organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-Quinolyl 5-(di­methyl­amino)­naphthalene-1-sulfonate

aSchool of Chemical Engineering and Food Science, Xiangfan University, Xiangfan 441053, People's Republic of China
*Correspondence e-mail: blueice8250@yahoo.com.cn

(Received 21 July 2010; accepted 27 July 2010; online 31 July 2010)

In the title compound, C21H18N2O3S, the dihedral angle between the naphthalene and quinoline ring systems is 55.53 (2)°, and the torsion angle involving the connecting C—S—O—C atoms is 87.60 (3)°. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds connect mol­ecules into chains along [100] and there are ππ stacking inter­actions between pairs of chains with a centroid–centroid distance of 3.5485 (15) Å.

Related literature

For background information and the applications of compounds containing the 5-(dimethyl­amino)­naphthalene-1-sulfonyl group, see: Li et al. (1975[Li, Y., Chan, L., Tyer, L., Moody, R. T., Hirnel, C. M. & Hercules, D. M. (1975). J. Am. Chem. Soc. 97, 3118-3126.]); Walkup & Imperiali (1997[Walkup, G. K. & Imperiali, B. (1997). J. Am. Chem. Soc. 119, 3443-3450.]); Chen & Chen (2004[Chen, C. & Chen, Q. (2004). Tetrahedron Lett. 45, 3957-3960.]).

[Scheme 1]

Experimental

Crystal data
  • C21H18N2O3S

  • Mr = 378.43

  • Triclinic, [P \overline 1]

  • a = 9.5556 (12) Å

  • b = 10.1237 (12) Å

  • c = 11.4182 (14) Å

  • α = 108.736 (2)°

  • β = 100.426 (2)°

  • γ = 111.860 (2)°

  • V = 912.30 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.961, Tmax = 0.980

  • 5269 measured reflections

  • 3526 independent reflections

  • 2959 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.132

  • S = 1.04

  • 3526 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O1i 0.93 2.52 3.411 (3) 160
Symmetry code: (i) x+1, y, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The dansyl fluorophore (5-(dimethylamino)naphthalene-1-sulfonyl) is characterized by a charge transfer excited state exhibiting solvatochromism and high emission quantum yields (Li et al., 1975). These characteristics, together with the synthetic flexibility of the sulfonic acid group, have led the dansyl fluorophore to be a core-structure present in many fluorescent sensors and labels for the detection of both metal cations and anions (Walkup & Imperiali, 1997; Chen & Chen, 2004). We are interested in designing fluorescent drug or ligand analogs that are expected to bind to hydrophobic sites in proteins or membranes. With this mind, the title compound, (I), was prepared and we report the crystal stucture herein.

In the molecular structure (Fig. 1), the dihedral angle between the naphthalene and quinoline ring systems is 55.53 (2)°, and these aromatic ring ststems are connected by the atoms C8—S1—O3—C13, giving a torsion angle of 87.60 (3)°. In the crystal structure (Fig. 2) molecules are linked by weak intermolecular C—H···O hydrogen bonds forming 1-D chains along [100]. Pairs of chains are connected by weak ππ stacking interactions with Cg···Cg(2-x, -y, -z) = 3.5485 (15), where Cg is the centroid defined by ring atoms C13-C17/C21.

Related literature top

For background information and the applications of compounds containing the 5-(dimethylamino)naphthalene-1-sulfonyl group, see: Li et al. (1975); Walkup & Imperiali (1997); Chen & Chen (2004).

Experimental top

8-Hydroxyquinolin (0.16 g, 1 mmol) was added to a stirred solution of dansyl chloride (0.27 g, 1 mmol) in dry acetone (40 ml). The reaction mixture was allowed to stir for 12 hr at 293 K. The solvent was evaporated and the residue was purified by column chromatography (petroleun ether-ethyl acetate,1:4 v/v) to afford the title compound as a yellow solid. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

All H atoms were placed in idealized positions [CH(methyl)=0.96 Å, and 0.93 Å (aromatic),with Uiso(H)= 1.5Ueq(methyl C) 1.2Ueq(other C).

