organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Bromo-2-({4-[(hy­dr­oxy­imino)­meth­yl]phen­yl}imino­meth­yl)phenol

aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: yangyh70@163.com

(Received 11 June 2010; accepted 8 July 2010; online 14 July 2010)

In the title compound, C14H11BrN2O2, the mean planes of the two benzene rings are almost parallel to each other, making a dihedral angle of 4.09 (1)°. An intra­molecular O—H⋯N hydrogen bond occurs. In the crystal, inter­molecular O—H⋯N and C—H⋯O hydrogen bonds link the mol­ecules into a chain-like supra­molecular structure.

Related literature

For background to the use of Schiff bases as ligands in coord­ination chemistry, see: Biswas et al. (2008[Biswas, C., Drew, M. G. B. & Ghosh, A. (2008). Inorg. Chem. 47, 4513-4519.]); Dong et al. (2010[Dong, W.-K., Sun, Y.-X., Zhao, C.-Y., Dong, X.-Y. & Xu, L. (2010). Polyhedron, 29, 2087-2097.]). For the synthesis of the title compound and related structures, see: Dong et al. (2007[Dong, W.-K., Duan, J.-G., Dong, C.-M., Ren, Z.-L. & Shi, J.-Y. (2007). Z. Kristallogr. New Cryst. Struct. 222, 327-328.], 2009[Dong, W.-K., He, X.-N., Yan, H.-B., Lv, Z.-W., Chen, X., Zhao, C.-Y. & Tang, X.-L. (2009). Polyhedron, 28, 1419-1428.]); Zhao et al. (2009[Zhao, L., Dong, W.-K., Wu, J.-C., Sun, Y.-X. & Xu, L. (2009). Acta Cryst. E65, o2462.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11BrN2O2

  • Mr = 319.16

  • Orthorhombic, P 21 21 21

  • a = 4.4279 (5) Å

  • b = 12.1790 (16) Å

  • c = 23.196 (2) Å

  • V = 1250.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.29 mm−1

  • T = 113 K

  • 0.26 × 0.24 × 0.22 mm

Data collection
  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2009[Rigaku/MSC (2009). CrystalClear, CrystalClear-SM Expert and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.482, Tmax = 0.532

  • 15336 measured reflections

  • 4346 independent reflections

  • 2818 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.054

  • S = 0.85

  • 4346 reflections

  • 180 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.88 e Å−3

  • Δρmin = −0.44 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1615 Friedel pairs

  • Flack parameter: −0.022 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.87 (2) 1.84 (2) 2.593 (2) 143 (2)
O2—H2⋯N2i 0.75 (3) 2.08 (3) 2.830 (2) 173 (2)
C5—H5⋯O2ii 0.95 2.54 3.463 (3) 163
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}].

Data collection: CrystalClear-SM Expert (Rigaku/MSC, 2009[Rigaku/MSC (2009). CrystalClear, CrystalClear-SM Expert and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku/MSC, 2009[Rigaku/MSC (2009). CrystalClear, CrystalClear-SM Expert and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Schiff bases have been used widely as versatile ligands in coordination chemistry (Biswas et al., 2008; Dong et al., 2010). Recently, the structures of a few Schiff base compounds have been reported (Dong et al., 2007; Dong et al., 2009). In this paper, we report the synthesis and crystal structure of the title compound, (I).

In the title compound (Fig. 1) the bond lengths and angles are in normal ranges and agree very well with the corresponding bond lengths and angles reported in similar structures (Dong et al., 2007; Dong et al., 2009; Zhao et al., 2009). The mean planes of the two benzene rings are almost parallel to each other making a dihedral angle of 4.09 (1) ° with respect to each other. There is an intramolecular hydrogen bond, O1—H1···N1 (Tab. 1). Besides, intermolecular hydrogen bonds, O2—H2···N2 and C5—H5···O2 link molecules into infinite catenarian supramolecular shape (Tab. 1 & Fig. 2).

Related literature top

For background to the use of Schiff bases as ligands in coordination

chemistry, see: Biswas et al. (2008); Dong et al. (2010). Forthe synthesis of the title compound and related structures, see: Dong et al. (2007, 2009); Zhao et al. (2009).

Experimental top

The title compound was synthesized according to methods reported earlier (Zhao et al., 2009; Dong et al., 2009). A solution of 1-(4-aminophenyl)-methanal (1.21 g, 10 mmol) in methanol (15 ml) was added to a mixture of hydroxylamine sulfate (1.31 g, 10 mmol) and sodium acetate (2.0 g, 25 mmol). After refluxing for 4–5 h, the reaction was completed. The solvent was evaporated under vacuo. Demineralized water (40 ml) was added, cooled to 268–265 K and filtered, resulting in 4-aminobenzaldehyde oxime as a crystalline solid (yield; 1.18 g, 86.7%; m.p. 395–397 K). To an ethalnol solution (5 ml) of 4-aminobenzaldehyde oxime (0.1362 g, 1 mmol) was added dropwise an ethanol solution (5 ml) of 5-bromo-2-hydroxybenzaldehyde (0.19995 g, 1 mmol). The mixture solution was stirred at 328–333 K for 5 h. After cooling to room temperature, the precipitate was filtered off, and washed successively three times with ethanol. The product was dried in vacuo and purified by recrystallization from ethanol to yield 267.5 mg (Yield, 83.8%) of solid; m.p. 490–491 K. Pale-yellow needle-like single crystals suitable for X-ray diffraction studies were obtained by slow evaporation from a solution of methanol at room temperature in about one month.

Refinement top

An absolute structure was determined by Flack (1983) method employing 1615 Friedel pairs. H atoms were treated as riding atoms with distances C—H = 0.95 Å and Uiso(H) = 1.2 Ueq(C). The hydroxyl H-atoms were located from a difference Fourier map and were allowed to refine freely.

Structure description top

Schiff bases have been used widely as versatile ligands in coordination chemistry (Biswas et al., 2008; Dong et al., 2010). Recently, the structures of a few Schiff base compounds have been reported (Dong et al., 2007; Dong et al., 2009). In this paper, we report the synthesis and crystal structure of the title compound, (I).

In the title compound (Fig. 1) the bond lengths and angles are in normal ranges and agree very well with the corresponding bond lengths and angles reported in similar structures (Dong et al., 2007; Dong et al., 2009; Zhao et al., 2009). The mean planes of the two benzene rings are almost parallel to each other making a dihedral angle of 4.09 (1) ° with respect to each other. There is an intramolecular hydrogen bond, O1—H1···N1 (Tab. 1). Besides, intermolecular hydrogen bonds, O2—H2···N2 and C5—H5···O2 link molecules into infinite catenarian supramolecular shape (Tab. 1 & Fig. 2).

For background to the use of Schiff bases as ligands in coordination

chemistry, see: Biswas et al. (2008); Dong et al. (2010). Forthe synthesis of the title compound and related structures, see: Dong et al. (2007, 2009); Zhao et al. (2009).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku/MSC, 2009); cell refinement: CrystalClear-SM Expert (Rigaku/MSC, 2009); data reduction: CrystalClear-SM Expert (Rigaku/MSC, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku/MSC, 2009); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2009).

Figures top
[Figure 1] Fig. 1. The molecule structure of the title complex with atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Unit cell packing of the title compound. Intramolecular and intermolecular hydrogen bonds are shown as dashed lines.
4-Bromo-2-({4-[(hydroxyimino)methyl]phenyl}iminomethyl)phenol top
Crystal data top
C14H11BrN2O2Dx = 1.695 Mg m3
Mr = 319.16Melting point = 490–491 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71075 Å
Hall symbol: P 2ac 2abCell parameters from 4929 reflections
a = 4.4279 (5) Åθ = 1.9–32.9°
b = 12.1790 (16) ŵ = 3.29 mm1
c = 23.196 (2) ÅT = 113 K
V = 1250.9 (3) Å3Needle, pale-yellow
Z = 40.26 × 0.24 × 0.22 mm
F(000) = 640
Data collection top
Rigaku Saturn724 CCD
diffractometer
4346 independent reflections
Radiation source: Rotating Anode2818 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.048
Detector resolution: 14.222 pixels mm-1θmax = 32.9°, θmin = 1.8°
ω scansh = 66
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2009)
k = 1817
Tmin = 0.482, Tmax = 0.532l = 3433
15336 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.0171P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.85(Δ/σ)max = 0.001
4346 reflectionsΔρmax = 0.88 e Å3
180 parametersΔρmin = 0.44 e Å3
0 restraintsAbsolute structure: Flack (1983), 1615 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.022 (7)
Crystal data top
C14H11BrN2O2V = 1250.9 (3) Å3
Mr = 319.16Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.4279 (5) ŵ = 3.29 mm1
b = 12.1790 (16) ÅT = 113 K
c = 23.196 (2) Å0.26 × 0.24 × 0.22 mm
Data collection top
Rigaku Saturn724 CCD
diffractometer
4346 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2009)
2818 reflections with I > 2σ(I)
Tmin = 0.482, Tmax = 0.532Rint = 0.048
15336 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.054Δρmax = 0.88 e Å3
S = 0.85Δρmin = 0.44 e Å3
4346 reflectionsAbsolute structure: Flack (1983), 1615 Friedel pairs
180 parametersAbsolute structure parameter: 0.022 (7)
0 restraints
Special details top

Experimental. Anal. Calc. for C14H11BrN2O2: C, 52.69; H, 3.47; N, 8.78. Found: C, 52.67; H, 3.44; N, 8.81.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.93894 (6)0.310770 (17)0.055477 (9)0.02449 (6)
O10.5216 (4)0.65997 (11)0.22190 (6)0.0219 (4)
O20.9560 (4)0.35901 (13)0.51519 (6)0.0228 (4)
N10.1808 (4)0.51372 (14)0.27053 (7)0.0158 (4)
N20.7439 (4)0.34661 (14)0.47039 (7)0.0165 (4)
C10.6150 (5)0.57912 (16)0.18617 (8)0.0156 (5)
C20.5081 (5)0.46983 (15)0.19213 (8)0.0150 (5)
C30.6111 (5)0.38957 (16)0.15310 (8)0.0174 (5)
H30.54290.31590.15650.021*
C40.8098 (5)0.41758 (17)0.11007 (9)0.0181 (5)
C50.9174 (5)0.52501 (16)0.10466 (8)0.0174 (4)
H51.05710.54310.07510.021*
C60.8195 (5)0.60434 (17)0.14244 (9)0.0189 (5)
H60.89220.67740.13870.023*
C70.2943 (5)0.44092 (17)0.23670 (9)0.0172 (5)
H70.23620.36630.24110.021*
C80.0289 (5)0.48808 (15)0.31419 (8)0.0142 (4)
C90.1308 (5)0.57570 (17)0.34784 (9)0.0181 (5)
H90.05800.64770.34050.022*
C100.3373 (5)0.55866 (17)0.39193 (9)0.0185 (5)
H100.40720.61950.41380.022*
C110.4435 (5)0.45385 (15)0.40458 (8)0.0154 (4)
C120.3426 (5)0.36586 (16)0.37064 (9)0.0175 (5)
H120.41390.29380.37830.021*
C130.1407 (5)0.38292 (16)0.32620 (8)0.0170 (5)
H130.07660.32250.30340.020*
C140.6628 (5)0.44081 (17)0.45110 (9)0.0171 (5)
H140.74890.50480.46780.021*
H10.384 (5)0.6368 (17)0.2459 (9)0.022 (7)*
H21.018 (7)0.302 (2)0.5186 (12)0.070 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03228 (13)0.02054 (9)0.02065 (10)0.00167 (11)0.00598 (11)0.00300 (9)
O10.0290 (11)0.0162 (7)0.0204 (8)0.0007 (7)0.0061 (8)0.0010 (6)
O20.0245 (10)0.0219 (8)0.0220 (8)0.0066 (8)0.0081 (8)0.0010 (6)
N10.0149 (10)0.0174 (9)0.0150 (9)0.0026 (8)0.0014 (8)0.0015 (7)
N20.0123 (10)0.0234 (10)0.0138 (8)0.0013 (7)0.0002 (8)0.0013 (7)
C10.0158 (13)0.0163 (10)0.0146 (10)0.0027 (9)0.0017 (9)0.0003 (8)
C20.0134 (14)0.0171 (9)0.0146 (9)0.0017 (8)0.0016 (9)0.0026 (7)
C30.0174 (14)0.0151 (10)0.0196 (11)0.0007 (9)0.0048 (10)0.0005 (8)
C40.0184 (13)0.0202 (11)0.0157 (10)0.0042 (9)0.0025 (10)0.0015 (9)
C50.0149 (12)0.0215 (10)0.0157 (10)0.0002 (10)0.0016 (11)0.0023 (8)
C60.0217 (13)0.0148 (10)0.0201 (11)0.0032 (9)0.0022 (10)0.0014 (8)
C70.0159 (12)0.0164 (10)0.0194 (11)0.0005 (9)0.0019 (10)0.0015 (9)
C80.0112 (12)0.0177 (9)0.0136 (9)0.0004 (9)0.0016 (9)0.0009 (7)
C90.0186 (14)0.0149 (10)0.0209 (11)0.0001 (9)0.0010 (10)0.0005 (8)
C100.0210 (13)0.0168 (10)0.0178 (11)0.0031 (9)0.0005 (10)0.0037 (8)
C110.0129 (11)0.0199 (10)0.0134 (9)0.0015 (10)0.0030 (10)0.0001 (7)
C120.0195 (13)0.0140 (10)0.0190 (10)0.0003 (9)0.0009 (10)0.0027 (8)
C130.0189 (14)0.0151 (10)0.0170 (10)0.0028 (9)0.0033 (9)0.0012 (8)
C140.0161 (11)0.0184 (10)0.0169 (11)0.0001 (8)0.0019 (10)0.0024 (9)
Geometric parameters (Å, º) top
Br1—C41.903 (2)C5—H50.9500
O1—C11.352 (2)C6—H60.9500
O1—H10.87 (2)C7—H70.9500
O2—N21.409 (2)C8—C91.397 (3)
O2—H20.75 (3)C8—C131.401 (3)
N1—C71.286 (2)C9—C101.387 (3)
N1—C81.409 (3)C9—H90.9500
N2—C141.283 (2)C10—C111.392 (3)
C1—C61.394 (3)C10—H100.9500
C1—C21.419 (3)C11—C121.403 (3)
C2—C31.408 (3)C11—C141.460 (3)
C2—C71.445 (3)C12—C131.380 (3)
C3—C41.374 (3)C12—H120.9500
C3—H30.9500C13—H130.9500
C4—C51.398 (3)C14—H140.9500
C5—C61.375 (3)
C1—O1—H1111.7 (14)N1—C7—H7119.2
N2—O2—H2103 (2)C2—C7—H7119.2
C7—N1—C8122.91 (18)C9—C8—C13118.23 (19)
C14—N2—O2110.38 (17)C9—C8—N1116.44 (18)
O1—C1—C6118.97 (18)C13—C8—N1125.33 (18)
O1—C1—C2121.43 (19)C10—C9—C8120.70 (19)
C6—C1—C2119.60 (18)C10—C9—H9119.6
C3—C2—C1118.72 (19)C8—C9—H9119.6
C3—C2—C7120.18 (18)C9—C10—C11121.0 (2)
C1—C2—C7121.09 (18)C9—C10—H10119.5
C4—C3—C2120.14 (19)C11—C10—H10119.5
C4—C3—H3119.9C10—C11—C12118.3 (2)
C2—C3—H3119.9C10—C11—C14118.71 (18)
C3—C4—C5121.05 (19)C12—C11—C14122.92 (18)
C3—C4—Br1120.41 (16)C13—C12—C11120.70 (19)
C5—C4—Br1118.53 (16)C13—C12—H12119.7
C6—C5—C4119.5 (2)C11—C12—H12119.7
C6—C5—H5120.2C12—C13—C8120.99 (19)
C4—C5—H5120.2C12—C13—H13119.5
C5—C6—C1120.93 (19)C8—C13—H13119.5
C5—C6—H6119.5N2—C14—C11122.78 (18)
C1—C6—H6119.5N2—C14—H14118.6
N1—C7—C2121.63 (19)C11—C14—H14118.6
O1—C1—C2—C3179.22 (19)C7—N1—C8—C9179.5 (2)
C6—C1—C2—C30.5 (3)C7—N1—C8—C130.4 (3)
O1—C1—C2—C70.1 (3)C13—C8—C9—C100.0 (3)
C6—C1—C2—C7179.5 (2)N1—C8—C9—C10179.95 (19)
C1—C2—C3—C40.3 (3)C8—C9—C10—C111.3 (3)
C7—C2—C3—C4178.75 (19)C9—C10—C11—C121.6 (3)
C2—C3—C4—C51.0 (3)C9—C10—C11—C14179.44 (19)
C2—C3—C4—Br1177.75 (16)C10—C11—C12—C130.6 (3)
C3—C4—C5—C61.0 (3)C14—C11—C12—C13178.34 (19)
Br1—C4—C5—C6177.87 (17)C11—C12—C13—C80.7 (3)
C4—C5—C6—C10.1 (3)C9—C8—C13—C121.0 (3)
O1—C1—C6—C5179.1 (2)N1—C8—C13—C12178.95 (19)
C2—C1—C6—C50.5 (3)O2—N2—C14—C11179.74 (18)
C8—N1—C7—C2179.75 (19)C10—C11—C14—N2171.1 (2)
C3—C2—C7—N1175.3 (2)C12—C11—C14—N211.2 (3)
C1—C2—C7—N13.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.87 (2)1.84 (2)2.593 (2)143 (2)
O2—H2···N2i0.75 (3)2.08 (3)2.830 (2)173 (2)
C5—H5···O2ii0.952.543.463 (3)163
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1/2, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC14H11BrN2O2
Mr319.16
Crystal system, space groupOrthorhombic, P212121
Temperature (K)113
a, b, c (Å)4.4279 (5), 12.1790 (16), 23.196 (2)
V3)1250.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)3.29
Crystal size (mm)0.26 × 0.24 × 0.22
Data collection
DiffractometerRigaku Saturn724 CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2009)
Tmin, Tmax0.482, 0.532
No. of measured, independent and
observed [I > 2σ(I)] reflections
15336, 4346, 2818
Rint0.048
(sin θ/λ)max1)0.765
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.054, 0.85
No. of reflections4346
No. of parameters180
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.88, 0.44
Absolute structureFlack (1983), 1615 Friedel pairs
Absolute structure parameter0.022 (7)

Computer programs: CrystalClear-SM Expert (Rigaku/MSC, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku/MSC, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.87 (2)1.84 (2)2.593 (2)143 (2)
O2—H2···N2i0.75 (3)2.08 (3)2.830 (2)173 (2)
C5—H5···O2ii0.952.543.463 (3)163
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1/2, y+1, z1/2.
 

Acknowledgements

This work was supported by the Foundation of the Education Department of Gansu Province (No. 0904–11) and the `JingLan' Talent Engineering Funds of Lanzhou Jiaotong University, which are gratefully acknowledged.

References

First citationBiswas, C., Drew, M. G. B. & Ghosh, A. (2008). Inorg. Chem. 47, 4513–4519.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDong, W.-K., Duan, J.-G., Dong, C.-M., Ren, Z.-L. & Shi, J.-Y. (2007). Z. Kristallogr. New Cryst. Struct. 222, 327–328.  CAS Google Scholar
First citationDong, W.-K., He, X.-N., Yan, H.-B., Lv, Z.-W., Chen, X., Zhao, C.-Y. & Tang, X.-L. (2009). Polyhedron, 28, 1419–1428.  Web of Science CSD CrossRef CAS Google Scholar
First citationDong, W.-K., Sun, Y.-X., Zhao, C.-Y., Dong, X.-Y. & Xu, L. (2010). Polyhedron, 29, 2087–2097.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku/MSC (2009). CrystalClear, CrystalClear-SM Expert and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, L., Dong, W.-K., Wu, J.-C., Sun, Y.-X. & Xu, L. (2009). Acta Cryst. E65, o2462.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds