metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A binuclear molybdenum oxyfluoride: μ-oxido-bis­­[(2,2′-bipyrid­yl)fluoridodioxidomolybdenum(VI)]

aDepartment of Chemistry, Syracuse University, Syracuse, New York 13244, USA
*Correspondence e-mail: jazubiet@syr.edu

(Received 27 May 2010; accepted 4 July 2010; online 10 July 2010)

The title compound, [Mo2F2O5(C10H8N2)2], is a centrosymmetric binuclear molybdenum(VI) species with the metal atoms in a distorted octa­hedral environment. The coordination geometries of the symmetry-equivalent molybdenum sites are defined by the cis-terminal oxide groups and the N-atom donors of the bipyridyl ligand in the equatorial plane with axial F and bridging O atoms. The bridging O atom occupies a center of symmetry. The mol­ecules stack in the a-axis direction, and the crystal packing is stabilized by weak intra- and inter­molecular C—H⋯O and C—H⋯F hydrogen bonds.

Related literature

For oxidofluoridomolybdates and -vanadates, see: Adil et al. (2010[Adil, K., Leblanc, M., Maisonneuve, V. & Lightfoot, P. (2010). Dalton Trans. pp. 5983-5993.]); Burkholder & Zubieta (2004[Burkholder, E. & Zubieta, J. (2004). Inorg. Chim. Acta, 357, 279-284.]); Jones et al. (2010[Jones, S., Liu, H., Ouellette, W., Schmidtke, K. O., Connor, C. J. & Zubieta, J. (2010). Inorg. Chem. Commun. 13, 491-494.]); Michailovski et al. (2006[Michailovski, A., Rüegger, H., Skeptzakov, D. & Patzke, G. R. (2006). Inorg. Chem. 45, 5641-5652.], 2009[Michailovski, A., Hussain, F., Springler, B., Wagler, J. & Patzke, G. R. (2009). Cryst. Growth Des. 9, 755-765.]).

[Scheme 1]

Experimental

Crystal data
  • [Mo2F2O5(C10H8N2)2]

  • Mr = 622.25

  • Monoclinic, P 21 /c

  • a = 6.9180 (4) Å

  • b = 15.6494 (8) Å

  • c = 10.4544 (5) Å

  • β = 108.933 (1)°

  • V = 1070.59 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.23 mm−1

  • T = 90 K

  • 0.30 × 0.24 × 0.18 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.709, Tmax = 0.809

  • 10668 measured reflections

  • 2647 independent reflections

  • 2609 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.094

  • S = 1.39

  • 2647 reflections

  • 183 parameters

  • All H-atom parameters refined

  • Δρmax = 0.81 e Å−3

  • Δρmin = −1.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1 0.95 (5) 2.56 (5) 3.104 (6) 117 (3)
C2—H2⋯F1i 0.92 (5) 2.39 (5) 3.201 (5) 146 (4)
C2—H2⋯F1ii 0.92 (5) 2.59 (5) 3.103 (5) 116 (4)
C3—H3⋯F1ii 0.89 (6) 2.71 (6) 3.183 (5) 115 (5)
C4—H4⋯O1iii 0.88 (5) 2.52 (5) 3.224 (5) 137 (4)
C7—H7⋯O1iii 0.90 (6) 2.42 (6) 3.263 (6) 155 (5)
C8—H8⋯F1iv 0.90 (6) 2.57 (6) 3.435 (5) 162 (5)
C8—H8⋯O2iv 0.90 (6) 2.66 (6) 3.317 (6) 130 (5)
C9—H9⋯O2v 0.89 (6) 2.70 (6) 3.207 (6) 117 (4)
C10—H10⋯O2v 0.87 (6) 2.47 (5) 3.063 (5) 126 (4)
C10—H10⋯O2 0.87 (6) 2.68 (5) 3.199 (6) 120 (4)
Symmetry codes: (i) x-1, y, z; (ii) -x, -y+1, -z+1; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (Palmer, 2005[Palmer, D. (2005). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The contemporary interest in metal oxides reflects their vast compositional range and structural versatility. One area of oxide chemistry that has witnessed considerable activity is that of zeolitic materials, compositions forming open-framework structures consisting of metal oxide components and organic moieties acting as charge compensating cations, structure-directing agents or ligands. While the majority of these materials are simple oxides or oxyanion based, the introduction of fluoride to substitute for some oxo-groups provides a novel class of oxyfluorometalates (Adil et al., 2010; Jones, et al., 2010; Michailovski, et al., 2006 and 2009; Burkholder and Zubieta, 2004).

In the course of our investigations of organic-inorganic oxide hybrid materials of molybdenum and vanadium, we have noted that F- is a useful mineralizing agent. However, under appropriate conditions of temperature and stoichiometry, fluoride may be incorporated into the coordinate covalent framework of the material to provide novel oxyfluorometalate composites. In the course of these investigations, the title compound [Mo2F2O5(bpy)2] was isolated.

The compound crystallizes in the monoclinic space group P21/c with two binuclear molecules per unit cell. The bridging oxo-group sits at a center of symmetry producing equivalent molybdenum sites. The coordination geometry is distorted octahedral with cis-dioxo groups and the bipyridine nitrogen donors in the equatorial plane; the axial positions are occupied by a terminal fluoride and the bridging oxo-group. The Mo—O (bridging) distance of 1.8747 (4)Å is considerably longer than the Mo—O (terminal) distances of 1.705 (3)Å and 1.710 (3) Å, as anticipated. The Mo—N distances of 2.319 (3)Å and 2.341 (3)Å exhibit the elongation associated with the strong trans-influence of the multiply-bonded oxo-groups. As shown in Figure, the molecules stack along the a-axial direction. The crystal packing is stabilized by weak intra- and intermolecular C—H···O and C—H···F hydrogen bonds (Table).

Related literature top

For oxyfluoromolybdates and oxyfluorovanadates see Adil et al. (2010); Burkholder & Zubieta (2004); Jones et al. (2010); Michailovski et al. (2006, 2009).

Experimental top

A mixture of MoO3 (0.049 g, 0.34 mmol), 2,2-bipyridyl (0.316 g, 2.02 mmol), H2O (5.00 mL, 277.47 mmol), and HF (0.200 mL, 5.80 mmol) in the mole ratio 1.00:595:816:17.06 was stirred briefly before heating to 70 ° C for 48 hrs (initial and final pH values of 3.5 and 3.0, respectively). Pink blocks suitable for X-ray diffraction were isolated in 40 % yield. Anal. Calcd. for C20H16F2Mo2N4O5: C, 38.6; H, 2.57; N, 9.00. Found: C, 38.3; H, 2.44; N, 9.12.

Refinement top

All the hydrogen atoms were discernable in the difference electron density map and were freely refined.

Structure description top

The contemporary interest in metal oxides reflects their vast compositional range and structural versatility. One area of oxide chemistry that has witnessed considerable activity is that of zeolitic materials, compositions forming open-framework structures consisting of metal oxide components and organic moieties acting as charge compensating cations, structure-directing agents or ligands. While the majority of these materials are simple oxides or oxyanion based, the introduction of fluoride to substitute for some oxo-groups provides a novel class of oxyfluorometalates (Adil et al., 2010; Jones, et al., 2010; Michailovski, et al., 2006 and 2009; Burkholder and Zubieta, 2004).

In the course of our investigations of organic-inorganic oxide hybrid materials of molybdenum and vanadium, we have noted that F- is a useful mineralizing agent. However, under appropriate conditions of temperature and stoichiometry, fluoride may be incorporated into the coordinate covalent framework of the material to provide novel oxyfluorometalate composites. In the course of these investigations, the title compound [Mo2F2O5(bpy)2] was isolated.

The compound crystallizes in the monoclinic space group P21/c with two binuclear molecules per unit cell. The bridging oxo-group sits at a center of symmetry producing equivalent molybdenum sites. The coordination geometry is distorted octahedral with cis-dioxo groups and the bipyridine nitrogen donors in the equatorial plane; the axial positions are occupied by a terminal fluoride and the bridging oxo-group. The Mo—O (bridging) distance of 1.8747 (4)Å is considerably longer than the Mo—O (terminal) distances of 1.705 (3)Å and 1.710 (3) Å, as anticipated. The Mo—N distances of 2.319 (3)Å and 2.341 (3)Å exhibit the elongation associated with the strong trans-influence of the multiply-bonded oxo-groups. As shown in Figure, the molecules stack along the a-axial direction. The crystal packing is stabilized by weak intra- and intermolecular C—H···O and C—H···F hydrogen bonds (Table).

For oxyfluoromolybdates and oxyfluorovanadates see Adil et al. (2010); Burkholder & Zubieta (2004); Jones et al. (2010); Michailovski et al. (2006, 2009).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the asymmetric unit of the title structure, with the atom numbering scheme and the displacement ellipsoids drawn at the 50% probability level. Color scheme: molybdenum, dark green; fluorine, light green; oxygen, red; nitrogen, blue; carbon, black; hydrogen, pink.
[Figure 2] Fig. 2. A packing diagram illustrating the stacking of binuclear units of the title compound. Color code as for Fig. 1.
µ-oxido-bis[(2,2'-bipyridyl)fluoridodioxidomolybdenum(VI)] top
Crystal data top
[Mo2F2O5(C10H8N2)2]F(000) = 612
Mr = 622.25Dx = 1.930 Mg m3
Dm = 1.91 (2) Mg m3
Dm measured by flotation
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5107 reflections
a = 6.9180 (4) Åθ = 2.4–28.3°
b = 15.6494 (8) ŵ = 1.23 mm1
c = 10.4544 (5) ÅT = 90 K
β = 108.933 (1)°Block, pink
V = 1070.59 (10) Å30.30 × 0.24 × 0.18 mm
Z = 2
Data collection top
Bruker APEX CCD area-detector
diffractometer
2647 independent reflections
Radiation source: fine-focus sealed tube2609 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 512 pixels mm-1θmax = 28.3°, θmin = 2.4°
Phi and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2020
Tmin = 0.709, Tmax = 0.809l = 1313
10668 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094All H-atom parameters refined
S = 1.39 w = 1/[σ2(Fo2) + 5.6215P]
where P = (Fo2 + 2Fc2)/3
2647 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 1.47 e Å3
Crystal data top
[Mo2F2O5(C10H8N2)2]V = 1070.59 (10) Å3
Mr = 622.25Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.9180 (4) ŵ = 1.23 mm1
b = 15.6494 (8) ÅT = 90 K
c = 10.4544 (5) Å0.30 × 0.24 × 0.18 mm
β = 108.933 (1)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
2647 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2609 reflections with I > 2σ(I)
Tmin = 0.709, Tmax = 0.809Rint = 0.025
10668 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.094All H-atom parameters refined
S = 1.39Δρmax = 0.81 e Å3
2647 reflectionsΔρmin = 1.47 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.17273 (6)0.44676 (2)0.15590 (4)0.01481 (11)
F10.3489 (4)0.44354 (17)0.3426 (3)0.0209 (5)
O10.0243 (6)0.3616 (2)0.1657 (4)0.0291 (8)
O20.3584 (6)0.4088 (2)0.0957 (4)0.0286 (8)
O30.00000.50000.00000.0239 (10)
N10.0007 (5)0.5318 (2)0.2675 (3)0.0137 (7)
N20.2982 (5)0.5853 (2)0.1807 (3)0.0129 (7)
C10.1496 (6)0.5004 (3)0.3104 (4)0.0151 (8)
C20.2287 (7)0.5437 (3)0.3968 (4)0.0192 (9)
C30.1536 (7)0.6243 (3)0.4397 (5)0.0211 (9)
C40.0038 (7)0.6590 (3)0.3931 (4)0.0177 (8)
C50.0695 (6)0.6111 (3)0.3071 (4)0.0127 (7)
C60.2238 (6)0.6437 (3)0.2474 (4)0.0142 (8)
C70.2838 (7)0.7292 (3)0.2557 (5)0.0189 (9)
C80.4185 (7)0.7546 (3)0.1895 (5)0.0205 (9)
C90.4902 (7)0.6952 (3)0.1185 (4)0.0189 (9)
C100.4269 (7)0.6112 (3)0.1168 (4)0.0167 (8)
H10.197 (7)0.445 (3)0.277 (5)0.011 (11)*
H20.333 (8)0.519 (3)0.420 (5)0.014 (12)*
H30.194 (9)0.653 (4)0.499 (6)0.032 (16)*
H40.046 (7)0.710 (3)0.420 (5)0.008 (11)*
H70.234 (8)0.767 (4)0.302 (6)0.026 (14)*
H80.463 (9)0.809 (4)0.193 (6)0.031 (15)*
H90.573 (8)0.710 (4)0.073 (5)0.025 (14)*
H100.472 (8)0.571 (4)0.077 (5)0.023 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.02326 (19)0.00943 (16)0.01567 (18)0.00208 (14)0.01173 (14)0.00183 (14)
F10.0205 (13)0.0233 (13)0.0216 (12)0.0055 (11)0.0105 (10)0.0058 (11)
O10.042 (2)0.0135 (15)0.039 (2)0.0115 (14)0.0229 (18)0.0069 (14)
O20.046 (2)0.0189 (16)0.0340 (19)0.0046 (15)0.0316 (18)0.0013 (14)
O30.033 (3)0.022 (2)0.014 (2)0.006 (2)0.0024 (19)0.0039 (18)
N10.0144 (16)0.0139 (16)0.0122 (16)0.0008 (13)0.0036 (13)0.0006 (13)
N20.0158 (16)0.0108 (15)0.0123 (16)0.0032 (13)0.0048 (13)0.0014 (12)
C10.016 (2)0.016 (2)0.0116 (19)0.0026 (16)0.0028 (15)0.0050 (15)
C20.0159 (19)0.025 (2)0.019 (2)0.0019 (17)0.0089 (16)0.0024 (18)
C30.026 (2)0.023 (2)0.018 (2)0.0085 (19)0.0124 (18)0.0020 (18)
C40.022 (2)0.0133 (19)0.018 (2)0.0006 (17)0.0069 (17)0.0006 (16)
C50.0139 (18)0.0119 (18)0.0115 (18)0.0024 (15)0.0031 (15)0.0021 (14)
C60.0143 (19)0.0116 (18)0.0168 (19)0.0007 (15)0.0051 (16)0.0022 (15)
C70.023 (2)0.0126 (19)0.022 (2)0.0015 (17)0.0085 (18)0.0035 (17)
C80.023 (2)0.015 (2)0.023 (2)0.0050 (17)0.0061 (18)0.0029 (17)
C90.020 (2)0.022 (2)0.017 (2)0.0019 (17)0.0091 (17)0.0043 (17)
C100.020 (2)0.0145 (19)0.017 (2)0.0005 (16)0.0085 (17)0.0023 (16)
Geometric parameters (Å, º) top
Mo1—O11.705 (3)C2—H20.92 (5)
Mo1—O21.710 (3)C3—C41.391 (6)
Mo1—O31.8747 (4)C3—H30.89 (6)
Mo1—F11.937 (3)C4—C51.387 (6)
Mo1—N22.319 (3)C4—H40.88 (5)
Mo1—N12.341 (3)C5—C61.491 (6)
O3—Mo1i1.8747 (4)C6—C71.395 (6)
N1—C11.344 (5)C7—C81.387 (6)
N1—C51.347 (5)C7—H70.90 (6)
N2—C101.336 (5)C8—C91.378 (6)
N2—C61.350 (5)C8—H80.90 (6)
C1—C21.376 (6)C9—C101.385 (6)
C1—H10.95 (5)C9—H90.89 (6)
C2—C31.383 (7)C10—H100.87 (6)
O1—Mo1—O2106.83 (17)C1—C2—H2118 (3)
O1—Mo1—O399.97 (14)C3—C2—H2123 (3)
O2—Mo1—O3100.21 (13)C2—C3—C4119.1 (4)
O1—Mo1—F196.52 (15)C2—C3—H3122 (4)
O2—Mo1—F193.42 (15)C4—C3—H3119 (4)
O3—Mo1—F1154.49 (8)C5—C4—C3119.1 (4)
O1—Mo1—N2159.21 (14)C5—C4—H4121 (3)
O2—Mo1—N293.84 (14)C3—C4—H4120 (3)
O3—Mo1—N277.95 (8)N1—C5—C4121.7 (4)
F1—Mo1—N279.72 (12)N1—C5—C6115.0 (3)
O1—Mo1—N189.94 (14)C4—C5—C6123.2 (4)
O2—Mo1—N1161.53 (15)N2—C6—C7121.7 (4)
O3—Mo1—N184.00 (8)N2—C6—C5115.4 (4)
F1—Mo1—N176.66 (11)C7—C6—C5122.8 (4)
N2—Mo1—N169.28 (12)C8—C7—C6118.6 (4)
Mo1—O3—Mo1i180.0C8—C7—H7121 (4)
C1—N1—C5118.3 (4)C6—C7—H7121 (4)
C1—N1—Mo1122.0 (3)C9—C8—C7119.6 (4)
C5—N1—Mo1119.0 (3)C9—C8—H8119 (4)
C10—N2—C6118.7 (4)C7—C8—H8122 (4)
C10—N2—Mo1120.9 (3)C8—C9—C10118.6 (4)
C6—N2—Mo1120.0 (3)C8—C9—H9122 (4)
N1—C1—C2123.3 (4)C10—C9—H9120 (4)
N1—C1—H1115 (3)N2—C10—C9122.7 (4)
C2—C1—H1122 (3)N2—C10—H10115 (4)
C1—C2—C3118.3 (4)C9—C10—H10122 (4)
O1—Mo1—N1—C11.4 (3)C1—C2—C3—C40.8 (7)
O2—Mo1—N1—C1154.2 (4)C2—C3—C4—C51.4 (7)
O3—Mo1—N1—C1101.4 (3)C1—N1—C5—C41.9 (6)
F1—Mo1—N1—C195.3 (3)Mo1—N1—C5—C4168.8 (3)
N2—Mo1—N1—C1179.2 (3)C1—N1—C5—C6175.8 (3)
O1—Mo1—N1—C5171.7 (3)Mo1—N1—C5—C613.5 (4)
O2—Mo1—N1—C516.1 (6)C3—C4—C5—N10.0 (6)
O3—Mo1—N1—C588.2 (3)C3—C4—C5—C6177.6 (4)
F1—Mo1—N1—C575.0 (3)C10—N2—C6—C72.5 (6)
N2—Mo1—N1—C58.9 (3)Mo1—N2—C6—C7175.0 (3)
O1—Mo1—N2—C10168.0 (4)C10—N2—C6—C5175.6 (4)
O2—Mo1—N2—C1018.0 (3)Mo1—N2—C6—C53.0 (5)
O3—Mo1—N2—C1081.7 (3)N1—C5—C6—N210.7 (5)
F1—Mo1—N2—C10110.7 (3)C4—C5—C6—N2171.6 (4)
N1—Mo1—N2—C10169.7 (3)N1—C5—C6—C7167.3 (4)
O1—Mo1—N2—C64.3 (6)C4—C5—C6—C710.3 (7)
O2—Mo1—N2—C6169.7 (3)N2—C6—C7—C82.1 (7)
O3—Mo1—N2—C690.7 (3)C5—C6—C7—C8175.9 (4)
F1—Mo1—N2—C676.9 (3)C6—C7—C8—C90.4 (7)
N1—Mo1—N2—C62.6 (3)C7—C8—C9—C100.8 (7)
C5—N1—C1—C22.5 (6)C6—N2—C10—C91.3 (6)
Mo1—N1—C1—C2167.9 (3)Mo1—N2—C10—C9173.7 (3)
N1—C1—C2—C31.2 (7)C8—C9—C10—N20.4 (7)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O10.95 (5)2.56 (5)3.104 (6)117 (3)
C2—H2···F1ii0.92 (5)2.39 (5)3.201 (5)146 (4)
C2—H2···F1iii0.92 (5)2.59 (5)3.103 (5)116 (4)
C3—H3···F1iii0.89 (6)2.71 (6)3.183 (5)115 (5)
C4—H4···O1iv0.88 (5)2.52 (5)3.224 (5)137 (4)
C7—H7···O1iv0.90 (6)2.42 (6)3.263 (6)155 (5)
C8—H8···F1v0.90 (6)2.57 (6)3.435 (5)162 (5)
C8—H8···O2v0.90 (6)2.66 (6)3.317 (6)130 (5)
C9—H9···O2vi0.89 (6)2.70 (6)3.207 (6)117 (4)
C10—H10···O2vi0.87 (6)2.47 (5)3.063 (5)126 (4)
C10—H10···O20.87 (6)2.68 (5)3.199 (6)120 (4)
Symmetry codes: (ii) x1, y, z; (iii) x, y+1, z+1; (iv) x, y+1/2, z+1/2; (v) x+1, y+1/2, z+1/2; (vi) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Mo2F2O5(C10H8N2)2]
Mr622.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)90
a, b, c (Å)6.9180 (4), 15.6494 (8), 10.4544 (5)
β (°) 108.933 (1)
V3)1070.59 (10)
Z2
Radiation typeMo Kα
µ (mm1)1.23
Crystal size (mm)0.30 × 0.24 × 0.18
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.709, 0.809
No. of measured, independent and
observed [I > 2σ(I)] reflections
10668, 2647, 2609
Rint0.025
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.094, 1.39
No. of reflections2647
No. of parameters183
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.81, 1.47

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SAINT (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (Palmer, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O10.95 (5)2.56 (5)3.104 (6)117 (3)
C2—H2···F1i0.92 (5)2.39 (5)3.201 (5)146 (4)
C2—H2···F1ii0.92 (5)2.59 (5)3.103 (5)116 (4)
C3—H3···F1ii0.89 (6)2.71 (6)3.183 (5)115 (5)
C4—H4···O1iii0.88 (5)2.52 (5)3.224 (5)137 (4)
C7—H7···O1iii0.90 (6)2.42 (6)3.263 (6)155 (5)
C8—H8···F1iv0.90 (6)2.57 (6)3.435 (5)162 (5)
C8—H8···O2iv0.90 (6)2.66 (6)3.317 (6)130 (5)
C9—H9···O2v0.89 (6)2.70 (6)3.207 (6)117 (4)
C10—H10···O2v0.87 (6)2.47 (5)3.063 (5)126 (4)
C10—H10···O20.87 (6)2.68 (5)3.199 (6)120 (4)
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z+1; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1/2, z+1/2; (v) x+1, y+1, z.
 

Acknowledgements

This work was supported by a grant from the National Science Foundation, CHE-0907787.

References

First citationAdil, K., Leblanc, M., Maisonneuve, V. & Lightfoot, P. (2010). Dalton Trans. pp. 5983–5993.  Web of Science CrossRef Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurkholder, E. & Zubieta, J. (2004). Inorg. Chim. Acta, 357, 279–284.  Web of Science CSD CrossRef CAS Google Scholar
First citationJones, S., Liu, H., Ouellette, W., Schmidtke, K. O., Connor, C. J. & Zubieta, J. (2010). Inorg. Chem. Commun. 13, 491–494.  Web of Science CSD CrossRef CAS Google Scholar
First citationMichailovski, A., Hussain, F., Springler, B., Wagler, J. & Patzke, G. R. (2009). Cryst. Growth Des. 9, 755–765.  Web of Science CSD CrossRef CAS Google Scholar
First citationMichailovski, A., Rüegger, H., Skeptzakov, D. & Patzke, G. R. (2006). Inorg. Chem. 45, 5641–5652.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPalmer, D. (2005). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds