metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­ethyl­ammonium tri­carbonyl­chlorido(quinoxaline-2-carboxyl­ato-κ2N1,O)rhenate(I)

aRadiochemistry, South African Nuclear Energy Corporation Ltd (Necsa), PO Box 582, Pretoria 0001, South Africa, bCARST, Northwest University, Mafikeng Campus, Private bag X2046, Mmabatho, 2735, South Africa, and cDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: visserhg.sci@mail.uovs.ac.za

(Received 12 July 2010; accepted 20 July 2010; online 31 July 2010)

In the title compound, (C8H20N)[Re(C9H5N2O2)Cl(CO)3], the ReI atom is coordinated facially by three carbonyl groups, the bidentate quinoxaline-2-carbaldehyde ligand and a chloride atom, forming a distorted octahedral geometry.. The crystal packing is controlled by C—H⋯O hydrogen bonding and ππ stacking inter­actions involving the benzene rings, with a centroid–centroid distance of 3.4220 (1) Å.

Related literature

For synthetic background, see: Alberto et al. (1996[Alberto, R., Schibli, R. & Schubiger, P. A. (1996). Polyhedron, 15, 1079-1083.]). For related structures, see: Schutte et al. (2008[Schutte, M., Visser, H. G. & Roodt, A. (2008). Acta Cryst. E64, m1610-m1611.]); Wang et al. (2003[Wang, W., Spingler, B. & Alberto, R. (2003). Inorg. Chim. Acta, 355, 386-391.]); Alvarez et al. (2007[Alvarez, C. M., Garcia-Rodriguez, R. & Miguel, D. (2007). Dalton Trans. pp. 3546-3554.]); Brasey et al. (2004[Brasey, T., Buryak, A., Scopelliti, R. & Severin, K. (2004). Eur. J. Inorg. Chem. pp. 964-967.]); Mundwiler et al. (2004[Mundwiler, S., Kundig, M., Ortner, K. & Alberto, R. (2004). Dalton Trans. pp. 1320-1328.]); Feng et al. (2007[Feng, Y., Liu, G., Tian, X.-M. & Wang, J.-D. (2007). Acta Cryst. C63, m598-m600.]); Suthiram et al. (2009[Suthiram, J., Mhlaba, K., Zeevaart, J. R., Visser, H. G. & Roodt, A. (2009). Acta Cryst. E65, m1395.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • (C8H20N)[Re(C9H5N2O2)Cl(CO)3]

  • Mr = 609.08

  • Triclinic, [P \overline 1]

  • a = 8.402 (5) Å

  • b = 10.077 (5) Å

  • c = 13.495 (5) Å

  • α = 97.433 (5)°

  • β = 103.141 (5)°

  • γ = 90.686 (5)°

  • V = 1102.3 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.67 mm−1

  • T = 100 K

  • 0.33 × 0.29 × 0.20 mm

Data collection
  • Bruker X8 APEXII 4K Kappa CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT-Plus, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.169, Tmax = 0.324

  • 22501 measured reflections

  • 5458 independent reflections

  • 4988 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.065

  • S = 1.07

  • 5458 reflections

  • 275 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 1.74 e Å−3

  • Δρmin = −1.04 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O5i 0.93 2.35 3.046 (5) 131
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). SAINT-Plus, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title complex, (C8H20N)[Re(C9H5N2O2)Cl(CO)3], forms a part of an ongoing investigation of the structural and kinetic behaviour of fac-Re(CO)3 compounds (Schutte et al., (2008); Wang et al., (2003); Alvarez et al., (2007); Brasey et al., (2004); Suthiram et al., (2009)). It crystallized as an anionic ReI compound and one tetraethylammonium counter ion in the asymmetric unit (Fig. 1). The Re—CO bond distances are well within the normal range (Allen et al., 1987). The small bite angle O4—Re1—N1 of 74.71 (11) ° might be a reason for the distorted octahedral geometry around the metal centre. The crystal packing is controlled by C—H···O hydrogen bonding and π - π -stacking interactions involving the benzene rings, with a centroid-centroid distance of 3.4220 (1) Å (Fig. 2).

Related literature top

For synthetic background, see: Alberto et al. (1996). For related structures, see: Schutte et al. (2008); Wang et al. (2003); Alvarez et al. (2007); Brasey et al. (2004); Mundwiler et al. (2004); Feng et al. (2007); Suthiram et al. (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

[NEt4]2[Re(CO)3Cl3] (150 mg, 0.235 mmol) was added to 30 ml me thanol to result in a suspension which was heated for a few minutes until the solution turned clear. Quinoxaline-2-carbaldehyde (41 mg, 0.235 mmol) was dissolved in 5 ml me thanol and slowly added to the reaction solution whilst stirring. K2CO3 (16.6 mg, 0.120 mmol) was added to the solution. The dark orange solution that formed was refluxed for 4 h after which the solvent was evaporated completely on a rotoevaporator. The resulting solid was redissolved in a minimum volume of dichloromethane, layered with diethyl ether and left to stand in a refrigerator. After several days red crystals suitable for X-ray diffraction were isolated. (Yield: 56 mg, 39%).

Refinement top

The methyl, methylene and aromatic H atoms were placed in geometrically idealized positions with C—H = 0.96, 0.97 and 0.93 Å, respectively and constrained to ride on their parent atoms, with Uiso(H) = 1.5Ueq(methyl C) and 1.2Ueq(non-methyl C). The highest residual electron-density peak was located 0.85 Å from Re1 and the deepest hole was located 0.87 Å from Re1.

Structure description top

The title complex, (C8H20N)[Re(C9H5N2O2)Cl(CO)3], forms a part of an ongoing investigation of the structural and kinetic behaviour of fac-Re(CO)3 compounds (Schutte et al., (2008); Wang et al., (2003); Alvarez et al., (2007); Brasey et al., (2004); Suthiram et al., (2009)). It crystallized as an anionic ReI compound and one tetraethylammonium counter ion in the asymmetric unit (Fig. 1). The Re—CO bond distances are well within the normal range (Allen et al., 1987). The small bite angle O4—Re1—N1 of 74.71 (11) ° might be a reason for the distorted octahedral geometry around the metal centre. The crystal packing is controlled by C—H···O hydrogen bonding and π - π -stacking interactions involving the benzene rings, with a centroid-centroid distance of 3.4220 (1) Å (Fig. 2).

For synthetic background, see: Alberto et al. (1996). For related structures, see: Schutte et al. (2008); Wang et al. (2003); Alvarez et al. (2007); Brasey et al. (2004); Mundwiler et al. (2004); Feng et al. (2007); Suthiram et al. (2009). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability displacement level.
[Figure 2] Fig. 2. π-π -Stacking interactions of the title compound; cations have been omitted for clarity.
Tetraethylammonium tricarbonylchlorido(quinoxaline-2- carboxylato-κ2N1,O)rhenate(I) top
Crystal data top
(C8H20N)[Re(C9H5N2O2)Cl(CO)3]Z = 2
Mr = 609.08F(000) = 596
Triclinic, P1Dx = 1.835 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 8.402 (5) ÅCell parameters from 9175 reflections
b = 10.077 (5) Åθ = 2.7–28.3°
c = 13.495 (5) ŵ = 5.67 mm1
α = 97.433 (5)°T = 100 K
β = 103.141 (5)°Cuboid, red
γ = 90.686 (5)°0.33 × 0.29 × 0.20 mm
V = 1102.3 (9) Å3
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
5458 independent reflections
Radiation source: sealed tube4988 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
φ & ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1110
Tmin = 0.169, Tmax = 0.324k = 1313
22501 measured reflectionsl = 1717
Refinement top
Refinement on F212 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0211P)2 + 1.8438P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065(Δ/σ)max = 0.003
S = 1.07Δρmax = 1.74 e Å3
5458 reflectionsΔρmin = 1.04 e Å3
275 parameters
Crystal data top
(C8H20N)[Re(C9H5N2O2)Cl(CO)3]γ = 90.686 (5)°
Mr = 609.08V = 1102.3 (9) Å3
Triclinic, P1Z = 2
a = 8.402 (5) ÅMo Kα radiation
b = 10.077 (5) ŵ = 5.67 mm1
c = 13.495 (5) ÅT = 100 K
α = 97.433 (5)°0.33 × 0.29 × 0.20 mm
β = 103.141 (5)°
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
5458 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4988 reflections with I > 2σ(I)
Tmin = 0.169, Tmax = 0.324Rint = 0.054
22501 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02712 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.07Δρmax = 1.74 e Å3
5458 reflectionsΔρmin = 1.04 e Å3
275 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.528310 (18)0.255408 (14)0.783120 (11)0.01364 (5)
Cl10.81842 (12)0.20551 (10)0.85067 (7)0.0205 (2)
O30.1770 (4)0.3314 (3)0.6974 (2)0.0304 (7)
C30.3080 (5)0.3001 (4)0.7268 (3)0.0208 (8)
N30.0788 (4)0.7963 (3)0.8126 (2)0.0139 (6)
O10.4040 (4)0.1531 (3)0.9570 (2)0.0279 (7)
O40.5167 (3)0.0596 (3)0.6987 (2)0.0182 (6)
N10.6229 (4)0.2820 (3)0.6466 (2)0.0124 (6)
O20.5953 (4)0.5310 (3)0.9133 (2)0.0290 (7)
C20.5683 (5)0.4271 (4)0.8632 (3)0.0191 (8)
C130.0041 (5)0.8729 (4)0.8902 (3)0.0162 (8)
H13A0.04180.84690.95720.019*
H13B0.02180.96770.8940.019*
C150.0262 (5)0.6478 (4)0.7929 (3)0.0198 (8)
H15A0.0910.63960.76470.024*
H15B0.07840.60370.74110.024*
C10.4532 (5)0.1938 (4)0.8923 (3)0.0195 (8)
C200.0905 (5)0.9922 (4)0.7091 (3)0.0236 (9)
H20A0.05511.05110.76090.035*
H20B0.04661.01930.6430.035*
H20C0.20780.99630.72290.035*
C140.1876 (5)0.8518 (4)0.8673 (3)0.0214 (8)
H14A0.23420.87030.7990.032*
H14B0.23050.9110.91560.032*
H14C0.21480.76070.87290.032*
C180.3657 (5)0.7536 (5)0.7873 (4)0.0311 (10)
H18A0.33620.660.76790.047*
H18B0.47890.76450.82270.047*
H18C0.34860.79740.72690.047*
C190.0298 (5)0.8491 (4)0.7098 (3)0.0160 (8)
H19A0.08860.84440.68820.019*
H19B0.0710.79030.65940.019*
C160.0657 (6)0.5747 (4)0.8857 (4)0.0296 (10)
H16A0.18220.57160.9090.044*
H16B0.01850.48520.86770.044*
H16C0.02150.6210.93950.044*
C170.2609 (5)0.8150 (4)0.8572 (3)0.0207 (8)
H17A0.28720.77610.92070.025*
H17B0.28890.91020.8740.025*
O50.6377 (4)0.0666 (3)0.5901 (2)0.0236 (6)
N20.7964 (4)0.2711 (3)0.4892 (3)0.0185 (7)
C120.6622 (4)0.3988 (3)0.6110 (3)0.0116 (7)
C100.6387 (5)0.6348 (4)0.6071 (3)0.0155 (7)
H100.59790.7160.6290.019*
C110.6071 (4)0.5229 (4)0.6470 (3)0.0141 (7)
H110.54890.52850.69830.017*
C50.6598 (5)0.1677 (4)0.5993 (3)0.0143 (7)
C60.7465 (5)0.1632 (4)0.5210 (3)0.0184 (8)
H60.76960.07990.49020.022*
C70.7515 (4)0.3910 (4)0.5336 (3)0.0139 (7)
C40.6025 (5)0.0410 (4)0.6313 (3)0.0167 (8)
C80.7889 (5)0.5102 (4)0.4965 (3)0.0159 (7)
H80.85150.50730.44770.019*
C90.7334 (4)0.6286 (4)0.5322 (3)0.0163 (8)
H90.75770.70640.50730.02*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.01848 (8)0.01209 (8)0.01132 (8)0.00015 (5)0.00457 (6)0.00329 (5)
Cl10.0230 (5)0.0222 (5)0.0152 (5)0.0047 (4)0.0008 (4)0.0037 (4)
O30.0226 (16)0.0426 (19)0.0309 (18)0.0056 (14)0.0086 (14)0.0175 (15)
C30.029 (2)0.024 (2)0.012 (2)0.0069 (17)0.0097 (17)0.0064 (16)
N30.0119 (15)0.0165 (15)0.0126 (16)0.0013 (12)0.0022 (12)0.0002 (12)
O10.0362 (18)0.0315 (17)0.0191 (16)0.0072 (14)0.0108 (13)0.0076 (13)
O40.0267 (15)0.0127 (12)0.0158 (14)0.0025 (11)0.0051 (12)0.0044 (10)
N10.0110 (14)0.0142 (14)0.0113 (16)0.0001 (11)0.0009 (12)0.0025 (12)
O20.049 (2)0.0187 (15)0.0196 (16)0.0003 (14)0.0098 (14)0.0005 (12)
C20.025 (2)0.023 (2)0.0120 (19)0.0013 (16)0.0061 (16)0.0083 (16)
C130.0191 (19)0.0191 (18)0.0112 (19)0.0039 (15)0.0058 (15)0.0009 (14)
C150.022 (2)0.0164 (18)0.018 (2)0.0023 (15)0.0019 (16)0.0025 (15)
C10.021 (2)0.0199 (19)0.017 (2)0.0021 (15)0.0020 (16)0.0022 (15)
C200.028 (2)0.024 (2)0.021 (2)0.0015 (17)0.0094 (18)0.0061 (17)
C140.020 (2)0.024 (2)0.023 (2)0.0041 (16)0.0096 (17)0.0043 (17)
C180.019 (2)0.041 (3)0.032 (3)0.0088 (19)0.0047 (19)0.003 (2)
C190.0155 (18)0.0215 (19)0.0111 (19)0.0023 (15)0.0031 (14)0.0023 (15)
C160.040 (3)0.019 (2)0.027 (2)0.0015 (18)0.000 (2)0.0060 (18)
C170.0113 (18)0.028 (2)0.019 (2)0.0025 (15)0.0029 (15)0.0030 (17)
O50.0395 (18)0.0115 (13)0.0188 (15)0.0045 (12)0.0046 (13)0.0015 (11)
N20.0205 (17)0.0208 (16)0.0154 (17)0.0051 (13)0.0069 (13)0.0020 (13)
C120.0146 (17)0.0127 (16)0.0062 (17)0.0021 (13)0.0012 (13)0.0028 (13)
C100.0173 (18)0.0115 (16)0.0144 (19)0.0003 (14)0.0027 (15)0.0011 (14)
C110.0140 (17)0.0175 (17)0.0093 (18)0.0012 (14)0.0004 (14)0.0019 (14)
C50.0169 (18)0.0162 (17)0.0080 (18)0.0031 (14)0.0016 (14)0.0025 (14)
C60.023 (2)0.0172 (18)0.015 (2)0.0064 (15)0.0056 (16)0.0002 (15)
C70.0134 (17)0.0166 (17)0.0106 (18)0.0023 (14)0.0003 (14)0.0026 (14)
C40.022 (2)0.0128 (17)0.0136 (19)0.0011 (14)0.0012 (15)0.0040 (14)
C80.0151 (18)0.0208 (18)0.0115 (19)0.0007 (14)0.0005 (14)0.0071 (15)
C90.0154 (18)0.0160 (17)0.016 (2)0.0038 (14)0.0023 (15)0.0059 (14)
Geometric parameters (Å, º) top
Re1—C11.899 (4)C14—H14C0.96
Re1—C21.900 (4)C18—C171.513 (6)
Re1—C31.917 (5)C18—H18A0.96
Re1—O42.136 (3)C18—H18B0.96
Re1—N12.211 (3)C18—H18C0.96
Re1—Cl12.4825 (16)C19—H19A0.97
O3—C31.145 (5)C19—H19B0.97
N3—C171.511 (5)C16—H16A0.96
N3—C191.521 (5)C16—H16B0.96
N3—C131.521 (5)C16—H16C0.96
N3—C151.527 (5)C17—H17A0.97
O1—C11.164 (5)C17—H17B0.97
O4—C41.281 (5)O5—C41.225 (4)
N1—C51.319 (5)N2—C61.315 (5)
N1—C121.390 (4)N2—C71.374 (5)
O2—C21.160 (5)C12—C111.405 (5)
C13—C141.508 (5)C12—C71.413 (5)
C13—H13A0.97C10—C111.360 (5)
C13—H13B0.97C10—C91.417 (5)
C15—C161.510 (6)C10—H100.93
C15—H15A0.97C11—H110.93
C15—H15B0.97C5—C61.410 (5)
C20—C191.526 (5)C5—C41.506 (5)
C20—H20A0.96C6—H60.93
C20—H20B0.96C7—C81.417 (5)
C20—H20C0.96C8—C91.356 (5)
C14—H14A0.96C8—H80.93
C14—H14B0.96C9—H90.93
C1—Re1—C288.06 (17)C17—C18—H18A109.5
C1—Re1—C388.08 (17)C17—C18—H18B109.5
C2—Re1—C390.12 (17)H18A—C18—H18B109.5
C1—Re1—O493.58 (14)C17—C18—H18C109.5
C2—Re1—O4172.60 (14)H18A—C18—H18C109.5
C3—Re1—O497.15 (15)H18B—C18—H18C109.5
C1—Re1—N1167.94 (14)N3—C19—C20115.4 (3)
C2—Re1—N1103.18 (14)N3—C19—H19A108.4
C3—Re1—N196.14 (14)C20—C19—H19A108.4
O4—Re1—N174.71 (11)N3—C19—H19B108.4
C1—Re1—Cl194.68 (13)C20—C19—H19B108.4
C2—Re1—Cl188.98 (13)H19A—C19—H19B107.5
C3—Re1—Cl1177.06 (11)C15—C16—H16A109.5
O4—Re1—Cl183.70 (8)C15—C16—H16B109.5
N1—Re1—Cl181.35 (8)H16A—C16—H16B109.5
O3—C3—Re1176.6 (4)C15—C16—H16C109.5
C17—N3—C19111.5 (3)H16A—C16—H16C109.5
C17—N3—C13106.6 (3)H16B—C16—H16C109.5
C19—N3—C13110.3 (3)N3—C17—C18114.5 (3)
C17—N3—C15110.7 (3)N3—C17—H17A108.6
C19—N3—C15106.6 (3)C18—C17—H17A108.6
C13—N3—C15111.2 (3)N3—C17—H17B108.6
C4—O4—Re1117.4 (2)C18—C17—H17B108.6
C5—N1—C12117.2 (3)H17A—C17—H17B107.6
C5—N1—Re1112.5 (2)C6—N2—C7115.9 (3)
C12—N1—Re1129.9 (2)N1—C12—C11120.9 (3)
O2—C2—Re1178.7 (4)N1—C12—C7119.3 (3)
C14—C13—N3115.2 (3)C11—C12—C7119.7 (3)
C14—C13—H13A108.5C11—C10—C9120.4 (3)
N3—C13—H13A108.5C11—C10—H10119.8
C14—C13—H13B108.5C9—C10—H10119.8
N3—C13—H13B108.5C10—C11—C12120.1 (4)
H13A—C13—H13B107.5C10—C11—H11120
C16—C15—N3115.3 (3)C12—C11—H11120
C16—C15—H15A108.4N1—C5—C6121.8 (3)
N3—C15—H15A108.4N1—C5—C4117.0 (3)
C16—C15—H15B108.4C6—C5—C4121.1 (3)
N3—C15—H15B108.4N2—C6—C5123.3 (3)
H15A—C15—H15B107.5N2—C6—H6118.4
O1—C1—Re1177.9 (4)C5—C6—H6118.4
C19—C20—H20A109.5N2—C7—C12122.2 (3)
C19—C20—H20B109.5N2—C7—C8118.7 (3)
H20A—C20—H20B109.5C12—C7—C8119.0 (3)
C19—C20—H20C109.5O5—C4—O4127.0 (4)
H20A—C20—H20C109.5O5—C4—C5118.5 (4)
H20B—C20—H20C109.5O4—C4—C5114.5 (3)
C13—C14—H14A109.5C9—C8—C7120.1 (4)
C13—C14—H14B109.5C9—C8—H8120
H14A—C14—H14B109.5C7—C8—H8120
C13—C14—H14C109.5C8—C9—C10120.6 (3)
H14A—C14—H14C109.5C8—C9—H9119.7
H14B—C14—H14C109.5C10—C9—H9119.7
C1—Re1—O4—C4159.2 (3)C15—N3—C19—C20172.6 (3)
C3—Re1—O4—C4112.3 (3)C19—N3—C17—C1855.5 (4)
Cl1—Re1—O4—C464.9 (3)C13—N3—C17—C18176.0 (3)
C2—Re1—N1—C5157.7 (3)C15—N3—C17—C1863.0 (4)
C3—Re1—N1—C5110.7 (3)C5—N1—C12—C11171.0 (3)
Cl1—Re1—N1—C570.8 (2)Re1—N1—C12—C7167.3 (2)
C1—Re1—N1—C12174.0 (6)N1—C12—C11—C10176.3 (3)
C3—Re1—N1—C1276.0 (3)Re1—N1—C5—C6169.4 (3)
O4—Re1—N1—C12171.8 (3)C12—N1—C5—C4174.2 (3)
Cl1—Re1—N1—C12102.4 (3)Re1—N1—C5—C411.5 (4)
C17—N3—C13—C14172.0 (3)C4—C5—C6—N2178.8 (4)
C19—N3—C13—C1466.8 (4)C6—N2—C7—C8174.6 (3)
C15—N3—C13—C1451.2 (4)C11—C12—C7—N2174.3 (3)
C17—N3—C15—C1657.8 (5)N1—C12—C7—C8179.0 (3)
C19—N3—C15—C16179.3 (3)Re1—O4—C4—O5164.6 (3)
C13—N3—C15—C1660.5 (4)N1—C5—C4—O5178.6 (3)
C17—N3—C19—C2051.7 (4)C6—C5—C4—O4175.9 (3)
C13—N3—C19—C2066.6 (4)N2—C7—C8—C9174.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O5i0.932.353.046 (5)131
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula(C8H20N)[Re(C9H5N2O2)Cl(CO)3]
Mr609.08
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.402 (5), 10.077 (5), 13.495 (5)
α, β, γ (°)97.433 (5), 103.141 (5), 90.686 (5)
V3)1102.3 (9)
Z2
Radiation typeMo Kα
µ (mm1)5.67
Crystal size (mm)0.33 × 0.29 × 0.20
Data collection
DiffractometerBruker X8 APEXII 4K Kappa CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.169, 0.324
No. of measured, independent and
observed [I > 2σ(I)] reflections
22501, 5458, 4988
Rint0.054
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.065, 1.07
No. of reflections5458
No. of parameters275
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.74, 1.04

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O5i0.932.353.046 (5)131
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors wish to thank Necsa and the UFS for funding and permission to publish this work.

References

First citationAlberto, R., Schibli, R. & Schubiger, P. A. (1996). Polyhedron, 15, 1079–1083.  CSD CrossRef CAS Web of Science Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAlvarez, C. M., Garcia-Rodriguez, R. & Miguel, D. (2007). Dalton Trans. pp. 3546–3554.  Web of Science CSD CrossRef PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrasey, T., Buryak, A., Scopelliti, R. & Severin, K. (2004). Eur. J. Inorg. Chem. pp. 964–967.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2004). SAINT-Plus, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFeng, Y., Liu, G., Tian, X.-M. & Wang, J.-D. (2007). Acta Cryst. C63, m598–m600.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMundwiler, S., Kundig, M., Ortner, K. & Alberto, R. (2004). Dalton Trans. pp. 1320–1328.  Web of Science CSD CrossRef Google Scholar
First citationSchutte, M., Visser, H. G. & Roodt, A. (2008). Acta Cryst. E64, m1610–m1611.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuthiram, J., Mhlaba, K., Zeevaart, J. R., Visser, H. G. & Roodt, A. (2009). Acta Cryst. E65, m1395.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, W., Spingler, B. & Alberto, R. (2003). Inorg. Chim. Acta, 355, 386–391.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds