supplementary materials


pv2307 scheme

Acta Cryst. (2010). E66, m1042-m1043    [ doi:10.1107/S160053681002893X ]

Tetraethylammonium tricarbonylchlorido(quinoxaline-2-carboxylato-[kappa]2N1,O)rhenate(I)

J. Suthiram, J. R. Zeevaart, H. G. Visser and A. Roodt

Abstract top

In the title compound, (C8H20N)[Re(C9H5N2O2)Cl(CO)3], the ReI atom is coordinated facially by three carbonyl groups, the bidentate quinoxaline-2-carbaldehyde ligand and a chloride atom, forming a distorted octahedral geometry.. The crystal packing is controlled by C-H...O hydrogen bonding and [pi]-[pi] stacking interactions involving the benzene rings, with a centroid-centroid distance of 3.4220 (1) Å.

Comment top

The title complex, (C8H20N)[Re(C9H5N2O2)Cl(CO)3], forms a part of an ongoing investigation of the structural and kinetic behaviour of fac-Re(CO)3 compounds (Schutte et al., (2008); Wang et al., (2003); Alvarez et al., (2007); Brasey et al., (2004); Suthiram et al., (2009)). It crystallized as an anionic ReI compound and one tetraethylammonium counter ion in the asymmetric unit (Fig. 1). The Re—CO bond distances are well within the normal range (Allen et al., 1987). The small bite angle O4—Re1—N1 of 74.71 (11) ° might be a reason for the distorted octahedral geometry around the metal centre. The crystal packing is controlled by C—H···O hydrogen bonding and π - π -stacking interactions involving the benzene rings, with a centroid-centroid distance of 3.4220 (1) Å (Fig. 2).

Related literature top

For synthetic background, see: Alberto et al. (1996). For related structures, see: Schutte et al. (2008); Wang et al. (2003); Alvarez et al. (2007); Brasey et al. (2004); Mundwiler et al. (2004); Feng et al. (2007); Suthiram et al. (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

[NEt4]2[Re(CO)3Cl3] (150 mg, 0.235 mmol) was added to 30 ml me thanol to result in a suspension which was heated for a few minutes until the solution turned clear. Quinoxaline-2-carbaldehyde (41 mg, 0.235 mmol) was dissolved in 5 ml me thanol and slowly added to the reaction solution whilst stirring. K2CO3 (16.6 mg, 0.120 mmol) was added to the solution. The dark orange solution that formed was refluxed for 4 h after which the solvent was evaporated completely on a rotoevaporator. The resulting solid was redissolved in a minimum volume of dichloromethane, layered with diethyl ether and left to stand in a refrigerator. After several days red crystals suitable for X-ray diffraction were isolated. (Yield: 56 mg, 39%).

Refinement top

The methyl, methylene and aromatic H atoms were placed in geometrically idealized positions with C—H = 0.96, 0.97 and 0.93 Å, respectively and constrained to ride on their parent atoms, with Uiso(H) = 1.5Ueq(methyl C) and 1.2Ueq(non-methyl C). The highest residual electron-density peak was located 0.85 Å from Re1 and the deepest hole was located 0.87 Å from Re1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability displacement level.
[Figure 2] Fig. 2. π-π -Stacking interactions of the title compound; cations have been omitted for clarity.
Tetraethylammonium tricarbonylchlorido(quinoxaline-2- carboxylato-κ2N1,O)rhenate(I) top
Crystal data top
(C8H20N)[Re(C9H5N2O2)Cl(CO)3]Z = 2
Mr = 609.08F(000) = 596
Triclinic, P1Dx = 1.835 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 8.402 (5) ÅCell parameters from 9175 reflections
b = 10.077 (5) Åθ = 2.7–28.3°
c = 13.495 (5) ŵ = 5.67 mm1
α = 97.433 (5)°T = 100 K
β = 103.141 (5)°Cuboid, red
γ = 90.686 (5)°0.33 × 0.29 × 0.20 mm
V = 1102.3 (9) Å3
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
5458 independent reflections
Radiation source: sealed tube4988 reflections with I > 2σ(I)
graphiteRint = 0.054
φ & ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1110
Tmin = 0.169, Tmax = 0.324k = 1313
22501 measured reflectionsl = 1717
Refinement top
Refinement on F212 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0211P)2 + 1.8438P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065(Δ/σ)max = 0.003
S = 1.07Δρmax = 1.74 e Å3
5458 reflectionsΔρmin = 1.04 e Å3
275 parameters
Crystal data top
(C8H20N)[Re(C9H5N2O2)Cl(CO)3]γ = 90.686 (5)°
Mr = 609.08V = 1102.3 (9) Å3
Triclinic, P1Z = 2
a = 8.402 (5) ÅMo Kα radiation
b = 10.077 (5) ŵ = 5.67 mm1
c = 13.495 (5) ÅT = 100 K
α = 97.433 (5)°0.33 × 0.29 × 0.20 mm
β = 103.141 (5)°
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
5458 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4988 reflections with I > 2σ(I)
Tmin = 0.169, Tmax = 0.324Rint = 0.054
22501 measured reflectionsθmax = 28.3°
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.065Δρmax = 1.74 e Å3
S = 1.07Δρmin = 1.04 e Å3
5458 reflectionsAbsolute structure: ?
275 parametersFlack parameter: ?
12 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.528310 (18)0.255408 (14)0.783120 (11)0.01364 (5)
Cl10.81842 (12)0.20551 (10)0.85067 (7)0.0205 (2)
O30.1770 (4)0.3314 (3)0.6974 (2)0.0304 (7)
C30.3080 (5)0.3001 (4)0.7268 (3)0.0208 (8)
N30.0788 (4)0.7963 (3)0.8126 (2)0.0139 (6)
O10.4040 (4)0.1531 (3)0.9570 (2)0.0279 (7)
O40.5167 (3)0.0596 (3)0.6987 (2)0.0182 (6)
N10.6229 (4)0.2820 (3)0.6466 (2)0.0124 (6)
O20.5953 (4)0.5310 (3)0.9133 (2)0.0290 (7)
C20.5683 (5)0.4271 (4)0.8632 (3)0.0191 (8)
C130.0041 (5)0.8729 (4)0.8902 (3)0.0162 (8)
H13A0.04180.84690.95720.019*
H13B0.02180.96770.8940.019*
C150.0262 (5)0.6478 (4)0.7929 (3)0.0198 (8)
H15A0.0910.63960.76470.024*
H15B0.07840.60370.74110.024*
C10.4532 (5)0.1938 (4)0.8923 (3)0.0195 (8)
C200.0905 (5)0.9922 (4)0.7091 (3)0.0236 (9)
H20A0.05511.05110.76090.035*
H20B0.04661.01930.6430.035*
H20C0.20780.99630.72290.035*
C140.1876 (5)0.8518 (4)0.8673 (3)0.0214 (8)
H14A0.23420.87030.7990.032*
H14B0.23050.9110.91560.032*
H14C0.21480.76070.87290.032*
C180.3657 (5)0.7536 (5)0.7873 (4)0.0311 (10)
H18A0.33620.660.76790.047*
H18B0.47890.76450.82270.047*
H18C0.34860.79740.72690.047*
C190.0298 (5)0.8491 (4)0.7098 (3)0.0160 (8)
H19A0.08860.84440.68820.019*
H19B0.0710.79030.65940.019*
C160.0657 (6)0.5747 (4)0.8857 (4)0.0296 (10)
H16A0.18220.57160.9090.044*
H16B0.01850.48520.86770.044*
H16C0.02150.6210.93950.044*
C170.2609 (5)0.8150 (4)0.8572 (3)0.0207 (8)
H17A0.28720.77610.92070.025*
H17B0.28890.91020.8740.025*
O50.6377 (4)0.0666 (3)0.5901 (2)0.0236 (6)
N20.7964 (4)0.2711 (3)0.4892 (3)0.0185 (7)
C120.6622 (4)0.3988 (3)0.6110 (3)0.0116 (7)
C100.6387 (5)0.6348 (4)0.6071 (3)0.0155 (7)
H100.59790.7160.6290.019*
C110.6071 (4)0.5229 (4)0.6470 (3)0.0141 (7)
H110.54890.52850.69830.017*
C50.6598 (5)0.1677 (4)0.5993 (3)0.0143 (7)
C60.7465 (5)0.1632 (4)0.5210 (3)0.0184 (8)
H60.76960.07990.49020.022*
C70.7515 (4)0.3910 (4)0.5336 (3)0.0139 (7)
C40.6025 (5)0.0410 (4)0.6313 (3)0.0167 (8)
C80.7889 (5)0.5102 (4)0.4965 (3)0.0159 (7)
H80.85150.50730.44770.019*
C90.7334 (4)0.6286 (4)0.5322 (3)0.0163 (8)
H90.75770.70640.50730.02*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.01848 (8)0.01209 (8)0.01132 (8)0.00015 (5)0.00457 (6)0.00329 (5)
Cl10.0230 (5)0.0222 (5)0.0152 (5)0.0047 (4)0.0008 (4)0.0037 (4)
O30.0226 (16)0.0426 (19)0.0309 (18)0.0056 (14)0.0086 (14)0.0175 (15)
C30.029 (2)0.024 (2)0.012 (2)0.0069 (17)0.0097 (17)0.0064 (16)
N30.0119 (15)0.0165 (15)0.0126 (16)0.0013 (12)0.0022 (12)0.0002 (12)
O10.0362 (18)0.0315 (17)0.0191 (16)0.0072 (14)0.0108 (13)0.0076 (13)
O40.0267 (15)0.0127 (12)0.0158 (14)0.0025 (11)0.0051 (12)0.0044 (10)
N10.0110 (14)0.0142 (14)0.0113 (16)0.0001 (11)0.0009 (12)0.0025 (12)
O20.049 (2)0.0187 (15)0.0196 (16)0.0003 (14)0.0098 (14)0.0005 (12)
C20.025 (2)0.023 (2)0.0120 (19)0.0013 (16)0.0061 (16)0.0083 (16)
C130.0191 (19)0.0191 (18)0.0112 (19)0.0039 (15)0.0058 (15)0.0009 (14)
C150.022 (2)0.0164 (18)0.018 (2)0.0023 (15)0.0019 (16)0.0025 (15)
C10.021 (2)0.0199 (19)0.017 (2)0.0021 (15)0.0020 (16)0.0022 (15)
C200.028 (2)0.024 (2)0.021 (2)0.0015 (17)0.0094 (18)0.0061 (17)
C140.020 (2)0.024 (2)0.023 (2)0.0041 (16)0.0096 (17)0.0043 (17)
C180.019 (2)0.041 (3)0.032 (3)0.0088 (19)0.0047 (19)0.003 (2)
C190.0155 (18)0.0215 (19)0.0111 (19)0.0023 (15)0.0031 (14)0.0023 (15)
C160.040 (3)0.019 (2)0.027 (2)0.0015 (18)0.000 (2)0.0060 (18)
C170.0113 (18)0.028 (2)0.019 (2)0.0025 (15)0.0029 (15)0.0030 (17)
O50.0395 (18)0.0115 (13)0.0188 (15)0.0045 (12)0.0046 (13)0.0015 (11)
N20.0205 (17)0.0208 (16)0.0154 (17)0.0051 (13)0.0069 (13)0.0020 (13)
C120.0146 (17)0.0127 (16)0.0062 (17)0.0021 (13)0.0012 (13)0.0028 (13)
C100.0173 (18)0.0115 (16)0.0144 (19)0.0003 (14)0.0027 (15)0.0011 (14)
C110.0140 (17)0.0175 (17)0.0093 (18)0.0012 (14)0.0004 (14)0.0019 (14)
C50.0169 (18)0.0162 (17)0.0080 (18)0.0031 (14)0.0016 (14)0.0025 (14)
C60.023 (2)0.0172 (18)0.015 (2)0.0064 (15)0.0056 (16)0.0002 (15)
C70.0134 (17)0.0166 (17)0.0106 (18)0.0023 (14)0.0003 (14)0.0026 (14)
C40.022 (2)0.0128 (17)0.0136 (19)0.0011 (14)0.0012 (15)0.0040 (14)
C80.0151 (18)0.0208 (18)0.0115 (19)0.0007 (14)0.0005 (14)0.0071 (15)
C90.0154 (18)0.0160 (17)0.016 (2)0.0038 (14)0.0023 (15)0.0059 (14)
Geometric parameters (Å, °) top
Re1—C11.899 (4)C14—H14C0.96
Re1—C21.900 (4)C18—C171.513 (6)
Re1—C31.917 (5)C18—H18A0.96
Re1—O42.136 (3)C18—H18B0.96
Re1—N12.211 (3)C18—H18C0.96
Re1—Cl12.4825 (16)C19—H19A0.97
O3—C31.145 (5)C19—H19B0.97
N3—C171.511 (5)C16—H16A0.96
N3—C191.521 (5)C16—H16B0.96
N3—C131.521 (5)C16—H16C0.96
N3—C151.527 (5)C17—H17A0.97
O1—C11.164 (5)C17—H17B0.97
O4—C41.281 (5)O5—C41.225 (4)
N1—C51.319 (5)N2—C61.315 (5)
N1—C121.390 (4)N2—C71.374 (5)
O2—C21.160 (5)C12—C111.405 (5)
C13—C141.508 (5)C12—C71.413 (5)
C13—H13A0.97C10—C111.360 (5)
C13—H13B0.97C10—C91.417 (5)
C15—C161.510 (6)C10—H100.93
C15—H15A0.97C11—H110.93
C15—H15B0.97C5—C61.410 (5)
C20—C191.526 (5)C5—C41.506 (5)
C20—H20A0.96C6—H60.93
C20—H20B0.96C7—C81.417 (5)
C20—H20C0.96C8—C91.356 (5)
C14—H14A0.96C8—H80.93
C14—H14B0.96C9—H90.93
C1—Re1—C288.06 (17)C17—C18—H18A109.5
C1—Re1—C388.08 (17)C17—C18—H18B109.5
C2—Re1—C390.12 (17)H18A—C18—H18B109.5
C1—Re1—O493.58 (14)C17—C18—H18C109.5
C2—Re1—O4172.60 (14)H18A—C18—H18C109.5
C3—Re1—O497.15 (15)H18B—C18—H18C109.5
C1—Re1—N1167.94 (14)N3—C19—C20115.4 (3)
C2—Re1—N1103.18 (14)N3—C19—H19A108.4
C3—Re1—N196.14 (14)C20—C19—H19A108.4
O4—Re1—N174.71 (11)N3—C19—H19B108.4
C1—Re1—Cl194.68 (13)C20—C19—H19B108.4
C2—Re1—Cl188.98 (13)H19A—C19—H19B107.5
C3—Re1—Cl1177.06 (11)C15—C16—H16A109.5
O4—Re1—Cl183.70 (8)C15—C16—H16B109.5
N1—Re1—Cl181.35 (8)H16A—C16—H16B109.5
O3—C3—Re1176.6 (4)C15—C16—H16C109.5
C17—N3—C19111.5 (3)H16A—C16—H16C109.5
C17—N3—C13106.6 (3)H16B—C16—H16C109.5
C19—N3—C13110.3 (3)N3—C17—C18114.5 (3)
C17—N3—C15110.7 (3)N3—C17—H17A108.6
C19—N3—C15106.6 (3)C18—C17—H17A108.6
C13—N3—C15111.2 (3)N3—C17—H17B108.6
C4—O4—Re1117.4 (2)C18—C17—H17B108.6
C5—N1—C12117.2 (3)H17A—C17—H17B107.6
C5—N1—Re1112.5 (2)C6—N2—C7115.9 (3)
C12—N1—Re1129.9 (2)N1—C12—C11120.9 (3)
O2—C2—Re1178.7 (4)N1—C12—C7119.3 (3)
C14—C13—N3115.2 (3)C11—C12—C7119.7 (3)
C14—C13—H13A108.5C11—C10—C9120.4 (3)
N3—C13—H13A108.5C11—C10—H10119.8
C14—C13—H13B108.5C9—C10—H10119.8
N3—C13—H13B108.5C10—C11—C12120.1 (4)
H13A—C13—H13B107.5C10—C11—H11120
C16—C15—N3115.3 (3)C12—C11—H11120
C16—C15—H15A108.4N1—C5—C6121.8 (3)
N3—C15—H15A108.4N1—C5—C4117.0 (3)
C16—C15—H15B108.4C6—C5—C4121.1 (3)
N3—C15—H15B108.4N2—C6—C5123.3 (3)
H15A—C15—H15B107.5N2—C6—H6118.4
O1—C1—Re1177.9 (4)C5—C6—H6118.4
C19—C20—H20A109.5N2—C7—C12122.2 (3)
C19—C20—H20B109.5N2—C7—C8118.7 (3)
H20A—C20—H20B109.5C12—C7—C8119.0 (3)
C19—C20—H20C109.5O5—C4—O4127.0 (4)
H20A—C20—H20C109.5O5—C4—C5118.5 (4)
H20B—C20—H20C109.5O4—C4—C5114.5 (3)
C13—C14—H14A109.5C9—C8—C7120.1 (4)
C13—C14—H14B109.5C9—C8—H8120
H14A—C14—H14B109.5C7—C8—H8120
C13—C14—H14C109.5C8—C9—C10120.6 (3)
H14A—C14—H14C109.5C8—C9—H9119.7
H14B—C14—H14C109.5C10—C9—H9119.7
C1—Re1—O4—C4159.2 (3)C15—N3—C19—C20172.6 (3)
C3—Re1—O4—C4112.3 (3)C19—N3—C17—C1855.5 (4)
Cl1—Re1—O4—C464.9 (3)C13—N3—C17—C18176.0 (3)
C2—Re1—N1—C5157.7 (3)C15—N3—C17—C1863.0 (4)
C3—Re1—N1—C5110.7 (3)C5—N1—C12—C11171.0 (3)
Cl1—Re1—N1—C570.8 (2)Re1—N1—C12—C7167.3 (2)
C1—Re1—N1—C12174.0 (6)N1—C12—C11—C10176.3 (3)
C3—Re1—N1—C1276.0 (3)Re1—N1—C5—C6169.4 (3)
O4—Re1—N1—C12171.8 (3)C12—N1—C5—C4174.2 (3)
Cl1—Re1—N1—C12102.4 (3)Re1—N1—C5—C411.5 (4)
C17—N3—C13—C14172.0 (3)C4—C5—C6—N2178.8 (4)
C19—N3—C13—C1466.8 (4)C6—N2—C7—C8174.6 (3)
C15—N3—C13—C1451.2 (4)C11—C12—C7—N2174.3 (3)
C17—N3—C15—C1657.8 (5)N1—C12—C7—C8179.0 (3)
C19—N3—C15—C16179.3 (3)Re1—O4—C4—O5164.6 (3)
C13—N3—C15—C1660.5 (4)N1—C5—C4—O5178.6 (3)
C17—N3—C19—C2051.7 (4)C6—C5—C4—O4175.9 (3)
C13—N3—C19—C2066.6 (4)N2—C7—C8—C9174.1 (3)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O5i0.932.353.046 (5)131
Symmetry codes: (i) x, y+1, z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
C10—H10···O5i0.932.353.046 (5)131
Symmetry codes: (i) x, y+1, z.
Acknowledgements top

The authors wish to thank Necsa and the UFS for funding and permission to publish this work.

references
References top

Alberto, R., Schibli, R. & Schubiger, P. A. (1996). Polyhedron, 15, 1079–1083.

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

Alvarez, C. M., Garcia-Rodriguez, R. & Miguel, D. (2007). Dalton Trans. pp. 3546–3554.

Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Brasey, T., Buryak, A., Scopelliti, R. & Severin, K. (2004). Eur. J. Inorg. Chem. pp. 964–967.

Bruker (2004). SAINT-Plus, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Feng, Y., Liu, G., Tian, X.-M. & Wang, J.-D. (2007). Acta Cryst.. C63, m598–m600.

Mundwiler, S., Kundig, M., Ortner, K. & Alberto, R. (2004). Dalton Trans. pp. 1320–1328.

Schutte, M., Visser, H. G. & Roodt, A. (2008). Acta Cryst. E64, m1610–m1611.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Suthiram, J., Mhlaba, K., Zeevaart, J. R., Visser, H. G. & Roodt, A. (2009). Acta Cryst. E65, m1395.

Wang, W., Spingler, B. & Alberto, R. (2003). Inorg. Chim. Acta, 355, 386–391.