1) Å, having C–Br···Br angles of 173.4 (2) and 106.0 (2)°. The crystal studied was an inversion twin. #### **Related literature** For synthetic procedures, see: Holmes & Lightner (1995); Adams & Thal (1941). For a description of the Cambridge Structural Database, see: Allen (2002). For related structures, see: Eriksson & Hu (2002*a*,*b*); Eriksson *et al.* (1999); Köppen *et al.* (2007); Krigbaum & Wildman (1971); Mrse *et al.* (2000); Pedireddi *et al.* (1994); Williams *et al.* (1985). #### **Experimental** Crystal data C₁₀H₇Br₅O₂ $M_r = 558.71$ #### Data collection Nonius KappaCCD diffractometer with Oxford Cryostream 3863 independent reflections 3867 reflections with $I > 2\sigma(I)$ $I_{\rm int} = 0.013$ $I_{\rm min} = 0.121, T_{\rm max} = 0.273$ #### Refinement $\begin{array}{lll} R[F^2>2\sigma(F^2)]=0.025 & \text{H-atom parameters constrained} \\ wR(F^2)=0.053 & \Delta\rho_{\max}=0.65 \text{ e Å}^{-3} \\ S=1.17 & \Delta\rho_{\min}=-0.66 \text{ e Å}^{-3} \\ 3863 \text{ reflections} & \text{Absolute structure: Flack (1983),} \\ 157 \text{ parameters} & 1846 \text{ Friedel pairs} \\ 2 \text{ restraints} & \text{Flack parameter: 0.467 (13)} \\ \end{array}$ Data collection: *COLLECT* (Nonius, 2000); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* (Otwinowski & Minor, 1997) and *SCALEPACK*; program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*. The purchase of the diffractometer was made possible by grant No. LEQSF(1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents. Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2038). #### References Adams, R. & Thal, A. F. (1941). Org. Synth. 1, 270-. Allen, F. H. (2002). Acta Cryst. B58, 380-388. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Eriksson, J., Eriksson, L. & Jakobsson, E. (1999). *Acta Cryst.* C55, 2169–2171. Eriksson, L. & Hu, J. (2002a). Acta Cryst. E58, 0794–0796. Eriksson, L. & Hu, J. (2002b). Acta Cryst. E58, o1147-o1149. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. Flack, H. D. (1983). Acta Cryst. A39, 876-881. Holmes, D. L. & Lightner, D. A. (1995). *Tetrahedron*, **51**, 1607–1622. Köppen, R., Emmerling, F. & Becker, R. (2007). *Acta Cryst.* E**63**, o585–o586. Krigbaum, W. R. & Wildman, G. C. (1971). *Acta Cryst.* B**27**, 2353–2358. Mrse, A. A., Watkins, S. F. & Fronczek, F. R. (2000). Acta Cryst. C56, e576–e577 Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Pedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353–2360. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Williams, D. R., Gaston, R. D. & Horton, I. B. (1985). Tetrahedron Lett. 26, 1391–1394. ## supporting information Acta Cryst. (2010). E66, o1994 [https://doi.org/10.1107/S1600536810025626] ## Ethyl 2-(2,3,4,5,6-Pentabromophenyl)acetate ### Anne M. Sauer, Art G. Mack, Hassan Y. Elnagar and Frank R. Fronczek #### S1. Comment In an effort to prepare a series of proposed pentabromophenyl-substituted compounds necessary as analytical standards, the title ethyl ester derivative rendered itself to be an important intermediate and was synthesized via PBBN as an intermediate. This PBBN nitrile precursor was prepared by known procedures (Holmes & Lightner, 1995) from hexabromotoluene, henceforth referred to as pentabromobenzyl bromide, PBBB. Subsequent conversion of the resulting pentabromobenzyl nitrile intermediate to PBPEA was completed with ethanol in sulfuric acid. (Adams & Thal, 1941). The nature of such sterically hindered and electronically deprived pentabromo-compounds has provided a unique opportunity to examine the reactivity and resulting isolation / purification tendencies associated with these systems. The ethyl acetate portion of the molecule (Fig. 1) is extended, with torsion angles C1—C7—C8—O1 174.8 (3)°, C7— C8—O1—C9 179.3 (3)°, C8—O1—C9—C10 - 165.1 (3)°, and it is nearly orthogonal to the phenyl ring, with C2—C1— C7—C8 torsion angle 88.3 (5)°. The C—Br distances are in the range 1.876 (4)–1.896 (4) Å, with mean value 1.887 Å. This value compares favorably with the mean value of 1.880 Å in decabromodiphenylethane (Köppen et al., 2007), the only ordered entry in the CSD (version 5.31, Nov. 2009; Allen 2002) with Br₅Ph on an sp³ C atom. The structure of pentabromotoluene has also been reported (Krigbaum & Wildman, 1971), but it has the methyl group statistically disordered, sharing all six sites with Br. Structures of several pentabromophenyl ethers have also been reported (Eriksson & Hu, 2002a,b; Eriksson et al., 1999; Mrse et al., 2000; Williams et al., 1985), and the geometries of their Br₅Ph groups are similar. Packing of compounds containing Br₅Ph groups usually involves intermolecular Br···Br contacts, and one such interaction exists in the structure of the title compound, as illustrated in Fig. 2. The contact is between glide-related molecules, and has Br₃···Br₅ distance 3.491 (1) Å. The angular disposition of the contact is termed type II by Pedireddi *et al.* (1994), having one C–Br···Br angle near linear and the other nearly orthogonal. In this case, the angle about Br₅ is $173.4 (2)^{\circ}$, and the angle about Br₃ is $106.0 (2)^{\circ}$. Also, both O atoms make intermolecular contacts with Br, O1···Br₄(1 + x, 1 - y, 1/2 + z) 3.184 (3) Å; O2···Br₂ (x - 1/2, 3/2 - y, 1/2 + z) 3.123 (3) Å. #### **S2.** Experimental Preparation of PBBN (9263–183):(Fig. 3) To a 3-neck, 100-ml RBF, fitted with a nitrogen inlet, thermocouple and septum, was charged the starting PBBB (5 g, 8.84 mmol) in DMSO (50 ml). To this slurry was added the sodium cyanide (0.44 g, 8.98 mmol) in one portion at room temperature and the reaction mixture immediately became mint in color. This color quickly dissipated and became brown. The reaction was allowed to heat for one hour, with vigorous stirring, at 80 °C under an inert atmosphere. Upon conclusion, the contents were filtered hot to remove an insoluble material (1.01 g) and the resulting brown filtrate was treated with water to precipitate the PBBN product. The light brown solids (fluffy) were collected *via* suction filtration. Drying overnight afforded a dark brown solid. Solids were rinsed with IPA and filtered to provide 2.58 g PBBN material (light brown in color and free flowing) upon drying (~57% yield), mp = 178.6 & 179.5 °C. Purity of the crude PBBN was found to be \sim 70% (trimethylbenzene as internal standard) and was used without further purification. The trace unreacted sodium cyanide was destroyed by bleach solution in the aqueous DMSO solution. Preparation of PBPEA (9263–189): (Fig. 3) To a 3-neck, 100-ml RBF, fitted with a reflux condenser, thermocouple, and nitrogen inlet was charged absolute ethanol (30 g). Concentrated sulfuric acid (30 g) as added slowly as to minimize exotherm. When heating subsided, the starting nitrile, PBBN (1.0 g), was added in one portion. The temperature was set to ~96 °C, and the contents were allowed to reflux for 7 h. After heating for ~15 minutes, the reaction turned dark brown in color with no visible evidence of insoluble PBBN. After 2 h. heating, reflux had stabilized. Gradually, the temperature dropped to ~88 °C. The reactor was cooled, and the contents were poured into ice water. Immediately, a grey-brown solid precipitate was formed and subsequently collected *via* suction filtration. Air-drying overnight provided 1.65 grams crude material. The solids were slurried in acetone and filtered to collect 0.46 grams (42.2% yield) brown solid on drying. Crude NMR revealed desired ethyl ester as the major component. ¹H NMR: (400 MHz, DMSO-d6): δ = 4.32 (singlet, benzylic –CH₂–, 2H), 4.17–4.12 (quartet, ester methylene, 2H), 1.22–1.19 (triplet, ester methyl, 3H). (Impurities consist of the acetic acid derivative, along with the amide intermediate.) Recrystallization from acetone / IPA afforded the title ester compound obtained in pure form as spear-like needles, mp (DSC-melt) = 142.9–145.8 °C. #### S3. Refinement H atoms on C were placed in idealized positions with C—H distances 0.98–0.99 Å and thereafter treated as riding. A torsional parameter was refined for the methyl group. U_{iso} for H were assigned as 1.2 times U_{eq} of the attached atoms (1.5 for methyl). The Flack (1983) parameter refined to a value of 0.467 (13), indicating a nearly perfect inversion twin. Friedel pairs were kept separate in the refinement. **Figure 1** Ellipsoids at the 50% probability level, with H atoms having arbitrary radius. Figure 2 The intermolecular Br···Br contact. H atoms are omitted. Figure 3 Preparation of the title compound. #### Ethyl 2-(2,3,4,5,6-Pentabromophenyl)acetate #### Crystal data $C_{10}H_7Br_5O_2$ $M_r = 558.71$ Monoclinic, CcHall symbol: C -2yc a = 4.6136 (10) Å b = 22.548 (5) Å c = 13.195 (2) Å $\beta = 90.993$ (11)° V = 1372.4 (5) Å³ Z = 4 Data collection Nonius KappaCCD diffractometer with Oxford Cryostream Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scans F(000) = 1032 $D_x = 2.704$ Mg m⁻³ Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 2027 reflections $\theta = 2.5-30.0^{\circ}$ $\mu = 14.63$ mm⁻¹ T = 90 K Needle fragment, light brown $0.25 \times 0.12 \times 0.12$ mm Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) $T_{min} = 0.121$, $T_{max} = 0.273$ 10525 measured reflections 3863 independent reflections | 3676 reflections with $I > 2\sigma(I)$ | | |--|--| | $R_{\rm int} = 0.013$ | | | $\theta_{\rm max} = 30.0^{\circ}, \theta_{\rm min} = 3.0^{\circ}$ | | Refinement Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.053$ S = 1.17 3863 reflections 157 parameters 2 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map $h = -6 \rightarrow 6$ $k = -31 \rightarrow 31$ $l = -18 \rightarrow 18$ Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0154P)^2 + 2.9894P]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.002$ $\Delta \rho_{\text{max}} = 0.65 \text{ e Å}^{-3}$ $\Delta \rho_{\min} = -0.66 \text{ e Å}^{-3}$ Extinction correction: *SHELXL97* (Sheldrick, 2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/\sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.00100 (7) Absolute structure: Flack (1983), 1842 Friedel pairs Absolute structure parameter: 0.467 (13) #### Special details **Experimental.** PBBN: ¹H NMR: (400MHz, DMSO-d6): δ = 4.46 (singlet, benzylic –CH₂–, 2H); ¹³C NMR: (125MHz, DMSO-d6): δ = 134.06, 130.18, 129.66, 127.90, 116.37, 31.29. PBPEA: 1 H NMR: (400 MHz, CDCl₃): δ = 4.36 (singlet, benzylic –CH₂–, 2H), 4.26–4.20 (quartet, ester methylene, 2H), 1.32–1.28 (triplet, ester methyl 2H), 4.26–4.20 (quartet, ester methylene, 2H), 1.32–1.28 (triplet, ester methyl, 3H). 13 C NMR: (100 MHz, CDCl₃): δ = 168.79, 137.56, 129.37, 129.1, 128.55, 61.98, 47.94, 14.60. **Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement.** Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and F-factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2) | | X | y | Z | $U_{ m iso}$ */ $U_{ m eq}$ | |-----|-------------|---------------|-------------|-----------------------------| | Br1 | 0.88580(8) | 0.721320 (18) | 0.44969 (3) | 0.01668 (9) | | Br2 | 0.57652 (8) | 0.735821 (17) | 0.22457 (3) | 0.01500 (9) | | Br3 | 0.16294 (9) | 0.628526 (18) | 0.13378 (3) | 0.01501 (9) | | Br4 | 0.06205 (8) | 0.507432 (18) | 0.26957(3) | 0.01482 (9) | | Br5 | 0.36995 (8) | 0.495585 (18) | 0.49436(3) | 0.01383 (9) | | O1 | 0.7331 (6) | 0.61466 (13) | 0.7294(2) | 0.0136 (6) | | O2 | 0.3795 (6) | 0.65392 (14) | 0.6300(2) | 0.0162 (6) | | C1 | 0.6196 (9) | 0.60801 (18) | 0.4523 (3) | 0.0113 (7) | | C2 | 0.6548 (8) | 0.65956 (18) | 0.3941 (3) | 0.0115 (8) | | C3 | 0.5193 (9) | 0.66594 (17) | 0.3000(3) | 0.0096 (7) | | C4 | 0.3429 (8) | 0.62048 (18) | 0.2616 (3) | 0.0103 (7) | | C5 | 0.2983 (8) | 0.56956 (18) | 0.3187 (3) | 0.0110 (8) | | C6 | 0.4373 (8) | 0.56364 (18) | 0.4137 (3) | 0.0118 (8) | | C7 | 0.7750 (9) | 0.60088 (18) | 0.5534(3) | 0.0122 (8) | ## supporting information | H7A | 0.9647 | 0.6213 | 0.5510 | 0.015* | | |------|-------------|--------------|------------|------------|--| | H7B | 0.8118 | 0.5582 | 0.5660 | 0.015* | | | C8 | 0.6017 (8) | 0.62599 (17) | 0.6398 (3) | 0.0101 (7) | | | C9 | 0.5844 (9) | 0.6377 (2) | 0.8175 (3) | 0.0148 (8) | | | H9A | 0.4116 | 0.6132 | 0.8316 | 0.018* | | | H9B | 0.5200 | 0.6790 | 0.8046 | 0.018* | | | C10 | 0.7928 (10) | 0.6360(2) | 0.9071 (3) | 0.0170 (9) | | | H10A | 0.8614 | 0.5953 | 0.9176 | 0.026* | | | H10B | 0.6938 | 0.6497 | 0.9679 | 0.026* | | | H10C | 0.9583 | 0.6620 | 0.8939 | 0.026* | | | | | | | | | ### Atomic displacement parameters (\mathring{A}^2) | | U^{11} | U^{22} | U^{33} | U^{12} | U^{13} | U^{23} | |-----|--------------|--------------|--------------|---------------|---------------|---------------| | Br1 | 0.0201(2) | 0.01398 (19) | 0.0157(2) | -0.00486 (17) | -0.00499 (16) | 0.00049 (16) | | Br2 | 0.0221(2) | 0.01098 (19) | 0.01185 (18) | -0.00063 (16) | -0.00041 (15) | 0.00243 (15) | | Br3 | 0.0200(2) | 0.01540 (18) | 0.00946 (16) | 0.00203 (16) | -0.00374 (14) | -0.00085 (16) | | Br4 | 0.01717 (19) | 0.0141 (2) | 0.0131(2) | -0.00421 (16) | -0.00080 (16) | -0.00249 (16) | | Br5 | 0.01896 (19) | 0.01114 (19) | 0.0114(2) | -0.00113 (16) | 0.00103 (16) | 0.00194 (15) | | O1 | 0.0148 (13) | 0.0184 (15) | 0.0076 (12) | 0.0050 (11) | -0.0008 (11) | -0.0002(11) | | O2 | 0.0156 (14) | 0.0184 (15) | 0.0144 (13) | 0.0054 (12) | -0.0028 (11) | -0.0036 (12) | | C1 | 0.0129 (17) | 0.0116 (19) | 0.0095 (17) | 0.0013 (14) | 0.0024 (15) | 0.0005 (14) | | C2 | 0.0104 (18) | 0.0118 (19) | 0.0125 (18) | -0.0011 (14) | 0.0040 (15) | -0.0021 (14) | | C3 | 0.0133 (17) | 0.0070 (18) | 0.0086 (16) | 0.0010 (14) | 0.0003 (14) | 0.0017 (13) | | C4 | 0.0103 (17) | 0.0134 (19) | 0.0072 (16) | 0.0023 (14) | -0.0022(14) | -0.0004(14) | | C5 | 0.0112 (18) | 0.0114 (19) | 0.0105 (18) | -0.0019(14) | -0.0001 (14) | -0.0039(14) | | C6 | 0.0149 (19) | 0.0101 (19) | 0.0106 (18) | 0.0026 (15) | 0.0040 (15) | 0.0014 (14) | | C7 | 0.0127 (18) | 0.0109 (18) | 0.0129 (19) | -0.0013 (14) | -0.0018 (15) | 0.0000 (15) | | C8 | 0.0121 (18) | 0.0098 (17) | 0.0081 (16) | -0.0021 (14) | -0.0031 (14) | -0.0023 (14) | | C9 | 0.015(2) | 0.019(2) | 0.0101 (18) | 0.0031 (16) | -0.0008(15) | -0.0034 (16) | | C10 | 0.016(2) | 0.022(2) | 0.0139 (19) | 0.0032 (17) | -0.0003 (16) | -0.0005 (16) | ### Geometric parameters (Å, °) | Br1—C2 | 1.894 (4) | C3—C4 | 1.398 (6) | | |----------|-----------|-----------|-----------|--| | Br2—C3 | 1.885 (4) | C4—C5 | 1.391 (6) | | | Br3—C4 | 1.876 (4) | C5—C6 | 1.404 (5) | | | Br4—C5 | 1.883 (4) | C7—C8 | 1.514 (5) | | | Br5—C6 | 1.896 (4) | C7—H7A | 0.9900 | | | O1—C8 | 1.344 (5) | C7—H7B | 0.9900 | | | O1—C9 | 1.456 (5) | C9—C10 | 1.511 (6) | | | O2—C8 | 1.208 (5) | C9—H9A | 0.9900 | | | C1—C6 | 1.397 (6) | C9—H9B | 0.9900 | | | C1—C2 | 1.404 (5) | C10—H10A | 0.9800 | | | C1—C7 | 1.512 (5) | C10—H10B | 0.9800 | | | C2—C3 | 1.388 (6) | C10—H10C | 0.9800 | | | | | | | | | C8—O1—C9 | 115.0 (3) | C1—C7—H7A | 109.2 | | | | | | | | ## supporting information | C6—C1—C2 | 117.9 (4) | C8—C7—H7A | 109.2 | |---------------|-----------|---------------|------------| | C6—C1—C7 | 121.2 (4) | C1—C7—H7B | 109.2 | | C2—C1—C7 | 120.9 (4) | C8—C7—H7B | 109.2 | | C3—C2—C1 | 121.4 (4) | H7A—C7—H7B | 107.9 | | C3—C2—Br1 | 120.8 (3) | O2—C8—O1 | 124.2 (4) | | C1—C2—Br1 | 117.8 (3) | O2—C8—C7 | 124.9 (4) | | C2—C3—C4 | 119.9 (4) | O1—C8—C7 | 110.8 (3) | | C2—C3—Br2 | 119.6 (3) | O1—C9—C10 | 108.3 (3) | | C4—C3—Br2 | 120.5 (3) | O1—C9—H9A | 110.0 | | C5—C4—C3 | 120.0 (3) | C10—C9—H9A | 110.0 | | C5—C4—Br3 | 120.0 (3) | O1—C9—H9B | 110.0 | | C3—C4—Br3 | 120.0 (3) | C10—C9—H9B | 110.0 | | C4—C5—C6 | 119.5 (4) | H9A—C9—H9B | 108.4 | | C4—C5—Br4 | 121.2 (3) | C9—C10—H10A | 109.5 | | C6—C5—Br4 | 119.3 (3) | C9—C10—H10B | 109.5 | | C1—C6—C5 | 121.3 (4) | H10A—C10—H10B | 109.5 | | C1—C6—Br5 | 118.6 (3) | C9—C10—H10C | 109.5 | | C5—C6—Br5 | 120.1 (3) | H10A—C10—H10C | 109.5 | | C1—C7—C8 | 112.1 (3) | H10B—C10—H10C | 109.5 | | | | | | | C6—C1—C2—C3 | -1.6(6) | C2—C1—C6—C5 | 1.5 (6) | | C7—C1—C2—C3 | 178.3 (4) | C7—C1—C6—C5 | -178.5(4) | | C6—C1—C2—Br1 | 176.8 (3) | C2—C1—C6—Br5 | -176.6(3) | | C7—C1—C2—Br1 | -3.3(5) | C7—C1—C6—Br5 | 3.5 (5) | | C1—C2—C3—C4 | 0.2 (6) | C4—C5—C6—C1 | 0.1 (6) | | Br1—C2—C3—C4 | -178.1(3) | Br4—C5—C6—C1 | 178.6 (3) | | C1—C2—C3—Br2 | -179.5(3) | C4—C5—C6—Br5 | 178.1 (3) | | Br1—C2—C3—Br2 | 2.2 (5) | Br4—C5—C6—Br5 | -3.4(4) | | C2—C3—C4—C5 | 1.5 (6) | C6—C1—C7—C8 | -91.8(5) | | Br2—C3—C4—C5 | -178.9(3) | C2—C1—C7—C8 | 88.3 (5) | | C2—C3—C4—Br3 | -179.3(3) | C9—O1—C8—O2 | 1.2 (6) | | Br2—C3—C4—Br3 | 0.4 (5) | C9—O1—C8—C7 | 179.3 (3) | | C3—C4—C5—C6 | -1.6 (6) | C1—C7—C8—O2 | -7.1(6) | | Br3—C4—C5—C6 | 179.1 (3) | C1—C7—C8—O1 | 174.8 (3) | | C3—C4—C5—Br4 | 180.0 (3) | C8—O1—C9—C10 | -165.1 (3) | | Br3—C4—C5—Br4 | 0.7 (5) | | | | | | | |