Structure description top

The dansyl fluorophore (5-(dimethylamino)naphthalene-1-sulfonyl) is characterized by a charge transfer excited state exhibiting solvatochromism and high emission quantum yields (Li et al., 1975). These characteristics, together with the synthetic flexibility of the sulfonic acid group, have led the dansyl fluorophore to be a core-structure present in many fluorescent sensors and labels for the detection of both metal cations and anions (Walkup & Imperiali, 1997; Chen & Chen, 2004). We are interested in designing fluorescent drug or ligand analogs that are expected to bind to hydrophobic sites in proteins or membranes. With this mind, the title compound, (I), was prepared and we report the crystal stucture herein.

In the molecular structure (Fig. 1), the dihedral angle between the naphthalene and quinoline ring systems is 55.53 (2)°, and these aromatic ring ststems are connected by the atoms C8—S1—O3—C13, giving a torsion angle of 87.60 (3)°. In the crystal structure (Fig. 2) molecules are linked by weak intermolecular C—H···O hydrogen bonds forming 1-D chains along [100]. Pairs of chains are connected by weak ππ stacking interactions with Cg···Cg(2-x, -y, -z) = 3.5485 (15), where Cg is the centroid defined by ring atoms C13-C17/C21.

For background information and the applications of compounds containing the 5-(dimethylamino)naphthalene-1-sulfonyl group, see: Li et al. (1975); Walkup & Imperiali (1997); Chen & Chen (2004).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing hydrogen bonds as dashed lines.
8-Quinolyl 5-(dimethylamino)naphthalene-1-sulfonate top
Crystal data top
C21H18N2O3SZ = 2
Mr = 378.43F(000) = 396
Triclinic, P1Dx = 1.378 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5556 (12) ÅCell parameters from 2502 reflections
b = 10.1237 (12) Åθ = 1.7–22.5°
c = 11.4182 (14) ŵ = 0.20 mm1
α = 108.736 (2)°T = 298 K
β = 100.426 (2)°Block, yellow
γ = 111.860 (2)°0.20 × 0.20 × 0.20 mm
V = 912.30 (19) Å3
Data collection top
Bruker SMART CCD
diffractometer
3526 independent reflections
Radiation source: fine-focus sealed tube2959 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
φ and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1111
Tmin = 0.961, Tmax = 0.980k = 1212
5269 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0622P)2 + 0.1786P]
where P = (Fo2 + 2Fc2)/3
3526 reflections(Δ/σ)max = 0.001
246 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C21H18N2O3Sγ = 111.860 (2)°
Mr = 378.43V = 912.30 (19) Å3
Triclinic, P1Z = 2
a = 9.5556 (12) ÅMo Kα radiation
b = 10.1237 (12) ŵ = 0.20 mm1
c = 11.4182 (14) ÅT = 298 K
α = 108.736 (2)°0.20 × 0.20 × 0.20 mm
β = 100.426 (2)°
Data collection top
Bruker SMART CCD
diffractometer
3526 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
2959 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.980Rint = 0.054
5269 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.04Δρmax = 0.28 e Å3
3526 reflectionsΔρmin = 0.34 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3811 (4)0.3563 (4)0.4404 (3)0.0808 (9)
H1A0.30920.31110.43570.121*
H1B0.39450.37390.51850.121*
H1C0.33750.45460.36450.121*
C20.6414 (4)0.3214 (4)0.4384 (3)0.0776 (8)
H2A0.59460.41500.35770.116*
H2B0.65640.34800.51160.116*
H2C0.74330.24900.44190.116*
C30.5317 (3)0.1772 (2)0.3569 (2)0.0460 (5)
C40.4046 (3)0.2372 (3)0.2452 (2)0.0549 (6)
H40.31290.32870.22510.066*
C50.4103 (3)0.1632 (3)0.1607 (2)0.0543 (6)
H50.32170.20590.08570.065*
C60.5421 (3)0.0303 (3)0.1855 (2)0.0469 (5)
H60.54520.01330.12510.056*
C70.6746 (2)0.0422 (2)0.30273 (19)0.0386 (4)
C80.8158 (2)0.1871 (2)0.34276 (19)0.0407 (5)
C90.9371 (3)0.2558 (3)0.4599 (2)0.0498 (5)
H91.02770.34910.48180.060*
C100.9242 (3)0.1849 (3)0.5467 (2)0.0593 (6)
H101.00520.23280.62790.071*
C110.7943 (3)0.0466 (3)0.5135 (2)0.0550 (6)
H110.78780.00160.57290.066*
C120.6684 (2)0.0309 (2)0.39138 (19)0.0423 (5)
C131.0085 (2)0.1803 (2)0.12403 (19)0.0406 (4)
C141.0695 (3)0.1102 (3)0.1871 (2)0.0514 (5)
H141.01280.05810.23020.062*
C151.2188 (3)0.1174 (3)0.1866 (2)0.0616 (6)
H151.26220.07180.23150.074*
C161.3009 (3)0.1902 (3)0.1213 (2)0.0599 (6)
H161.39990.19420.12210.072*
C171.2370 (3)0.2596 (3)0.0523 (2)0.0487 (5)
C181.3112 (3)0.3301 (3)0.0238 (2)0.0623 (7)
H181.40730.33210.03060.075*
C191.2415 (3)0.3946 (3)0.0863 (3)0.0643 (7)
H191.28910.44110.13660.077*
C201.0978 (3)0.3904 (3)0.0744 (2)0.0584 (6)
H201.05330.43770.11640.070*
C211.0888 (2)0.2580 (2)0.05481 (18)0.0399 (4)
N10.5359 (2)0.2493 (2)0.4443 (2)0.0572 (5)
N21.0200 (2)0.3242 (2)0.00774 (17)0.0479 (4)
O10.6994 (2)0.2943 (2)0.18886 (19)0.0656 (5)
O20.9897 (2)0.42788 (18)0.30555 (16)0.0607 (4)
O30.85533 (16)0.16883 (17)0.11789 (13)0.0442 (4)
S10.84187 (7)0.28769 (6)0.24117 (5)0.04560 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.084 (2)0.085 (2)0.118 (2)0.0459 (17)0.0604 (19)0.073 (2)
C20.081 (2)0.089 (2)0.100 (2)0.0529 (17)0.0357 (17)0.0648 (19)
C30.0476 (12)0.0491 (12)0.0530 (12)0.0252 (10)0.0223 (10)0.0291 (10)
C40.0446 (13)0.0498 (13)0.0624 (14)0.0144 (10)0.0138 (11)0.0260 (11)
C50.0417 (12)0.0600 (14)0.0521 (13)0.0197 (11)0.0044 (10)0.0239 (11)
C60.0462 (12)0.0550 (13)0.0448 (11)0.0258 (10)0.0115 (10)0.0268 (10)
C70.0400 (11)0.0433 (11)0.0403 (10)0.0227 (9)0.0167 (9)0.0212 (9)
C80.0438 (11)0.0435 (11)0.0417 (11)0.0228 (9)0.0208 (9)0.0198 (9)
C90.0454 (12)0.0483 (12)0.0469 (12)0.0162 (10)0.0157 (10)0.0165 (10)
C100.0515 (14)0.0681 (15)0.0400 (12)0.0201 (12)0.0035 (10)0.0171 (11)
C110.0587 (14)0.0654 (15)0.0412 (12)0.0257 (12)0.0126 (10)0.0289 (11)
C120.0443 (12)0.0480 (11)0.0427 (11)0.0245 (10)0.0167 (9)0.0240 (9)
C130.0396 (11)0.0424 (11)0.0377 (10)0.0196 (9)0.0132 (9)0.0138 (9)
C140.0632 (15)0.0557 (13)0.0456 (12)0.0330 (12)0.0221 (11)0.0249 (10)
C150.0694 (17)0.0730 (16)0.0583 (14)0.0493 (14)0.0174 (13)0.0295 (13)
C160.0451 (13)0.0693 (15)0.0659 (15)0.0349 (12)0.0163 (12)0.0208 (13)
C170.0404 (11)0.0451 (11)0.0524 (12)0.0182 (9)0.0171 (10)0.0124 (10)
C180.0472 (14)0.0584 (14)0.0719 (16)0.0169 (11)0.0325 (12)0.0189 (13)
C190.0682 (17)0.0630 (15)0.0685 (16)0.0237 (13)0.0401 (14)0.0347 (13)
C200.0682 (16)0.0602 (14)0.0589 (14)0.0313 (13)0.0294 (12)0.0334 (12)
C210.0376 (11)0.0390 (10)0.0380 (10)0.0170 (9)0.0127 (8)0.0114 (8)
N10.0615 (13)0.0614 (12)0.0719 (13)0.0315 (10)0.0320 (10)0.0466 (11)
N20.0497 (11)0.0542 (11)0.0505 (10)0.0262 (9)0.0226 (9)0.0291 (9)
O10.0683 (11)0.0834 (12)0.0966 (13)0.0545 (10)0.0485 (10)0.0642 (11)
O20.0660 (11)0.0423 (8)0.0713 (10)0.0186 (8)0.0341 (9)0.0231 (8)
O30.0389 (8)0.0519 (8)0.0446 (8)0.0201 (7)0.0182 (6)0.0227 (7)
S10.0499 (3)0.0456 (3)0.0582 (3)0.0270 (3)0.0298 (3)0.0300 (3)
Geometric parameters (Å, º) top
C1—N11.454 (3)C10—H100.9300
C1—H1A0.9600C11—C121.412 (3)
C1—H1B0.9600C11—H110.9300
C1—H1C0.9600C13—C141.358 (3)
C2—N11.448 (3)C13—O31.411 (2)
C2—H2A0.9600C13—C211.415 (3)
C2—H2B0.9600C14—C151.403 (3)
C2—H2C0.9600C14—H140.9300
C3—C41.364 (3)C15—C161.360 (4)
C3—N11.417 (3)C15—H150.9300
C3—C121.433 (3)C16—C171.410 (3)
C4—C51.396 (3)C16—H160.9300
C4—H40.9300C17—C211.416 (3)
C5—C61.356 (3)C17—C181.418 (3)
C5—H50.9300C18—C191.353 (4)
C6—C71.413 (3)C18—H180.9300
C6—H60.9300C19—C201.391 (4)
C7—C121.430 (3)C19—H190.9300
C7—C81.434 (3)C20—N21.320 (3)
C8—C91.362 (3)C20—H200.9300
C8—S11.766 (2)C21—N21.363 (3)
C9—C101.396 (3)O1—S11.4188 (17)
C9—H90.9300O2—S11.4183 (17)
C10—C111.356 (3)O3—S11.5933 (15)
N1—C1—H1A109.5C11—C12—C3121.60 (18)
N1—C1—H1B109.5C7—C12—C3119.32 (18)
H1A—C1—H1B109.5C14—C13—O3120.52 (19)
N1—C1—H1C109.5C14—C13—C21122.3 (2)
H1A—C1—H1C109.5O3—C13—C21117.06 (17)
H1B—C1—H1C109.5C13—C14—C15119.3 (2)
N1—C2—H2A109.5C13—C14—H14120.3
N1—C2—H2B109.5C15—C14—H14120.3
H2A—C2—H2B109.5C16—C15—C14120.8 (2)
N1—C2—H2C109.5C16—C15—H15119.6
H2A—C2—H2C109.5C14—C15—H15119.6
H2B—C2—H2C109.5C15—C16—C17120.5 (2)
C4—C3—N1123.8 (2)C15—C16—H16119.7
C4—C3—C12119.17 (18)C17—C16—H16119.7
N1—C3—C12117.06 (19)C16—C17—C21119.7 (2)
C3—C4—C5120.9 (2)C16—C17—C18123.8 (2)
C3—C4—H4119.5C21—C17—C18116.5 (2)
C5—C4—H4119.5C19—C18—C17119.8 (2)
C6—C5—C4121.6 (2)C19—C18—H18120.1
C6—C5—H5119.2C17—C18—H18120.1
C4—C5—H5119.2C18—C19—C20119.0 (2)
C5—C6—C7120.30 (19)C18—C19—H19120.5
C5—C6—H6119.8C20—C19—H19120.5
C7—C6—H6119.8N2—C20—C19124.7 (2)
C6—C7—C12118.50 (18)N2—C20—H20117.6
C6—C7—C8125.16 (18)C19—C20—H20117.6
C12—C7—C8116.32 (18)N2—C21—C13119.30 (18)
C9—C8—C7122.78 (18)N2—C21—C17123.32 (19)
C9—C8—S1116.00 (16)C13—C21—C17117.37 (19)
C7—C8—S1121.22 (15)C3—N1—C2113.78 (19)
C8—C9—C10119.4 (2)C3—N1—C1116.1 (2)
C8—C9—H9120.3C2—N1—C1110.5 (2)
C10—C9—H9120.3C20—N2—C21116.59 (19)
C11—C10—C9120.4 (2)C13—O3—S1117.87 (12)
C11—C10—H10119.8O2—S1—O1119.57 (11)
C9—C10—H10119.8O2—S1—O3108.77 (8)
C10—C11—C12121.9 (2)O1—S1—O3104.37 (10)
C10—C11—H11119.0O2—S1—C8109.32 (10)
C12—C11—H11119.0O1—S1—C8110.89 (10)
C11—C12—C7119.01 (19)O3—S1—C8102.41 (8)
N1—C3—C4—C5177.7 (2)C16—C17—C18—C19179.7 (2)
C12—C3—C4—C53.9 (3)C21—C17—C18—C191.6 (3)
C3—C4—C5—C60.6 (4)C17—C18—C19—C200.1 (4)
C4—C5—C6—C73.7 (4)C18—C19—C20—N21.5 (4)
C5—C6—C7—C122.2 (3)C14—C13—C21—N2179.21 (19)
C5—C6—C7—C8176.3 (2)O3—C13—C21—N23.3 (3)
C6—C7—C8—C9176.8 (2)C14—C13—C21—C170.5 (3)
C12—C7—C8—C91.7 (3)O3—C13—C21—C17175.38 (17)
C6—C7—C8—S13.1 (3)C16—C17—C21—N2179.12 (19)
C12—C7—C8—S1178.40 (14)C18—C17—C21—N22.1 (3)
C7—C8—C9—C101.0 (3)C16—C17—C21—C132.2 (3)
S1—C8—C9—C10178.88 (17)C18—C17—C21—C13176.51 (18)
C8—C9—C10—C111.8 (4)C4—C3—N1—C2107.4 (3)
C9—C10—C11—C120.2 (4)C12—C3—N1—C274.3 (3)
C10—C11—C12—C73.0 (3)C4—C3—N1—C122.5 (3)
C10—C11—C12—C3179.9 (2)C12—C3—N1—C1155.8 (2)
C6—C7—C12—C11175.00 (19)C19—C20—N2—C211.0 (4)
C8—C7—C12—C113.6 (3)C13—C21—N2—C20177.77 (19)
C6—C7—C12—C32.2 (3)C17—C21—N2—C200.9 (3)
C8—C7—C12—C3179.18 (17)C14—C13—O3—S182.5 (2)
C4—C3—C12—C11171.9 (2)C21—C13—O3—S1101.55 (17)
N1—C3—C12—C116.6 (3)C13—O3—S1—O228.05 (16)
C4—C3—C12—C75.2 (3)C13—O3—S1—O1156.75 (14)
N1—C3—C12—C7176.32 (17)C13—O3—S1—C887.57 (15)
O3—C13—C14—C15177.12 (19)C9—C8—S1—O20.92 (19)
C21—C13—C14—C151.4 (3)C7—C8—S1—O2178.98 (15)
C13—C14—C15—C161.6 (4)C9—C8—S1—O1134.83 (17)
C14—C15—C16—C170.2 (4)C7—C8—S1—O145.06 (19)
C15—C16—C17—C212.1 (3)C9—C8—S1—O3114.31 (17)
C15—C16—C17—C18176.5 (2)C7—C8—S1—O365.80 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O1i0.932.523.411 (3)160
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC21H18N2O3S
Mr378.43
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.5556 (12), 10.1237 (12), 11.4182 (14)
α, β, γ (°)108.736 (2), 100.426 (2), 111.860 (2)
V3)912.30 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.961, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
5269, 3526, 2959
Rint0.054
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.132, 1.04
No. of reflections3526
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.34

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O1i0.932.523.411 (3)160.3
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors are grateful to the Science Technology Research Programme of the Education Office of Hubei Province (grant No. Q20092503) for financial support.

References

First citationBruker (2007). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, C. & Chen, Q. (2004). Tetrahedron Lett. 45, 3957–3960.  Web of Science CrossRef CAS Google Scholar
First citationLi, Y., Chan, L., Tyer, L., Moody, R. T., Hirnel, C. M. & Hercules, D. M. (1975). J. Am. Chem. Soc. 97, 3118–3126.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWalkup, G. K. & Imperiali, B. (1997). J. Am. Chem. Soc. 119, 3443–3450.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds