organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A new monoclinic polymorph of 3-di­ethyl­amino-4-(4-meth­­oxy­phen­yl)-1,1-dioxo-4H-1λ6,2-thia­zete-4-carbo­nitrile

aDipartimento di Chimica Fisica ed Elettrochimica, Universitá degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy, and bConsiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Molecolari, Via Golgi 19, 20133 Milano, Italy
*Correspondence e-mail: leonardo.lopresti@unimi.it

(Received 16 June 2010; accepted 12 July 2010; online 17 July 2010)

A new monoclinic form of the title compound, C14H17N3O3S, has been found upon slow crystallization from water. Another monoclinic form of the compound was obtained previously from a mixture of dichloro­methane and diethyl ether [Clerici et al. (2002[Clerici, F., Gelmi, M. L., Soave, R. & Lo Presti, L. (2002). Tetrahedron, 58, 5173-5178.]). Tetra­hedron, 58, 5173–5178]. Both phases crystallize in space group P21/n with one mol­ecule in the asymmetric unit. The formally single exocyclic C—N bond that connects the –NEt2 unit with the thia­zete ring is considerably shorter than the adjacent, formally double, endocyclic C=N bond. This is likely to be due to the extended conjugated system between the electron-donor diethyl­ammine fragment and the electron-withdrawing sulfonyl group. In the newly discovered polymorph, the meth­oxy group is rotated by almost 180° around the phen­yl–OCH3 bond, resulting in a different mol­ecular conformation.

Related literature

For the synthesis of the title compound and the crystal structure of the other polymorph, see: Clerici et al. (2002[Clerici, F., Gelmi, M. L., Soave, R. & Lo Presti, L. (2002). Tetrahedron, 58, 5173-5178.]). For a related structure, see: Clerici et al. (1996[Clerici, F., Galletti, F., Pocar, D. & Roversi, P. (1996). Tetrahedron, 52, 7183-7199.]). For the biological activity of β-sultam derivatives, see: Barwick et al. (2008[Barwick, M., Abu-Izneid, T. & Novak, I. (2008). J. Phys. Chem. 112, 10993-10997.]) and references therein.

[Scheme 1]

Experimental

Crystal data
  • C14H17N3O3S

  • Mr = 307.37

  • Monoclinic, P 21 /n

  • a = 8.3853 (17) Å

  • b = 17.554 (4) Å

  • c = 10.458 (2) Å

  • β = 95.07 (3)°

  • V = 1533.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.18 × 0.16 × 0.16 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.855, Tmax = 0.947

  • 16661 measured reflections

  • 2814 independent reflections

  • 1949 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.102

  • S = 1.01

  • 2814 reflections

  • 258 parameters

  • All H-atom parameters refined

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: SMART (Bruker, 2005[Bruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (I), a thiazete 1,1 dioxo derivative containing a four-membered heterocycle, exhibits a marked similarity with the β-sultamic functionality, which is the key component of promising antibiotic drugs (Barwick et al., 2008). A new monoclinic polymorph of (I) (hereinafter, phase B: Fig. 1, Table 1) was found upon slow recrystallization from water of a little amount of the phase A, originally obtained from a CH2Cl2:Et2O mixture (Clerici et al., 2002). Both polymorphs share the same space group, P21/n, with one molecule in the asymmetric unit. On average, bond lengths and angles are very similar between the two forms, while the molecular conformations are different. The most important dissimilarity resides in the dihedral angles involving the phenyl-OCH3 single bond, which is rotated by ~180° in the form B with respect to form A (Fig. 2). In both crystal forms the formally single exocyclic C9–N1 bond connecting the –NEt2 moiety to the thiazete ring is considerably shorter (phase B: 1.307 (3) Å; phase A: 1.318 (3) Å) than the adjacent, formally double, endocyclic C9=N2 bond (phase B: 1.331 (3) Å; phase A: 1.327 (3) Å). A possible explanation resides in the existence of an extended π conjugated system between the electron-donor diethylammine fragment and the electron-withdrawing sulfonyl group. This conjecture is supported by the values of the C–N1–C angles, which in both phases range from ~118° to ~122° and are compatible with a formally sp2 tertiary nitrogen atom. Very similar bond distances within the thiazete group have been reported by Clerici et al. (1996) for a chemically related derivative of (I). On geometrical grounds, no relevant intermolecular hydrogen bonds have been found in both phases.

Related literature top

For the synthesis of the title compound and the crystal structure of the other polymorph, see: Clerici et al. (2002). For a related structure, see: Clerici et al. (1996). For the biological activity of β-sultam derivatives, see: Barwick et al. (2008) and references therein.

Experimental top

The compound (I) was synthesized using the procedure reported by Clerici et al. (2002). Part of the material obtained from dichloromethane and diethyl ether (phase A) was dissolved in distilled water and crystallized by slow solvent evaporation at room temperature. After roughly 7 days, very small colorless crystals with the same habit (prism) as the most common phase A appeared. Only the X-ray analysis revealed that in fact a new polymorph (phase B) was obtained.

Refinement top

All hydrogen atoms have been located by difference Fourier. Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); absorption correction: SADABS (Bruker, 2007); program used to solve structure: SHELXS97 (Sheldrick, 2008); program used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphic: DIAMOND (Brandenburg, 2010); overlay scheme: Mercury CSD 2.3

Structure description top

The title compound, (I), a thiazete 1,1 dioxo derivative containing a four-membered heterocycle, exhibits a marked similarity with the β-sultamic functionality, which is the key component of promising antibiotic drugs (Barwick et al., 2008). A new monoclinic polymorph of (I) (hereinafter, phase B: Fig. 1, Table 1) was found upon slow recrystallization from water of a little amount of the phase A, originally obtained from a CH2Cl2:Et2O mixture (Clerici et al., 2002). Both polymorphs share the same space group, P21/n, with one molecule in the asymmetric unit. On average, bond lengths and angles are very similar between the two forms, while the molecular conformations are different. The most important dissimilarity resides in the dihedral angles involving the phenyl-OCH3 single bond, which is rotated by ~180° in the form B with respect to form A (Fig. 2). In both crystal forms the formally single exocyclic C9–N1 bond connecting the –NEt2 moiety to the thiazete ring is considerably shorter (phase B: 1.307 (3) Å; phase A: 1.318 (3) Å) than the adjacent, formally double, endocyclic C9=N2 bond (phase B: 1.331 (3) Å; phase A: 1.327 (3) Å). A possible explanation resides in the existence of an extended π conjugated system between the electron-donor diethylammine fragment and the electron-withdrawing sulfonyl group. This conjecture is supported by the values of the C–N1–C angles, which in both phases range from ~118° to ~122° and are compatible with a formally sp2 tertiary nitrogen atom. Very similar bond distances within the thiazete group have been reported by Clerici et al. (1996) for a chemically related derivative of (I). On geometrical grounds, no relevant intermolecular hydrogen bonds have been found in both phases.

For the synthesis of the title compound and the crystal structure of the other polymorph, see: Clerici et al. (2002). For a related structure, see: Clerici et al. (1996). For the biological activity of β-sultam derivatives, see: Barwick et al. (2008) and references therein.

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), with the non-H atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Least-squares overlay scheme of the asymmetric units of (I) within phase B (this work, carbon backbone in gray) and phase A (Clerici et al., 2002; carbon backbone in green). Hydrogen atoms omitted for clarity.
3-diethylamino-4-(4-methoxyphenyl)-1,1-dioxo-4H-1λ6,2-thiazete- 4-carbonitrile top
Crystal data top
C14H17N3O3SF(000) = 648
Mr = 307.37Dx = 1.331 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2885 reflections
a = 8.3853 (17) Åθ = 2.3–21.6°
b = 17.554 (4) ŵ = 0.22 mm1
c = 10.458 (2) ÅT = 293 K
β = 95.07 (3)°Prism, colourless
V = 1533.4 (5) Å30.18 × 0.16 × 0.16 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
2814 independent reflections
Radiation source: fine-focus sealed tube1949 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω scansθmax = 25.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1010
Tmin = 0.855, Tmax = 0.947k = 2121
16661 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: difference Fourier map
wR(F2) = 0.102All H-atom parameters refined
S = 1.01 w = 1/[σ2(Fo2) + (0.0446P)2 + 0.4078P]
where P = (Fo2 + 2Fc2)/3
2814 reflections(Δ/σ)max < 0.001
258 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C14H17N3O3SV = 1533.4 (5) Å3
Mr = 307.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.3853 (17) ŵ = 0.22 mm1
b = 17.554 (4) ÅT = 293 K
c = 10.458 (2) Å0.18 × 0.16 × 0.16 mm
β = 95.07 (3)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
2814 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1949 reflections with I > 2σ(I)
Tmin = 0.855, Tmax = 0.947Rint = 0.043
16661 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.102All H-atom parameters refined
S = 1.01Δρmax = 0.16 e Å3
2814 reflectionsΔρmin = 0.31 e Å3
258 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.46791 (6)0.19850 (4)0.39836 (6)0.0569 (2)
O10.1824 (2)0.00687 (9)0.10877 (14)0.0636 (5)
O20.57694 (19)0.19314 (11)0.51054 (16)0.0758 (5)
O30.53410 (19)0.20903 (10)0.27881 (16)0.0724 (5)
N10.0608 (2)0.20205 (10)0.44220 (16)0.0472 (4)
N20.3156 (2)0.25469 (11)0.41859 (19)0.0611 (5)
N30.3384 (3)0.02616 (14)0.5764 (2)0.0739 (6)
C10.2489 (4)0.06433 (17)0.1428 (3)0.0698 (8)
C20.2106 (2)0.03021 (12)0.01541 (19)0.0458 (5)
C30.2867 (3)0.01266 (14)0.1123 (2)0.0521 (6)
C40.3129 (3)0.01743 (13)0.2346 (2)0.0491 (5)
C50.1573 (3)0.10253 (13)0.0415 (2)0.0497 (5)
C60.1842 (3)0.13239 (13)0.1623 (2)0.0474 (5)
C70.2636 (2)0.09019 (11)0.26096 (18)0.0395 (5)
C80.3043 (2)0.12520 (12)0.39177 (19)0.0425 (5)
C90.2122 (2)0.19738 (12)0.42216 (19)0.0448 (5)
C100.3242 (2)0.06955 (14)0.4954 (2)0.0496 (5)
C110.0148 (3)0.27758 (15)0.4525 (3)0.0599 (7)
C120.0724 (4)0.3089 (2)0.3236 (3)0.0769 (8)
C130.0377 (3)0.13436 (15)0.4614 (2)0.0553 (6)
C140.0494 (4)0.1173 (2)0.6015 (3)0.0780 (9)
H1A0.226 (3)0.0650 (17)0.234 (3)0.105 (10)*
H1B0.201 (3)0.1077 (16)0.096 (3)0.085 (9)*
H1C0.364 (3)0.0633 (15)0.122 (2)0.081 (9)*
H30.317 (3)0.0621 (14)0.100 (2)0.066 (7)*
H40.367 (2)0.0118 (12)0.299 (2)0.055 (6)*
H50.100 (2)0.1321 (12)0.027 (2)0.055 (6)*
H60.153 (3)0.1815 (13)0.176 (2)0.056 (7)*
H11A0.101 (3)0.2705 (13)0.502 (2)0.068 (7)*
H11B0.064 (3)0.3094 (15)0.495 (2)0.078 (9)*
H12A0.122 (3)0.3602 (18)0.334 (3)0.095 (9)*
H12B0.152 (4)0.2716 (19)0.279 (3)0.114 (12)*
H12C0.016 (4)0.3143 (15)0.271 (3)0.088 (9)*
H13A0.139 (3)0.1458 (12)0.4177 (19)0.053 (6)*
H13B0.008 (2)0.0906 (13)0.4177 (19)0.052 (6)*
H14A0.113 (4)0.073 (2)0.613 (3)0.126 (12)*
H14B0.094 (3)0.1583 (18)0.642 (3)0.095 (10)*
H14C0.062 (4)0.1065 (18)0.653 (3)0.116 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0428 (3)0.0691 (4)0.0599 (4)0.0149 (3)0.0108 (3)0.0137 (3)
O10.0840 (12)0.0642 (11)0.0414 (9)0.0047 (9)0.0024 (8)0.0079 (8)
O20.0492 (9)0.1081 (15)0.0690 (11)0.0171 (9)0.0014 (8)0.0233 (10)
O30.0624 (10)0.0883 (13)0.0705 (11)0.0220 (9)0.0270 (9)0.0068 (10)
N10.0434 (10)0.0506 (11)0.0489 (10)0.0011 (8)0.0116 (8)0.0073 (8)
N20.0559 (12)0.0537 (12)0.0755 (14)0.0126 (9)0.0162 (10)0.0154 (10)
N30.0798 (15)0.0884 (17)0.0534 (13)0.0113 (13)0.0047 (11)0.0129 (12)
C10.092 (2)0.0672 (19)0.0505 (17)0.0020 (17)0.0059 (15)0.0149 (14)
C20.0466 (12)0.0514 (13)0.0392 (12)0.0049 (10)0.0033 (9)0.0013 (10)
C30.0619 (14)0.0448 (14)0.0492 (13)0.0077 (11)0.0032 (10)0.0051 (11)
C40.0510 (13)0.0524 (14)0.0428 (13)0.0089 (11)0.0011 (10)0.0024 (11)
C50.0563 (13)0.0506 (14)0.0417 (12)0.0046 (11)0.0010 (10)0.0066 (11)
C60.0517 (13)0.0415 (13)0.0495 (14)0.0046 (10)0.0072 (10)0.0021 (11)
C70.0355 (10)0.0430 (12)0.0405 (11)0.0034 (9)0.0066 (8)0.0013 (9)
C80.0371 (11)0.0492 (13)0.0415 (12)0.0022 (9)0.0054 (9)0.0042 (10)
C90.0437 (11)0.0491 (13)0.0422 (12)0.0050 (10)0.0064 (9)0.0074 (10)
C100.0447 (12)0.0619 (15)0.0421 (13)0.0007 (11)0.0040 (10)0.0062 (12)
C110.0602 (16)0.0581 (16)0.0635 (17)0.0092 (13)0.0169 (13)0.0099 (13)
C120.083 (2)0.073 (2)0.077 (2)0.0205 (18)0.0162 (17)0.0058 (17)
C130.0408 (13)0.0619 (16)0.0640 (16)0.0094 (11)0.0095 (11)0.0148 (13)
C140.085 (2)0.078 (2)0.077 (2)0.0188 (19)0.0353 (18)0.0019 (17)
Geometric parameters (Å, º) top
S1—O31.4241 (17)C5—C61.369 (3)
S1—O21.4252 (18)C5—H50.98 (2)
S1—N21.642 (2)C6—C71.391 (3)
S1—C81.878 (2)C6—H60.92 (2)
O1—C21.362 (2)C7—C81.511 (3)
O1—C11.426 (3)C8—C101.457 (3)
N1—C91.307 (3)C8—C91.532 (3)
N1—C131.471 (3)C11—C121.496 (4)
N1—C111.478 (3)C11—H11A0.94 (2)
N2—C91.331 (3)C11—H11B0.95 (3)
N3—C101.138 (3)C12—H12A1.00 (3)
C1—H1A0.96 (3)C12—H12B1.02 (3)
C1—H1B1.01 (3)C12—H12C0.97 (3)
C1—H1C0.97 (3)C13—C141.508 (4)
C2—C31.373 (3)C13—H13A0.95 (2)
C2—C51.381 (3)C13—H13B0.99 (2)
C3—C41.384 (3)C14—H14A0.95 (4)
C3—H30.92 (2)C14—H14B0.93 (3)
C4—C71.377 (3)C14—H14C1.06 (3)
C4—H40.94 (2)
O3—S1—O2117.38 (11)C10—C8—C7113.72 (18)
O3—S1—N2113.77 (11)C10—C8—C9115.25 (17)
O2—S1—N2112.54 (11)C7—C8—C9116.52 (17)
O3—S1—C8113.38 (10)C10—C8—S1113.39 (14)
O2—S1—C8113.47 (10)C7—C8—S1114.70 (13)
N2—S1—C880.92 (9)C9—C8—S178.81 (12)
C2—O1—C1117.5 (2)N1—C9—N2127.0 (2)
C9—N1—C13122.43 (19)N1—C9—C8126.87 (18)
C9—N1—C11119.8 (2)N2—C9—C8106.11 (17)
C13—N1—C11117.72 (19)N3—C10—C8179.4 (2)
C9—N2—S193.77 (15)N1—C11—C12111.7 (2)
O1—C1—H1A102.2 (18)N1—C11—H11A106.2 (15)
O1—C1—H1B111.1 (15)C12—C11—H11A110.1 (15)
H1A—C1—H1B115 (2)N1—C11—H11B106.1 (16)
O1—C1—H1C109.3 (16)C12—C11—H11B111.2 (16)
H1A—C1—H1C109 (2)H11A—C11—H11B111 (2)
H1B—C1—H1C110 (2)C11—C12—H12A109.8 (16)
O1—C2—C3124.6 (2)C11—C12—H12B108.9 (18)
O1—C2—C5115.63 (19)H12A—C12—H12B111 (2)
C3—C2—C5119.7 (2)C11—C12—H12C110.2 (17)
C2—C3—C4119.9 (2)H12A—C12—H12C109 (2)
C2—C3—H3122.2 (15)H12B—C12—H12C108 (2)
C4—C3—H3117.9 (15)N1—C13—C14112.2 (2)
C7—C4—C3120.9 (2)N1—C13—H13A104.7 (13)
C7—C4—H4120.0 (13)C14—C13—H13A112.1 (13)
C3—C4—H4119.1 (13)N1—C13—H13B108.5 (12)
C6—C5—C2120.3 (2)C14—C13—H13B110.8 (12)
C6—C5—H5120.4 (12)H13A—C13—H13B108.2 (17)
C2—C5—H5119.3 (12)C13—C14—H14A111 (2)
C5—C6—C7120.7 (2)C13—C14—H14B110.7 (19)
C5—C6—H6118.4 (14)H14A—C14—H14B109 (3)
C7—C6—H6120.8 (14)C13—C14—H14C113.6 (17)
C4—C7—C6118.55 (19)H14A—C14—H14C106 (3)
C4—C7—C8120.69 (18)H14B—C14—H14C106 (3)
C6—C7—C8120.64 (19)
O3—S1—N2—C9116.10 (15)N2—S1—C8—C10116.78 (16)
O2—S1—N2—C9107.28 (15)O3—S1—C8—C71.80 (19)
C8—S1—N2—C94.46 (13)O2—S1—C8—C7139.02 (15)
C1—O1—C2—C35.7 (3)N2—S1—C8—C7110.27 (16)
C1—O1—C2—C5174.0 (2)O3—S1—C8—C9116.00 (13)
O1—C2—C3—C4178.3 (2)O2—S1—C8—C9106.78 (13)
C5—C2—C3—C41.5 (3)N2—S1—C8—C93.94 (12)
C2—C3—C4—C70.1 (3)C13—N1—C9—N2171.6 (2)
O1—C2—C5—C6177.87 (19)C11—N1—C9—N25.4 (3)
C3—C2—C5—C61.9 (3)C13—N1—C9—C811.5 (3)
C2—C5—C6—C70.8 (3)C11—N1—C9—C8171.5 (2)
C3—C4—C7—C61.2 (3)S1—N2—C9—N1176.98 (19)
C3—C4—C7—C8174.95 (19)S1—N2—C9—C85.62 (17)
C5—C6—C7—C40.7 (3)C10—C8—C9—N166.9 (3)
C5—C6—C7—C8175.38 (19)C7—C8—C9—N170.2 (3)
C4—C7—C8—C1028.1 (3)S1—C8—C9—N1177.6 (2)
C6—C7—C8—C10155.89 (18)C10—C8—C9—N2115.7 (2)
C4—C7—C8—C9165.80 (18)C7—C8—C9—N2107.2 (2)
C6—C7—C8—C918.2 (3)S1—C8—C9—N25.00 (15)
C4—C7—C8—S1104.7 (2)C9—N1—C11—C1285.4 (3)
C6—C7—C8—S171.3 (2)C13—N1—C11—C1297.4 (3)
O3—S1—C8—C10131.15 (16)C9—N1—C13—C1496.4 (3)
O2—S1—C8—C106.06 (19)C11—N1—C13—C1480.6 (3)

Experimental details

Crystal data
Chemical formulaC14H17N3O3S
Mr307.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.3853 (17), 17.554 (4), 10.458 (2)
β (°) 95.07 (3)
V3)1533.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.18 × 0.16 × 0.16
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.855, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
16661, 2814, 1949
Rint0.043
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.102, 1.01
No. of reflections2814
No. of parameters258
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.16, 0.31

Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2010).

Selected bond lengths (Å) top
S1—N21.642 (2)N1—C91.307 (3)
S1—C81.878 (2)N2—C91.331 (3)
 

Acknowledgements

Thanks are due to Professor Riccardo Destro (Università degli Studi di Milano) for thoughtful discussions and to Professor Francesca Clerici (Università degli Studi di Milano) for providing the crystal. Dr Laura Loconte (Università degli Studi di Milano) and Mr Pietro Colombo (Consiglio Nazionale delle Ricerche) are also to be thanked for technical assistance. Financial support by the Italian MIUR (fondi PUR 2008) is also gratefully appreciated.

References

First citationBarwick, M., Abu-Izneid, T. & Novak, I. (2008). J. Phys. Chem. 112, 10993–10997.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClerici, F., Galletti, F., Pocar, D. & Roversi, P. (1996). Tetrahedron, 52, 7183–7199.  CSD CrossRef CAS Web of Science Google Scholar
First citationClerici, F., Gelmi, M. L., Soave, R. & Lo Presti, L. (2002). Tetrahedron, 58, 5173–5178.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds