organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[Hydrogen bis­­(1,2,4-triazole)] 1,2,4-triazolium bis­­(3-carb­­oxy-4-hy­dr­oxy­benzene­sulfonate) 1,2,4-triazole disolvate

aCollege of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
*Correspondence e-mail: minqiang_qiu@126.com

(Received 27 February 2010; accepted 5 March 2010; online 17 July 2010)

The title compound, C2H4N3+·[H(C2H3N3)2]+·2C7H5O6S·2C2H3N3, consists of two types of 1,2,4-triazole monocation, one protonated at the 2-site lying across a twofold axis and the other protonated at the 4-site with the H atom disordered over a center of symmetry, a 5-sulfosalicylate anion and a neutral 1,2,4-triazole mol­ecule. The component ions are linked into a three-dimensional network by a combination of N—H⋯O, N—H⋯N, O—H⋯O, O—H⋯N, C—H⋯O and C—H⋯N hydrogen bonds. In addition, benzene–benzene ππ inter­actions of 3.942 (2) Å [inter­planar spacing = 3.390 (2) Å] and C—O⋯π (3.331 Å) inter­actions are observed.

Related literature

For potential applications of co-crystals, see: Aakeröy et al. (2009[Aakeröy, C. B., Forbes, S. & Desper, J. (2009). J. Am. Chem. Soc. 131, 17048-17049.]); Chen et al. (2010[Chen, S., Xi, H. M., Henry, R. F., Marsden, I. & Zhang, G. G. Z. (2010). New J. Chem. 12, 1485-1493.]); For co-crystals involved 5-sulfosaliyclic acid or triazole, see: Jin et al. (2006[Jin, C.-M., Wu, L.-Y., Chen, C.-Y. & Hu, S.-L. (2006). Acta Cryst. E62, o4515-o4516.]); Kiviniemi et al. (2000[Kiviniemi, S., Nissinen, M., Lämsä, M. T., Jalonen, J., Rissanen, K. & Pursiainen, J. (2000). New J. Chem. 24, 47-52.]); Meng et al. (2007[Meng, X.-G., Zhou, C.-S., Wang, L. & Liu, C.-L. (2007). Acta Cryst. C63, o667-o670.], 2008[Meng, X.-G., Xiao, Y.-L., Wang, Z.-L. & Liu, C.-L. (2008). Acta Cryst. C64, o53-o57.]); Ye et al. (2008[Ye, C. F., Gao, H. X., Twamley, B. & Shreeve, J. M. (2008). New J. Chem. 32, 317-322.]).

[Scheme 1]

Experimental

Crystal data
  • C2H4N3+·C4H7N6+·2C7H5O6S·2C2H3N3

  • Mr = 781.73

  • Monoclinic, C 2/c

  • a = 21.2585 (5) Å

  • b = 5.1471 (2) Å

  • c = 32.2084 (15) Å

  • β = 106.669 (2)°

  • V = 3376.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 295 K

  • 0.30 × 0.20 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.921, Tmax = 0.962

  • 18315 measured reflections

  • 3853 independent reflections

  • 3005 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.124

  • S = 1.09

  • 3853 reflections

  • 240 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.86 2.17 2.9231 (18) 145
N1—H1A⋯O5ii 0.86 2.46 2.984 (2) 120
N4—H4A⋯N2iii 0.86 2.09 2.931 (2) 166
N6—H6A⋯N6iv 0.86 1.81 2.667 (3) 175
N7—H7⋯O6 0.86 2.07 2.885 (2) 159
N7′—H7′⋯O5 0.86 2.50 3.145 (2) 133
N7′—H7′⋯O6v 0.86 2.12 2.8104 (19) 137
O3—H3A⋯O2 0.83 1.78 2.577 (2) 159
O1—H1⋯N3v 0.83 1.85 2.6791 (19) 178
C8—H8⋯O2iii 0.93 2.50 3.110 (2) 123
C9—H9⋯N5vi 0.93 2.62 3.381 (3) 139
C10—H10⋯O4ii 0.93 2.58 3.177 (2) 122
C10—H10⋯O5ii 0.93 2.47 3.278 (2) 145
Symmetry codes: (i) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) x, y+1, z; (iv) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (v) x, y-1, z; (vi) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Due to its potential applications in pharmaceuticals, the synthesis of co-crystals has become very attractive area of research recently (Chen et al., 2010, Aakeröy et al., 2009). Many cocrystals and organic salts were synthesized using 5-sulfosaliyclic acid and N-containing Lewis bases (Meng et al., 2007, 2008). We here report our findings on the title compound I, cf. Scheme 1.

In compound (I), only the sulfonic-acid hydrogen atoms were transferred to triazole N atoms, resulting in a 5-sulfosalicylate anion and two type of cations i.e. one was protonated at 2- site lying across a twofold axis and the other protonated at 4-site with the hydrogen being disordered over a center of symmetry. Besides above mentioned, there is still one neutral 1,2,4-triazole molecule in (I) (Fig. 1). The N7—N7v (2 - x, y, 3/2 - z) bond length of 1.309 (3)Å is apparently shorter than some analogs which should be largely attributed to its protonated position at the 2- site, but not the generally observed 4-site (Jin et al., 2006; Ye et al., 2008; Kiviniemi et al., 2000).

In the packing structure of (I), the ionic components are linked into three-dimensional networks by a combination of N—H···O, O—H···O and C—H···O hydrogen bonds (Table 1 and Fig. 2). Analysis using PLATON (Spek, 2009) indicates that π···π interactions exist between symmetry-related benzene rings in these layers [centroid-to-centroid separation = 3.942 (2) Å, inter-planar spacing = 3.390 (2) Å and symmetry codes: 1/2 - x, 3/2 - y, 1 - z]. Additionally, the crystal structure was further consolidated by a O—H···π interaction which was scarcely observed [O3···Cg2 = 3.329 (2)\%A, Cg2 is the centroid defined by atoms N7/N8/C12 at (x - 1/2, y + 1/2, z) and atoms N7/N8/C12 at (-x + 3/2, y + 1/2, 3/2 - z)].

Related literature top

For potential applications of cocrystals, see: Aakeröy et al. (2009); Chen et al. (2010); For cocrystals involved 5-sulfosaliyclic acid or triazole, see: Jin et al. (2006); Kiviniemi et al. (2000); Meng et al. (2007, 2008); Ye et al. (2008).

Experimental top

A 3:1 molar amount of 1,2,4-triazole (0.6 mmol, 41.4 mg) to 5-sulfosaliyclic acid dihydrate (0.2 mmol, 50.8 mg) were dissolved in 95% methanol (40 ml). The mixture was stirred for several minutes at ambient temperature and then filtered. The resulting colorless solution was kept in air for two weeks. Colorless block crystals of (I) suitable for X-ray diffraction were grown by slow evaporation at the bottom of the vessel.

Refinement top

H atoms bonded to aromatic C atoms were positioned geometrically with C–H = 0.93 Å, and refined in a riding mode [Uiso(H) = 1.2Ueq(aromatic C)]. H atoms bonded to N and O atoms were initially found in difference maps and then constrained to be at their ideal positions (N—H = 0.86Å and O—H = 0.82 Å). Their thermal factors were set k times of their carrier atoms (k=1.2 for N and 1.5 for O atoms, respectively). C12/N7' and N7/C12' atoms were occupationally disordered with occupancies of 0.5:0.5, respectively. H6A is disordered over a center of inversion and its occupancy was set 0.5.

Structure description top

Due to its potential applications in pharmaceuticals, the synthesis of co-crystals has become very attractive area of research recently (Chen et al., 2010, Aakeröy et al., 2009). Many cocrystals and organic salts were synthesized using 5-sulfosaliyclic acid and N-containing Lewis bases (Meng et al., 2007, 2008). We here report our findings on the title compound I, cf. Scheme 1.

In compound (I), only the sulfonic-acid hydrogen atoms were transferred to triazole N atoms, resulting in a 5-sulfosalicylate anion and two type of cations i.e. one was protonated at 2- site lying across a twofold axis and the other protonated at 4-site with the hydrogen being disordered over a center of symmetry. Besides above mentioned, there is still one neutral 1,2,4-triazole molecule in (I) (Fig. 1). The N7—N7v (2 - x, y, 3/2 - z) bond length of 1.309 (3)Å is apparently shorter than some analogs which should be largely attributed to its protonated position at the 2- site, but not the generally observed 4-site (Jin et al., 2006; Ye et al., 2008; Kiviniemi et al., 2000).

In the packing structure of (I), the ionic components are linked into three-dimensional networks by a combination of N—H···O, O—H···O and C—H···O hydrogen bonds (Table 1 and Fig. 2). Analysis using PLATON (Spek, 2009) indicates that π···π interactions exist between symmetry-related benzene rings in these layers [centroid-to-centroid separation = 3.942 (2) Å, inter-planar spacing = 3.390 (2) Å and symmetry codes: 1/2 - x, 3/2 - y, 1 - z]. Additionally, the crystal structure was further consolidated by a O—H···π interaction which was scarcely observed [O3···Cg2 = 3.329 (2)\%A, Cg2 is the centroid defined by atoms N7/N8/C12 at (x - 1/2, y + 1/2, z) and atoms N7/N8/C12 at (-x + 3/2, y + 1/2, 3/2 - z)].

For potential applications of cocrystals, see: Aakeröy et al. (2009); Chen et al. (2010); For cocrystals involved 5-sulfosaliyclic acid or triazole, see: Jin et al. (2006); Kiviniemi et al. (2000); Meng et al. (2007, 2008); Ye et al. (2008).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structures of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Symmetry code: (a) 2 - x, y, 3/2 - z)
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of the three-dimensional network. Hydrogen bonds are shown as dashed lines.
[Hydrogen bis(1,2,4-triazole)] 1,2,4-triazolium bis(3-carboxy-4-hydroxybenzenesulfonate) 1,2,4-triazole disolvate top
Crystal data top
C2H4N3+·C4H7N6+·2C7H5O6S·2C2H3N3F(000) = 1616
Mr = 781.73Dx = 1.538 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6709 reflections
a = 21.2585 (5) Åθ = 2.4–27.4°
b = 5.1471 (2) ŵ = 0.24 mm1
c = 32.2084 (15) ÅT = 295 K
β = 106.669 (2)°Block, colorless
V = 3376.1 (2) Å30.30 × 0.20 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3853 independent reflections
Radiation source: fine focus sealed Siemens Mo tube3005 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
0.3° wide ω exposures scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 2727
Tmin = 0.921, Tmax = 0.962k = 66
18315 measured reflectionsl = 4141
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0743P)2]
where P = (Fo2 + 2Fc2)/3
3853 reflections(Δ/σ)max = 0.001
240 parametersΔρmax = 0.31 e Å3
1 restraintΔρmin = 0.47 e Å3
Crystal data top
C2H4N3+·C4H7N6+·2C7H5O6S·2C2H3N3V = 3376.1 (2) Å3
Mr = 781.73Z = 4
Monoclinic, C2/cMo Kα radiation
a = 21.2585 (5) ŵ = 0.24 mm1
b = 5.1471 (2) ÅT = 295 K
c = 32.2084 (15) Å0.30 × 0.20 × 0.16 mm
β = 106.669 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3853 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
3005 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.962Rint = 0.062
18315 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0441 restraint
wR(F2) = 0.124H-atom parameters constrained
S = 1.09Δρmax = 0.31 e Å3
3853 reflectionsΔρmin = 0.47 e Å3
240 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.66592 (8)0.1594 (3)0.66015 (5)0.0349 (4)
C20.66022 (9)0.3282 (4)0.69313 (6)0.0412 (4)
C30.70762 (9)0.5162 (4)0.70910 (6)0.0450 (4)
H30.70340.62830.73080.054*
C40.76066 (9)0.5383 (4)0.69313 (5)0.0397 (4)
H40.79220.66550.70400.048*
C50.76747 (8)0.3715 (3)0.66080 (5)0.0308 (3)
C60.72049 (7)0.1834 (3)0.64446 (5)0.0326 (4)
H60.72520.07190.62280.039*
C70.61526 (8)0.0409 (4)0.64341 (6)0.0408 (4)
C80.48133 (9)0.4771 (4)0.61003 (6)0.0475 (5)
H80.48160.59380.63210.057*
C90.50432 (10)0.2716 (4)0.56064 (7)0.0520 (5)
H90.52600.21870.54080.062*
C100.32077 (9)0.5933 (4)0.53084 (6)0.0482 (5)
H100.31070.60200.55710.058*
C110.32417 (11)0.4882 (5)0.46875 (7)0.0635 (6)
H110.31530.40190.44230.076*
C120.95952 (7)0.0581 (3)0.72250 (5)0.0361 (4)0.50
H120.92510.11170.69910.043*0.50
N7'0.95952 (7)0.0581 (3)0.72250 (5)0.0361 (4)0.50
H7'0.92770.10770.70080.043*0.50
S10.836787 (18)0.39131 (8)0.641015 (13)0.03328 (15)
N10.43718 (7)0.2946 (3)0.59598 (5)0.0472 (4)
H1A0.40430.26640.60580.057*
N20.45067 (8)0.1586 (3)0.56410 (6)0.0513 (4)
N30.52520 (7)0.4707 (3)0.58830 (5)0.0472 (4)
N40.36238 (8)0.7445 (3)0.51939 (6)0.0538 (4)
H4A0.38490.86220.53610.065*
N50.36563 (10)0.6798 (4)0.47949 (6)0.0719 (6)
N60.29550 (7)0.4275 (3)0.49953 (5)0.0431 (4)
H6A0.26710.30750.49890.052*0.50
N70.97459 (8)0.1865 (3)0.73276 (5)0.0416 (4)0.50
H70.95470.32090.71930.050*0.50
C12'0.97459 (8)0.1865 (3)0.73276 (5)0.0416 (4)0.50
H12'0.95310.33180.71820.050*0.50
N81.00000.2185 (4)0.75000.0355 (4)
O10.62327 (6)0.1836 (3)0.61157 (4)0.0480 (3)
H10.59220.28740.60430.072*
O20.56876 (6)0.0698 (3)0.65856 (5)0.0564 (4)
O30.60993 (7)0.3137 (3)0.71072 (5)0.0634 (4)
H3A0.58910.18850.69690.095*
O40.81766 (6)0.5286 (3)0.60014 (4)0.0488 (3)
O50.85622 (6)0.1272 (2)0.63667 (4)0.0494 (3)
O60.88616 (6)0.5346 (3)0.67359 (4)0.0527 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0309 (8)0.0349 (9)0.0413 (9)0.0020 (7)0.0143 (7)0.0024 (7)
C20.0406 (9)0.0445 (11)0.0447 (10)0.0000 (8)0.0219 (8)0.0003 (8)
C30.0496 (10)0.0456 (11)0.0445 (10)0.0010 (9)0.0210 (8)0.0114 (8)
C40.0409 (9)0.0370 (10)0.0408 (9)0.0072 (8)0.0112 (7)0.0053 (7)
C50.0293 (8)0.0308 (9)0.0321 (8)0.0024 (6)0.0082 (6)0.0014 (6)
C60.0312 (8)0.0329 (9)0.0363 (8)0.0044 (7)0.0138 (7)0.0028 (7)
C70.0331 (9)0.0409 (10)0.0508 (10)0.0075 (8)0.0158 (8)0.0017 (8)
C80.0404 (10)0.0487 (12)0.0582 (12)0.0127 (9)0.0217 (9)0.0063 (9)
C90.0432 (10)0.0553 (12)0.0634 (12)0.0136 (9)0.0249 (9)0.0123 (10)
C100.0430 (10)0.0528 (12)0.0481 (11)0.0086 (9)0.0121 (8)0.0094 (9)
C110.0566 (12)0.0892 (17)0.0477 (12)0.0238 (13)0.0198 (10)0.0170 (11)
C120.0348 (8)0.0347 (9)0.0361 (8)0.0063 (6)0.0059 (6)0.0029 (6)
N7'0.0348 (8)0.0347 (9)0.0361 (8)0.0063 (6)0.0059 (6)0.0029 (6)
S10.0259 (2)0.0380 (3)0.0359 (2)0.00670 (16)0.00876 (16)0.00054 (16)
N10.0359 (8)0.0499 (10)0.0617 (10)0.0109 (7)0.0234 (7)0.0004 (8)
N20.0414 (9)0.0472 (10)0.0674 (11)0.0149 (7)0.0191 (8)0.0066 (8)
N30.0356 (8)0.0497 (10)0.0608 (10)0.0139 (7)0.0207 (7)0.0069 (8)
N40.0464 (9)0.0511 (11)0.0590 (11)0.0158 (8)0.0074 (8)0.0075 (8)
N50.0626 (12)0.0949 (16)0.0629 (12)0.0335 (11)0.0254 (10)0.0039 (11)
N60.0365 (8)0.0494 (9)0.0421 (8)0.0128 (7)0.0095 (6)0.0086 (7)
N70.0426 (9)0.0297 (8)0.0441 (9)0.0030 (7)0.0009 (7)0.0037 (7)
C12'0.0426 (9)0.0297 (8)0.0441 (9)0.0030 (7)0.0009 (7)0.0037 (7)
N80.0364 (10)0.0281 (8)0.0428 (11)0.0000.0125 (9)0.000
O10.0388 (7)0.0499 (8)0.0595 (8)0.0196 (6)0.0206 (6)0.0140 (6)
O20.0427 (7)0.0598 (9)0.0770 (10)0.0165 (7)0.0337 (7)0.0083 (7)
O30.0590 (9)0.0729 (10)0.0759 (10)0.0122 (8)0.0474 (8)0.0169 (8)
O40.0412 (7)0.0626 (9)0.0434 (7)0.0075 (6)0.0135 (6)0.0133 (6)
O50.0434 (7)0.0422 (8)0.0690 (9)0.0032 (6)0.0265 (6)0.0008 (6)
O60.0359 (7)0.0646 (9)0.0534 (8)0.0200 (6)0.0060 (6)0.0085 (7)
Geometric parameters (Å, º) top
C1—C61.397 (2)C10—H100.9300
C1—C21.404 (2)C11—N51.302 (3)
C1—C71.477 (2)C11—N61.341 (2)
C2—O31.348 (2)C11—H110.9300
C2—C31.386 (3)C12—N71.318 (2)
C3—C41.372 (2)C12—N81.3299 (18)
C3—H30.9300C12—H120.9300
C4—C51.389 (2)S1—O51.4390 (14)
C4—H40.9300S1—O41.4462 (12)
C5—C61.382 (2)S1—O61.4542 (12)
C5—S11.7683 (16)N1—N21.340 (2)
C6—H60.9300N1—H1A0.8600
C7—O21.230 (2)N4—N51.348 (2)
C7—O11.311 (2)N4—H4A0.8589
C8—N11.313 (2)N6—H6A0.8600
C8—N31.317 (2)N7—N7i1.309 (3)
C8—H80.9300N7—H70.8600
C9—N21.313 (2)N8—N7'i1.3299 (19)
C9—N31.347 (2)N8—C12i1.3299 (19)
C9—H90.9300O1—H10.8298
C10—N41.308 (2)O3—H3A0.8349
C10—N61.313 (2)
C6—C1—C2118.65 (15)N5—C11—H11123.3
C6—C1—C7121.60 (15)N6—C11—H11123.3
C2—C1—C7119.74 (15)N7—C12—N8111.20 (15)
O3—C2—C3117.57 (16)N7—C12—H12124.4
O3—C2—C1122.33 (16)N8—C12—H12124.4
C3—C2—C1120.10 (15)O5—S1—O4112.75 (8)
C4—C3—C2120.49 (16)O5—S1—O6112.42 (9)
C4—C3—H3119.8O4—S1—O6111.42 (8)
C2—C3—H3119.8O5—S1—C5105.83 (8)
C3—C4—C5120.22 (16)O4—S1—C5108.09 (7)
C3—C4—H4119.9O6—S1—C5105.84 (8)
C5—C4—H4119.9C8—N1—N2110.43 (15)
C6—C5—C4119.95 (15)C8—N1—H1A124.8
C6—C5—S1119.28 (12)N2—N1—H1A124.8
C4—C5—S1120.75 (13)C9—N2—N1102.45 (15)
C5—C6—C1120.57 (15)C8—N3—C9102.77 (15)
C5—C6—H6119.7C10—N4—N5110.21 (16)
C1—C6—H6119.7C10—N4—H4A123.0
O2—C7—O1122.79 (16)N5—N4—H4A126.8
O2—C7—C1121.63 (17)C11—N5—N4102.98 (17)
O1—C7—C1115.58 (14)C10—N6—C11104.11 (17)
N1—C8—N3110.12 (17)C10—N6—H6A127.9
N1—C8—H8124.9C11—N6—H6A127.9
N3—C8—H8124.9N7i—N7—C12107.15 (10)
N2—C9—N3114.23 (18)N7i—N7—H7126.4
N2—C9—H9122.9C12—N7—H7126.4
N3—C9—H9122.9N7'i—N8—C12103.29 (18)
N4—C10—N6109.32 (18)C12i—N8—C12103.29 (18)
N4—C10—H10125.3C7—O1—H1108.1
N6—C10—H10125.3C2—O3—H3A100.5
N5—C11—N6113.38 (19)
C6—C1—C2—O3178.42 (17)C4—C5—S1—O5137.75 (15)
C7—C1—C2—O30.5 (3)C6—C5—S1—O480.28 (15)
C6—C1—C2—C30.9 (3)C4—C5—S1—O4101.22 (15)
C7—C1—C2—C3179.84 (17)C6—C5—S1—O6160.25 (13)
O3—C2—C3—C4178.88 (17)C4—C5—S1—O618.24 (16)
C1—C2—C3—C40.5 (3)N3—C8—N1—N20.2 (2)
C2—C3—C4—C50.2 (3)N3—C9—N2—N10.2 (2)
C3—C4—C5—C60.4 (3)C8—N1—N2—C90.0 (2)
C3—C4—C5—S1178.12 (14)N1—C8—N3—C90.3 (2)
C4—C5—C6—C10.1 (3)N2—C9—N3—C80.3 (2)
S1—C5—C6—C1178.59 (13)N6—C10—N4—N50.2 (2)
C2—C1—C6—C50.7 (3)N6—C11—N5—N40.5 (3)
C7—C1—C6—C5179.63 (15)C10—N4—N5—C110.4 (3)
C6—C1—C7—O2176.66 (17)N4—C10—N6—C110.1 (2)
C2—C1—C7—O22.3 (3)N5—C11—N6—C100.4 (3)
C6—C1—C7—O13.5 (2)N8—C12—N7—N7i0.1 (2)
C2—C1—C7—O1177.61 (16)N7—C12—N8—N7'i0.03 (10)
C6—C5—S1—O540.75 (15)N7—C12—N8—C12i0.03 (10)
Symmetry code: (i) x+2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4ii0.862.172.9231 (18)145
N1—H1A···O5iii0.862.462.984 (2)120
N4—H4A···N2iv0.862.092.931 (2)166
N6—H6A···N6v0.861.812.667 (3)175
N7—H7···O60.862.072.885 (2)159
N7—H7···O50.862.503.145 (2)133
N7—H7···O6vi0.862.122.8104 (19)137
O3—H3A···O20.831.782.577 (2)159
O1—H1···N3vi0.831.852.6791 (19)178
C8—H8···O2iv0.932.503.110 (2)123
C9—H9···N5vii0.932.623.381 (3)139
C10—H10···O4iii0.932.583.177 (2)122
C10—H10···O5iii0.932.473.278 (2)145
Symmetry codes: (ii) x1/2, y1/2, z; (iii) x1/2, y+1/2, z; (iv) x, y+1, z; (v) x+1/2, y+1/2, z+1; (vi) x, y1, z; (vii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC2H4N3+·C4H7N6+·2C7H5O6S·2C2H3N3
Mr781.73
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)21.2585 (5), 5.1471 (2), 32.2084 (15)
β (°) 106.669 (2)
V3)3376.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.30 × 0.20 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.921, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
18315, 3853, 3005
Rint0.062
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.124, 1.09
No. of reflections3853
No. of parameters240
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.47

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.862.172.9231 (18)145.4
N1—H1A···O5ii0.862.462.984 (2)119.8
N4—H4A···N2iii0.862.092.931 (2)165.6
N6—H6A···N6iv0.861.812.667 (3)175.1
N7—H7···O60.862.072.885 (2)158.6
N7'—H7'···O50.862.503.145 (2)132.7
N7'—H7'···O6v0.862.122.8104 (19)137.0
O3—H3A···O20.831.782.577 (2)158.7
O1—H1···N3v0.831.852.6791 (19)177.8
C8—H8···O2iii0.932.503.110 (2)123.3
C9—H9···N5vi0.932.623.381 (3)139.3
C10—H10···O4ii0.932.583.177 (2)122.4
C10—H10···O5ii0.932.473.278 (2)145.2
Symmetry codes: (i) x1/2, y1/2, z; (ii) x1/2, y+1/2, z; (iii) x, y+1, z; (iv) x+1/2, y+1/2, z+1; (v) x, y1, z; (vi) x+1, y+1, z+1.
 

References

First citationAakeröy, C. B., Forbes, S. & Desper, J. (2009). J. Am. Chem. Soc. 131, 17048–17049.  Web of Science PubMed Google Scholar
First citationBruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, S., Xi, H. M., Henry, R. F., Marsden, I. & Zhang, G. G. Z. (2010). New J. Chem. 12, 1485–1493.  CAS Google Scholar
First citationJin, C.-M., Wu, L.-Y., Chen, C.-Y. & Hu, S.-L. (2006). Acta Cryst. E62, o4515–o4516.  CSD CrossRef IUCr Journals Google Scholar
First citationKiviniemi, S., Nissinen, M., Lämsä, M. T., Jalonen, J., Rissanen, K. & Pursiainen, J. (2000). New J. Chem. 24, 47–52.  Web of Science CSD CrossRef CAS Google Scholar
First citationMeng, X.-G., Xiao, Y.-L., Wang, Z.-L. & Liu, C.-L. (2008). Acta Cryst. C64, o53–o57.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMeng, X.-G., Zhou, C.-S., Wang, L. & Liu, C.-L. (2007). Acta Cryst. C63, o667–o670.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, C. F., Gao, H. X., Twamley, B. & Shreeve, J. M. (2008). New J. Chem. 32, 317–322.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds