organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Di­phenyl-2,2′-bi-1,3-thia­zole

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 8 July 2010; accepted 9 July 2010; online 17 July 2010)

In the centrosymmetric title compound, C18H12N2S24, the five- (r.m.s. deviation = 0.002 Å) and six-membered (r.m.s. deviation = 0.002 Å) rings are essentially coplanar [dihedral angle between rings = 1.9 (1)°].

Related literature

For the crystal structures of other 4,4′-disubstituted compounds, see: Bolognesi et al. (1987[Bolognesi, A., Catellani, M., Destri, S. & Porzio, W. (1987). Acta Cryst. C43, 1171-1173.]); Craig et al. (1988[Craig, D. C., Goodwin, H. A., Onggo, D. & Rae, A. D. (1988). Aust. J. Chem. 41, 1625-1644.]); Curtis et al. (2004[Curtis, D., Cao, J. & Kampf, J. F. (2004). J. Am. Chem. Soc. 126, 4318-4328.]).

[Scheme 1]

Experimental

Crystal data
  • C18H12N2S2

  • Mr = 320.42

  • Monoclinic, P 21 /c

  • a = 5.7769 (4) Å

  • b = 7.6573 (5) Å

  • c = 17.1960 (12) Å

  • β = 99.614 (1)°

  • V = 749.99 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 100 K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.902, Tmax = 0.966

  • 6993 measured reflections

  • 1730 independent reflections

  • 1575 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.079

  • S = 1.04

  • 1730 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

2,2'-Bithiazole and other 4,4'-disubstituted derivatives possess a pair of nitrogen-donor sites that renders such molecules capable of chelating metal atoms. The crystal structure of the parent compound as well as those of the methyl and ethyl substituted derivatives have been reported (Bolognesi et al., 1987; Craig et al., 1988, Curtis et al., 2004). These molecules are centrosymmetric compounds having an inversion center midway along the Cazolyl–Cazolyl bond. In the parent compound, this bond is 1.468 (6) Å (Bolognesi et al., 1987). The bond is somewhat shortened to 1.455 (2) Å in the phenyl analog (Scheme I, Fig. 1).

Related literature top

For the crystal structures of other 4,4'-disubstituted compounds, see: Bolognesi et al. (1987); Craig et al. (1988); Curtis et al. (2004).

Experimental top

The organic compound was returned unchanged in an attempted reaction of lead(II) nitrate (0.13 mmol, 0.04 g) with 4,4'-diphenyl-2,2'-bithiazole (0.25 mmol, 0.08 g) in the presence of potassium thiocyanate (0.25 mmol, 0.03 g) in a methanol/THF mixture. Crystals were obtained after one week of setting the mixture aside.

Refinement top

Hydrogen atoms were placed in calculated positions (C–H 0.95 Å) and included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).

Structure description top

2,2'-Bithiazole and other 4,4'-disubstituted derivatives possess a pair of nitrogen-donor sites that renders such molecules capable of chelating metal atoms. The crystal structure of the parent compound as well as those of the methyl and ethyl substituted derivatives have been reported (Bolognesi et al., 1987; Craig et al., 1988, Curtis et al., 2004). These molecules are centrosymmetric compounds having an inversion center midway along the Cazolyl–Cazolyl bond. In the parent compound, this bond is 1.468 (6) Å (Bolognesi et al., 1987). The bond is somewhat shortened to 1.455 (2) Å in the phenyl analog (Scheme I, Fig. 1).

For the crystal structures of other 4,4'-disubstituted compounds, see: Bolognesi et al. (1987); Craig et al. (1988); Curtis et al. (2004).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (Barbour, 2001) of C18H12N2S2 at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. The molecule lies on an inversion center.
4,4'-Diphenyl-2,2'-bi-1,3-thiazole top
Crystal data top
C18H12N2S2F(000) = 332
Mr = 320.42Dx = 1.419 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4091 reflections
a = 5.7769 (4) Åθ = 2.4–28.3°
b = 7.6573 (5) ŵ = 0.35 mm1
c = 17.1960 (12) ÅT = 100 K
β = 99.614 (1)°Prism, colorless
V = 749.99 (9) Å30.30 × 0.10 × 0.10 mm
Z = 2
Data collection top
Bruker SMART APEX
diffractometer
1730 independent reflections
Radiation source: fine-focus sealed tube1575 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.902, Tmax = 0.966k = 99
6993 measured reflectionsl = 2122
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0421P)2 + 0.350P]
where P = (Fo2 + 2Fc2)/3
1730 reflections(Δ/σ)max = 0.001
100 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C18H12N2S2V = 749.99 (9) Å3
Mr = 320.42Z = 2
Monoclinic, P21/cMo Kα radiation
a = 5.7769 (4) ŵ = 0.35 mm1
b = 7.6573 (5) ÅT = 100 K
c = 17.1960 (12) Å0.30 × 0.10 × 0.10 mm
β = 99.614 (1)°
Data collection top
Bruker SMART APEX
diffractometer
1730 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1575 reflections with I > 2σ(I)
Tmin = 0.902, Tmax = 0.966Rint = 0.026
6993 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.04Δρmax = 0.42 e Å3
1730 reflectionsΔρmin = 0.24 e Å3
100 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.76174 (5)0.35670 (4)0.446214 (17)0.01797 (12)
N10.35546 (18)0.49301 (13)0.39798 (6)0.0151 (2)
C10.2750 (2)0.43006 (15)0.25545 (7)0.0139 (2)
C20.0586 (2)0.51551 (16)0.24862 (7)0.0156 (2)
H20.01320.56900.29360.019*
C30.0906 (2)0.52260 (16)0.17611 (7)0.0179 (3)
H30.23770.58040.17190.022*
C40.0255 (2)0.44574 (17)0.10999 (7)0.0198 (3)
H40.12780.45050.06070.024*
C50.1903 (2)0.36157 (16)0.11614 (7)0.0193 (3)
H50.23550.30940.07080.023*
C60.3399 (2)0.35345 (15)0.18827 (7)0.0165 (3)
H60.48680.29570.19210.020*
C70.4293 (2)0.41960 (15)0.33292 (7)0.0140 (2)
C80.6444 (2)0.34026 (16)0.34867 (7)0.0167 (3)
H80.71860.28350.31030.020*
C90.5133 (2)0.46895 (15)0.46100 (7)0.0150 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01731 (17)0.02092 (18)0.01515 (17)0.00472 (11)0.00112 (12)0.00100 (11)
N10.0165 (5)0.0146 (5)0.0145 (5)0.0003 (4)0.0035 (4)0.0003 (4)
C10.0159 (6)0.0113 (5)0.0149 (6)0.0023 (4)0.0038 (4)0.0007 (4)
C20.0166 (6)0.0142 (6)0.0167 (6)0.0010 (4)0.0046 (5)0.0004 (4)
C30.0156 (6)0.0155 (6)0.0221 (6)0.0006 (4)0.0014 (5)0.0004 (5)
C40.0229 (7)0.0179 (6)0.0167 (6)0.0023 (5)0.0020 (5)0.0003 (5)
C50.0256 (7)0.0179 (6)0.0147 (6)0.0011 (5)0.0044 (5)0.0030 (4)
C60.0180 (6)0.0149 (6)0.0172 (6)0.0006 (4)0.0040 (5)0.0007 (4)
C70.0168 (6)0.0115 (5)0.0145 (5)0.0017 (4)0.0043 (4)0.0004 (4)
C80.0187 (6)0.0176 (6)0.0141 (5)0.0006 (4)0.0034 (4)0.0013 (4)
C90.0164 (6)0.0134 (5)0.0157 (6)0.0001 (4)0.0041 (4)0.0001 (4)
Geometric parameters (Å, º) top
S1—C81.7056 (12)C3—H30.9500
S1—C91.7278 (12)C4—C51.3914 (18)
N1—C91.3076 (15)C4—H40.9500
N1—C71.3817 (15)C5—C61.3897 (17)
C1—C21.3981 (16)C5—H50.9500
C1—C61.4013 (16)C6—H60.9500
C1—C71.4762 (16)C7—C81.3690 (17)
C2—C31.3934 (17)C8—H80.9500
C2—H20.9500C9—C9i1.455 (2)
C3—C41.3870 (18)
C8—S1—C988.74 (6)C6—C5—H5119.9
C9—N1—C7110.30 (10)C4—C5—H5119.9
C2—C1—C6119.02 (11)C5—C6—C1120.33 (11)
C2—C1—C7119.86 (11)C5—C6—H6119.8
C6—C1—C7121.11 (11)C1—C6—H6119.8
C3—C2—C1120.28 (11)C8—C7—N1114.40 (11)
C3—C2—H2119.9C8—C7—C1126.45 (11)
C1—C2—H2119.9N1—C7—C1119.14 (10)
C4—C3—C2120.33 (11)C7—C8—S1111.12 (9)
C4—C3—H3119.8C7—C8—H8124.4
C2—C3—H3119.8S1—C8—H8124.4
C3—C4—C5119.76 (11)N1—C9—C9i123.47 (14)
C3—C4—H4120.1N1—C9—S1115.44 (9)
C5—C4—H4120.1C9i—C9—S1121.09 (12)
C6—C5—C4120.27 (11)
C6—C1—C2—C30.60 (17)C6—C1—C7—C80.67 (18)
C7—C1—C2—C3178.53 (11)C2—C1—C7—N10.83 (16)
C1—C2—C3—C40.32 (18)C6—C1—C7—N1178.29 (11)
C2—C3—C4—C50.17 (18)N1—C7—C8—S10.35 (13)
C3—C4—C5—C60.36 (19)C1—C7—C8—S1179.35 (9)
C4—C5—C6—C10.06 (18)C9—S1—C8—C70.34 (10)
C2—C1—C6—C50.41 (17)C7—N1—C9—C9i179.94 (14)
C7—C1—C6—C5178.71 (11)C7—N1—C9—S10.14 (13)
C9—N1—C7—C80.13 (15)C8—S1—C9—N10.28 (10)
C9—N1—C7—C1179.22 (10)C8—S1—C9—C9i179.80 (14)
C2—C1—C7—C8179.79 (12)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC18H12N2S2
Mr320.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)5.7769 (4), 7.6573 (5), 17.1960 (12)
β (°) 99.614 (1)
V3)749.99 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.902, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
6993, 1730, 1575
Rint0.026
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.079, 1.04
No. of reflections1730
No. of parameters100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.24

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

I thank the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBolognesi, A., Catellani, M., Destri, S. & Porzio, W. (1987). Acta Cryst. C43, 1171–1173.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCraig, D. C., Goodwin, H. A., Onggo, D. & Rae, A. D. (1988). Aust. J. Chem. 41, 1625–1644.  CSD CrossRef CAS Google Scholar
First citationCurtis, D., Cao, J. & Kampf, J. F. (2004). J. Am. Chem. Soc. 126, 4318–4328.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds