organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A triclinic polymorph of (E)-2-(2-nitro­ethen­yl)furan

aKey Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
*Correspondence e-mail: lilinchem@126.com

(Received 8 June 2010; accepted 25 June 2010; online 3 July 2010)

The title compound, C6H5NO3, crystallizes in the triclinic system with six independent mol­ecules in the asymmetric unit. In a previous study, the structure of the title compound was determined in the monoclinic P21/n space group at 100 K [Valerga et al. (2009[Valerga, P., Puerta, M. C., Rodríguez Negrín, Z., Castañedo Cancio, N. & Palma Lovillo, M. (2009). Acta Cryst. E65, o1979.]). Acta Cryst. E65, o1979]. All six independent mol­ecules display an E configuration about the C=C double bond, with the dihedral angles between the planes of the furan rings and the nitro­alkenyl groups ranging from 0.61 (7) to 5.03 (7)°. The crystal structure is stabilized by inter­molecular C—H⋯O hydrogen-bonding inter­actions.

Related literature

For the use of nitro­alkenes in organic synthesis, see: Ranu et al. (2005[Ranu, B. C. & Banerjee, S. (2005). Org. Lett. 7, 3049-3052.]); Ballini & Bosica (2005[Ballini, R. & Bosica, G. (2005). Chem. Rev. 105, 933-971.]); Ono (2005[Ono, N. (2005). The Nitro Group in Organic Synthesis. Weinheim: Wiley-VCH.]). For the structure of the monoclinic polymorph, see: Valerga et al. (2009[Valerga, P., Puerta, M. C., Rodríguez Negrín, Z., Castañedo Cancio, N. & Palma Lovillo, M. (2009). Acta Cryst. E65, o1979.]).

[Scheme 1]

Experimental

Crystal data
  • C6H5NO3

  • Mr = 139.11

  • Triclinic, [P \overline 1]

  • a = 9.8407 (14) Å

  • b = 13.4270 (19) Å

  • c = 15.300 (2) Å

  • α = 91.105 (1)°

  • β = 108.603 (2)°

  • γ = 91.172 (1)°

  • V = 1914.8 (5) Å3

  • Z = 12

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 298 K

  • 0.12 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.976, Tmax = 0.988

  • 13307 measured reflections

  • 8182 independent reflections

  • 4235 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.149

  • S = 0.92

  • 8182 reflections

  • 541 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O10i 0.93 2.58 3.382 (3) 145
C16—H16⋯O13 0.93 2.60 3.370 (3) 141
C26—H26⋯O14ii 0.93 2.59 3.281 (3) 131
C28—H28⋯O8iii 0.93 2.59 3.405 (3) 146
C34—H34⋯O4 0.93 2.59 3.383 (3) 143
Symmetry codes: (i) x, y+1, z; (ii) -x+2, -y, -z+1; (iii) x-1, y, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Nitroalkenes are good substrates for Michael addition reactions because of the stronger electrowithdrawing property of the nitro group (Ranu et al., 2005). At the same time, the nitro group can provide a good nitrogen source for the synthesis of many useful organic molecules (Ballini & Bosica, 2005; Ono, 2005). Our group focus on new organic transformations obtained by nitroalkene as substrates. In this paper, we report the structure of a triclinic polymorph of the title compound. Recently, the structure of the title compound was determined in the monoclinic P21/n space group at 100 K (Valerga et al., 2009).

In the asymmetric unit of the title compound, there are six independent molecules (Fig.1). All molecules display an E configuration about the CC double bond. Bond lengths and angles are in normal ranges and are comparable with those found in the monoclinic polymorph. The dihedral angles between the planes of the furan rings and the nitroalkenyl groups range from 0.61 (7) to 5.03 (7)°. The crystal structure (Fig. 2) is stabilized by intermolecular C—H···O hydrogen bonding interactions (Table 1).

Related literature top

For the use of nitroalkenes in organic synthesis, see: Ranu et al. (2005); Ballini & Bosica (2005); Ono (2005). For the structure of the monoclinic polymorph, see: Valerga et al. (2009).

Experimental top

Furfural (0.1 mol) and nitromethane (0.1 mol) were dissolved in 30 ml CH3OH with stirring under ice bath, and a few ml of a NaOH in CH3OH solution was added dropwise. After stirring for 1 h, ice water was added and the solution neutralized with a diluted hydrochloric acid solution. The yellowish-brown solid precipitate was filtered and recrystallized from C2H5OH (yield 92%). Crystals suitable for X-ray analysis were obtained by slow evaporation of a dichloromethane/hexane (1:1 v/v) solution at 283 K.

Refinement top

All hydrogen atoms were placed in geometrically idealized positions with C–H = 0.93 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.2 Ueq(C).

Structure description top

Nitroalkenes are good substrates for Michael addition reactions because of the stronger electrowithdrawing property of the nitro group (Ranu et al., 2005). At the same time, the nitro group can provide a good nitrogen source for the synthesis of many useful organic molecules (Ballini & Bosica, 2005; Ono, 2005). Our group focus on new organic transformations obtained by nitroalkene as substrates. In this paper, we report the structure of a triclinic polymorph of the title compound. Recently, the structure of the title compound was determined in the monoclinic P21/n space group at 100 K (Valerga et al., 2009).

In the asymmetric unit of the title compound, there are six independent molecules (Fig.1). All molecules display an E configuration about the CC double bond. Bond lengths and angles are in normal ranges and are comparable with those found in the monoclinic polymorph. The dihedral angles between the planes of the furan rings and the nitroalkenyl groups range from 0.61 (7) to 5.03 (7)°. The crystal structure (Fig. 2) is stabilized by intermolecular C—H···O hydrogen bonding interactions (Table 1).

For the use of nitroalkenes in organic synthesis, see: Ranu et al. (2005); Ballini & Bosica (2005); Ono (2005). For the structure of the monoclinic polymorph, see: Valerga et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing for the title compound, with C—H···O interactions drawn as dashed lines.
(E)-2-(2-nitroethenyl)furan top
Crystal data top
C6H5NO3Z = 12
Mr = 139.11F(000) = 864
Triclinic, P1Dx = 1.448 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.8407 (14) ÅCell parameters from 2345 reflections
b = 13.4270 (19) Åθ = 1.2–25.9°
c = 15.300 (2) ŵ = 0.12 mm1
α = 91.105 (1)°T = 298 K
β = 108.603 (2)°Block, colourless
γ = 91.172 (1)°0.12 × 0.10 × 0.10 mm
V = 1914.8 (5) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
8182 independent reflections
Radiation source: fine-focus sealed tube4235 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 27.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1212
Tmin = 0.976, Tmax = 0.988k = 1617
13307 measured reflectionsl = 1419
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 0.92 w = 1/[σ2(Fo2) + (0.0705P)2]
where P = (Fo2 + 2Fc2)/3
8182 reflections(Δ/σ)max = 0.002
541 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C6H5NO3γ = 91.172 (1)°
Mr = 139.11V = 1914.8 (5) Å3
Triclinic, P1Z = 12
a = 9.8407 (14) ÅMo Kα radiation
b = 13.4270 (19) ŵ = 0.12 mm1
c = 15.300 (2) ÅT = 298 K
α = 91.105 (1)°0.12 × 0.10 × 0.10 mm
β = 108.603 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
8182 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
4235 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.988Rint = 0.027
13307 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 0.92Δρmax = 0.15 e Å3
8182 reflectionsΔρmin = 0.22 e Å3
541 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9416 (2)0.92135 (16)0.24460 (16)0.0650 (6)
H10.98310.95320.20560.078*
C21.0123 (2)0.86624 (16)0.31429 (16)0.0644 (6)
H21.10960.85280.33290.077*
C30.9112 (2)0.83226 (15)0.35424 (15)0.0599 (6)
H30.92880.79120.40470.072*
C40.7841 (2)0.86944 (14)0.30671 (14)0.0479 (5)
C50.6460 (2)0.85930 (14)0.31761 (14)0.0517 (5)
H50.63870.82110.36610.062*
C60.5279 (2)0.89934 (15)0.26493 (14)0.0539 (5)
H60.53080.93820.21590.065*
C70.7237 (2)0.63452 (14)0.18843 (14)0.0491 (5)
C80.8029 (2)0.67212 (15)0.13981 (16)0.0638 (6)
H80.77140.71460.09050.077*
C90.9416 (2)0.63636 (16)0.17613 (17)0.0669 (7)
H91.01960.65010.15600.080*
C100.9392 (2)0.57880 (16)0.24518 (17)0.0657 (6)
H101.01780.54520.28190.079*
C110.5770 (2)0.64540 (14)0.18134 (14)0.0515 (5)
H110.52390.68800.13680.062*
C120.5094 (2)0.60051 (15)0.23223 (15)0.0567 (6)
H120.55870.55730.27760.068*
C130.8059 (2)0.37791 (14)0.10512 (14)0.0484 (5)
C140.6775 (2)0.40843 (14)0.05235 (15)0.0570 (6)
H140.65960.44240.00240.068*
C150.5752 (2)0.38043 (15)0.09389 (16)0.0599 (6)
H150.47720.39150.07260.072*
C160.6481 (2)0.33457 (16)0.17040 (16)0.0643 (6)
H160.60700.30810.21210.077*
C170.9454 (2)0.38754 (14)0.09616 (14)0.0498 (5)
H170.95250.42010.04460.060*
C181.0657 (2)0.35470 (14)0.15413 (14)0.0525 (5)
H181.06310.32020.20570.063*
C190.8813 (2)0.13701 (14)0.01911 (15)0.0495 (5)
C200.9605 (2)0.15719 (15)0.03563 (16)0.0607 (6)
H200.92670.18080.09530.073*
C211.1038 (2)0.13626 (15)0.01342 (18)0.0660 (6)
H211.18260.14280.00730.079*
C221.1038 (2)0.10540 (16)0.09513 (18)0.0697 (7)
H221.18520.08680.14180.084*
C230.7319 (2)0.14092 (14)0.00502 (15)0.0512 (5)
H230.67500.16620.05040.061*
C240.6664 (2)0.11183 (15)0.06361 (15)0.0565 (6)
H240.71990.08660.12000.068*
C250.7166 (2)0.11542 (14)0.39786 (15)0.0505 (5)
C260.6371 (2)0.08594 (15)0.45004 (16)0.0640 (6)
H260.67030.05330.50560.077*
C270.4949 (2)0.11306 (16)0.40575 (18)0.0675 (7)
H270.41610.10220.42580.081*
C280.4967 (2)0.15721 (17)0.32982 (19)0.0766 (7)
H280.41640.18290.28680.092*
C290.8654 (2)0.10866 (14)0.40970 (14)0.0512 (5)
H290.92030.07410.46040.061*
C300.9330 (2)0.14664 (15)0.35584 (15)0.0564 (6)
H300.88180.18190.30460.068*
C310.6315 (2)0.36980 (14)0.48376 (15)0.0505 (5)
C320.7617 (2)0.34777 (16)0.53904 (15)0.0635 (6)
H320.78220.31930.59660.076*
C330.8624 (2)0.37469 (15)0.49599 (17)0.0628 (6)
H330.96130.36780.51860.075*
C340.7873 (3)0.41190 (17)0.41671 (17)0.0739 (7)
H340.82700.43610.37340.089*
C350.4923 (2)0.35871 (14)0.49243 (14)0.0522 (5)
H350.48680.32950.54590.063*
C360.3707 (2)0.38543 (15)0.43283 (15)0.0565 (6)
H360.37160.41500.37850.068*
N10.39430 (19)0.88338 (14)0.28277 (13)0.0603 (5)
N20.3605 (2)0.61778 (13)0.21816 (13)0.0608 (5)
N31.19984 (19)0.37178 (13)0.13825 (14)0.0597 (5)
N40.51390 (19)0.11858 (12)0.04148 (14)0.0589 (5)
N51.08370 (18)0.13472 (13)0.37455 (13)0.0574 (5)
N60.23663 (19)0.36992 (13)0.44974 (14)0.0600 (5)
O10.80031 (15)0.92554 (10)0.23725 (10)0.0586 (4)
O20.38865 (17)0.82959 (14)0.34471 (12)0.0853 (5)
O30.29023 (16)0.92505 (12)0.23200 (12)0.0870 (5)
O40.80683 (15)0.57538 (10)0.25532 (10)0.0614 (4)
O50.30358 (18)0.57248 (13)0.26641 (12)0.0847 (5)
O60.29579 (16)0.67661 (12)0.16014 (11)0.0804 (5)
O70.79022 (15)0.33117 (10)0.17990 (9)0.0588 (4)
O81.30633 (16)0.33720 (12)0.19333 (12)0.0844 (5)
O91.20458 (17)0.41996 (14)0.07243 (12)0.0877 (6)
O100.96849 (15)0.10452 (10)0.10184 (10)0.0629 (4)
O110.44264 (16)0.15312 (12)0.03166 (11)0.0803 (5)
O120.46063 (17)0.08859 (13)0.09852 (12)0.0849 (5)
O130.63096 (15)0.16044 (11)0.32253 (11)0.0711 (5)
O141.15176 (16)0.09038 (12)0.44346 (11)0.0782 (5)
O151.13827 (17)0.17002 (12)0.32070 (12)0.0805 (5)
O160.64420 (16)0.41055 (11)0.40583 (10)0.0709 (5)
O170.23464 (18)0.33222 (13)0.52140 (13)0.0894 (6)
O180.12831 (16)0.39605 (12)0.39036 (11)0.0817 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0618 (16)0.0695 (15)0.0780 (17)0.0058 (12)0.0427 (14)0.0025 (13)
C20.0469 (13)0.0728 (15)0.0772 (17)0.0049 (11)0.0246 (13)0.0062 (13)
C30.0560 (14)0.0666 (14)0.0570 (14)0.0048 (11)0.0171 (12)0.0129 (11)
C40.0490 (13)0.0499 (12)0.0475 (13)0.0027 (9)0.0190 (10)0.0047 (10)
C50.0531 (13)0.0529 (12)0.0511 (13)0.0015 (10)0.0195 (11)0.0040 (10)
C60.0502 (13)0.0580 (13)0.0565 (14)0.0032 (10)0.0215 (11)0.0050 (10)
C70.0463 (12)0.0480 (12)0.0522 (13)0.0049 (9)0.0142 (10)0.0078 (10)
C80.0573 (14)0.0591 (14)0.0791 (17)0.0037 (11)0.0264 (13)0.0173 (12)
C90.0541 (15)0.0621 (15)0.0925 (19)0.0008 (11)0.0344 (14)0.0078 (13)
C100.0481 (14)0.0652 (15)0.0800 (18)0.0130 (11)0.0144 (12)0.0033 (13)
C110.0502 (13)0.0460 (12)0.0575 (14)0.0037 (9)0.0158 (11)0.0053 (10)
C120.0507 (13)0.0602 (13)0.0621 (15)0.0135 (10)0.0207 (12)0.0092 (11)
C130.0480 (12)0.0481 (12)0.0525 (13)0.0016 (9)0.0210 (10)0.0071 (10)
C140.0487 (13)0.0608 (13)0.0608 (14)0.0065 (10)0.0156 (11)0.0135 (11)
C150.0432 (12)0.0628 (14)0.0753 (16)0.0035 (10)0.0208 (12)0.0050 (12)
C160.0562 (15)0.0691 (15)0.0791 (17)0.0022 (11)0.0378 (13)0.0097 (13)
C170.0507 (13)0.0516 (12)0.0514 (13)0.0012 (10)0.0223 (10)0.0042 (10)
C180.0462 (12)0.0584 (13)0.0573 (14)0.0003 (10)0.0226 (11)0.0071 (10)
C190.0449 (12)0.0456 (12)0.0581 (14)0.0041 (9)0.0161 (11)0.0067 (10)
C200.0558 (14)0.0641 (14)0.0666 (15)0.0086 (11)0.0244 (12)0.0153 (12)
C210.0523 (14)0.0609 (14)0.0933 (19)0.0058 (11)0.0343 (14)0.0140 (13)
C220.0402 (13)0.0669 (15)0.097 (2)0.0073 (10)0.0131 (13)0.0213 (14)
C230.0449 (12)0.0487 (12)0.0589 (14)0.0041 (9)0.0147 (11)0.0060 (10)
C240.0408 (12)0.0586 (13)0.0652 (15)0.0022 (10)0.0100 (11)0.0069 (11)
C250.0444 (12)0.0465 (12)0.0606 (14)0.0040 (9)0.0165 (11)0.0053 (10)
C260.0591 (15)0.0654 (15)0.0714 (16)0.0058 (11)0.0258 (13)0.0098 (12)
C270.0523 (14)0.0587 (14)0.099 (2)0.0009 (11)0.0341 (14)0.0041 (13)
C280.0416 (13)0.0735 (16)0.110 (2)0.0120 (11)0.0151 (14)0.0239 (15)
C290.0441 (12)0.0502 (12)0.0580 (14)0.0041 (9)0.0140 (10)0.0055 (10)
C300.0418 (12)0.0607 (13)0.0644 (15)0.0063 (10)0.0130 (11)0.0113 (11)
C310.0547 (14)0.0463 (12)0.0535 (14)0.0002 (10)0.0212 (11)0.0068 (10)
C320.0570 (14)0.0734 (15)0.0646 (15)0.0101 (11)0.0241 (13)0.0195 (12)
C330.0493 (13)0.0651 (14)0.0773 (17)0.0053 (11)0.0241 (13)0.0112 (12)
C340.0607 (16)0.0906 (18)0.0818 (19)0.0017 (13)0.0385 (14)0.0167 (14)
C350.0546 (13)0.0515 (12)0.0549 (14)0.0029 (10)0.0232 (11)0.0059 (10)
C360.0501 (13)0.0594 (13)0.0638 (15)0.0009 (10)0.0233 (12)0.0082 (11)
N10.0445 (11)0.0722 (13)0.0635 (13)0.0022 (9)0.0162 (10)0.0023 (10)
N20.0531 (12)0.0695 (13)0.0664 (13)0.0092 (10)0.0277 (10)0.0066 (10)
N30.0474 (11)0.0686 (12)0.0667 (13)0.0013 (9)0.0232 (10)0.0070 (10)
N40.0449 (11)0.0592 (12)0.0732 (14)0.0007 (9)0.0194 (10)0.0058 (10)
N50.0436 (11)0.0605 (12)0.0689 (14)0.0040 (9)0.0186 (10)0.0046 (10)
N60.0503 (12)0.0578 (12)0.0761 (14)0.0038 (9)0.0257 (11)0.0066 (10)
O10.0573 (9)0.0610 (9)0.0617 (10)0.0035 (7)0.0243 (8)0.0130 (7)
O20.0609 (11)0.1205 (14)0.0839 (13)0.0062 (10)0.0338 (9)0.0390 (11)
O30.0484 (10)0.1061 (13)0.1021 (13)0.0130 (9)0.0155 (9)0.0318 (10)
O40.0534 (9)0.0672 (10)0.0656 (10)0.0106 (7)0.0203 (8)0.0171 (8)
O50.0710 (11)0.1055 (13)0.0971 (13)0.0118 (10)0.0522 (10)0.0297 (10)
O60.0586 (10)0.1003 (13)0.0887 (12)0.0279 (9)0.0290 (9)0.0350 (10)
O70.0507 (9)0.0679 (10)0.0616 (10)0.0032 (7)0.0220 (7)0.0174 (8)
O80.0466 (9)0.1086 (13)0.0965 (13)0.0181 (9)0.0180 (9)0.0305 (10)
O90.0608 (11)0.1255 (15)0.0889 (13)0.0044 (10)0.0385 (10)0.0417 (11)
O100.0447 (9)0.0705 (10)0.0728 (11)0.0043 (7)0.0161 (8)0.0234 (8)
O110.0480 (9)0.1092 (13)0.0791 (12)0.0135 (9)0.0119 (9)0.0261 (10)
O120.0587 (11)0.1081 (14)0.0985 (14)0.0004 (9)0.0386 (10)0.0290 (11)
O130.0428 (9)0.0858 (11)0.0836 (12)0.0072 (8)0.0167 (8)0.0322 (9)
O140.0495 (9)0.1025 (13)0.0824 (12)0.0191 (9)0.0184 (9)0.0287 (10)
O150.0602 (10)0.1047 (13)0.0902 (13)0.0043 (9)0.0414 (10)0.0295 (10)
O160.0574 (10)0.0928 (12)0.0663 (11)0.0032 (8)0.0235 (8)0.0250 (9)
O170.0698 (12)0.1143 (14)0.0977 (14)0.0103 (10)0.0431 (11)0.0430 (11)
O180.0482 (10)0.1026 (13)0.0895 (13)0.0134 (9)0.0139 (9)0.0155 (10)
Geometric parameters (Å, º) top
C1—C21.321 (3)C21—H210.9300
C1—O11.362 (2)C22—O101.368 (3)
C1—H10.9300C22—H220.9300
C2—C31.397 (3)C23—C241.320 (3)
C2—H20.9300C23—H230.9300
C3—C41.342 (3)C24—N41.434 (2)
C3—H30.9300C24—H240.9300
C4—O11.362 (2)C25—C261.343 (3)
C4—C51.425 (3)C25—O131.353 (2)
C5—C61.317 (3)C25—C291.422 (3)
C5—H50.9300C26—C271.405 (3)
C6—N11.438 (3)C26—H260.9300
C6—H60.9300C27—C281.319 (3)
C7—C81.336 (3)C27—H270.9300
C7—O41.368 (2)C28—O131.361 (3)
C7—C111.424 (3)C28—H280.9300
C8—C91.398 (3)C29—C301.317 (3)
C8—H80.9300C29—H290.9300
C9—C101.327 (3)C30—N51.431 (2)
C9—H90.9300C30—H300.9300
C10—O41.360 (2)C31—C321.334 (3)
C10—H100.9300C31—O161.362 (2)
C11—C121.320 (3)C31—C351.423 (3)
C11—H110.9300C32—C331.399 (3)
C12—N21.436 (3)C32—H320.9300
C12—H120.9300C33—C341.317 (3)
C13—C141.341 (3)C33—H330.9300
C13—O71.365 (2)C34—O161.364 (3)
C13—C171.426 (3)C34—H340.9300
C14—C151.401 (3)C35—C361.314 (3)
C14—H140.9300C35—H350.9300
C15—C161.332 (3)C36—N61.435 (3)
C15—H150.9300C36—H360.9300
C16—O71.361 (2)N1—O21.217 (2)
C16—H160.9300N1—O31.224 (2)
C17—C181.323 (3)N2—O51.223 (2)
C17—H170.9300N2—O61.226 (2)
C18—N31.431 (3)N3—O91.220 (2)
C18—H180.9300N3—O81.223 (2)
C19—C201.341 (3)N4—O111.221 (2)
C19—O101.368 (2)N4—O121.223 (2)
C19—C231.419 (3)N5—O151.216 (2)
C20—C211.407 (3)N5—O141.227 (2)
C20—H200.9300N6—O171.222 (2)
C21—C221.325 (3)N6—O181.222 (2)
C2—C1—O1111.4 (2)C24—C23—C19125.8 (2)
C2—C1—H1124.3C24—C23—H23117.1
O1—C1—H1124.3C19—C23—H23117.1
C1—C2—C3106.0 (2)C23—C24—N4120.9 (2)
C1—C2—H2127.0C23—C24—H24119.5
C3—C2—H2127.0N4—C24—H24119.5
C4—C3—C2107.74 (19)C26—C25—O13108.90 (18)
C4—C3—H3126.1C26—C25—C29132.1 (2)
C2—C3—H3126.1O13—C25—C29119.0 (2)
C3—C4—O1109.20 (18)C25—C26—C27107.9 (2)
C3—C4—C5131.5 (2)C25—C26—H26126.0
O1—C4—C5119.26 (19)C27—C26—H26126.0
C6—C5—C4125.6 (2)C28—C27—C26105.5 (2)
C6—C5—H5117.2C28—C27—H27127.2
C4—C5—H5117.2C26—C27—H27127.2
C5—C6—N1120.4 (2)C27—C28—O13111.4 (2)
C5—C6—H6119.8C27—C28—H28124.3
N1—C6—H6119.8O13—C28—H28124.3
C8—C7—O4109.22 (18)C30—C29—C25126.3 (2)
C8—C7—C11131.9 (2)C30—C29—H29116.9
O4—C7—C11118.83 (19)C25—C29—H29116.9
C7—C8—C9107.9 (2)C29—C30—N5121.3 (2)
C7—C8—H8126.0C29—C30—H30119.3
C9—C8—H8126.0N5—C30—H30119.3
C10—C9—C8106.0 (2)C32—C31—O16108.79 (19)
C10—C9—H9127.0C32—C31—C35132.6 (2)
C8—C9—H9127.0O16—C31—C35118.58 (19)
C9—C10—O4111.2 (2)C31—C32—C33108.6 (2)
C9—C10—H10124.4C31—C32—H32125.7
O4—C10—H10124.4C33—C32—H32125.7
C12—C11—C7126.0 (2)C34—C33—C32105.3 (2)
C12—C11—H11117.0C34—C33—H33127.4
C7—C11—H11117.0C32—C33—H33127.4
C11—C12—N2120.57 (19)C33—C34—O16111.7 (2)
C11—C12—H12119.7C33—C34—H34124.1
N2—C12—H12119.7O16—C34—H34124.1
C14—C13—O7109.09 (18)C36—C35—C31126.8 (2)
C14—C13—C17131.9 (2)C36—C35—H35116.6
O7—C13—C17119.01 (18)C31—C35—H35116.6
C13—C14—C15108.30 (19)C35—C36—N6121.4 (2)
C13—C14—H14125.8C35—C36—H36119.3
C15—C14—H14125.8N6—C36—H36119.3
C16—C15—C14105.28 (19)O2—N1—O3123.55 (19)
C16—C15—H15127.4O2—N1—C6120.06 (19)
C14—C15—H15127.4O3—N1—C6116.38 (19)
C15—C16—O7111.6 (2)O5—N2—O6122.62 (19)
C15—C16—H16124.2O5—N2—C12117.32 (18)
O7—C16—H16124.2O6—N2—C12120.07 (19)
C18—C17—C13126.3 (2)O9—N3—O8122.83 (19)
C18—C17—H17116.9O9—N3—C18119.96 (18)
C13—C17—H17116.9O8—N3—C18117.21 (19)
C17—C18—N3120.6 (2)O11—N4—O12122.61 (19)
C17—C18—H18119.7O11—N4—C24120.2 (2)
N3—C18—H18119.7O12—N4—C24117.14 (19)
C20—C19—O10109.30 (18)O15—N5—O14123.11 (18)
C20—C19—C23132.3 (2)O15—N5—C30117.66 (19)
O10—C19—C23118.35 (19)O14—N5—C30119.2 (2)
C19—C20—C21107.7 (2)O17—N6—O18122.96 (19)
C19—C20—H20126.2O17—N6—C36119.78 (19)
C21—C20—H20126.2O18—N6—C36117.3 (2)
C22—C21—C20106.1 (2)C1—O1—C4105.67 (17)
C22—C21—H21127.0C10—O4—C7105.69 (17)
C20—C21—H21127.0C16—O7—C13105.73 (16)
C21—C22—O10111.2 (2)C22—O10—C19105.77 (18)
C21—C22—H22124.4C25—O13—C28106.26 (18)
O10—C22—H22124.4C31—O16—C34105.61 (17)
O1—C1—C2—C30.3 (3)C35—C31—C32—C33179.9 (2)
C1—C2—C3—C40.4 (3)C31—C32—C33—C340.1 (3)
C2—C3—C4—O10.4 (2)C32—C33—C34—O160.1 (3)
C2—C3—C4—C5179.7 (2)C32—C31—C35—C36178.6 (2)
C3—C4—C5—C6179.2 (2)O16—C31—C35—C361.2 (3)
O1—C4—C5—C60.7 (3)C31—C35—C36—N6179.89 (18)
C4—C5—C6—N1179.79 (18)C5—C6—N1—O22.8 (3)
O4—C7—C8—C90.0 (2)C5—C6—N1—O3178.35 (19)
C11—C7—C8—C9179.6 (2)C11—C12—N2—O5178.7 (2)
C7—C8—C9—C100.1 (3)C11—C12—N2—O61.9 (3)
C8—C9—C10—O40.1 (3)C17—C18—N3—O92.5 (3)
C8—C7—C11—C12177.2 (2)C17—C18—N3—O8178.20 (19)
O4—C7—C11—C122.4 (3)C23—C24—N4—O111.3 (3)
C7—C11—C12—N2179.95 (18)C23—C24—N4—O12178.77 (19)
O7—C13—C14—C150.2 (2)C29—C30—N5—O15178.5 (2)
C17—C13—C14—C15179.2 (2)C29—C30—N5—O141.9 (3)
C13—C14—C15—C160.3 (2)C35—C36—N6—O170.9 (3)
C14—C15—C16—O70.3 (3)C35—C36—N6—O18179.32 (19)
C14—C13—C17—C18179.2 (2)C2—C1—O1—C40.1 (2)
O7—C13—C17—C180.3 (3)C3—C4—O1—C10.2 (2)
C13—C17—C18—N3178.25 (18)C5—C4—O1—C1179.84 (17)
O10—C19—C20—C210.4 (2)C9—C10—O4—C70.0 (2)
C23—C19—C20—C21177.6 (2)C8—C7—O4—C100.0 (2)
C19—C20—C21—C220.5 (2)C11—C7—O4—C10179.69 (18)
C20—C21—C22—O100.3 (3)C15—C16—O7—C130.2 (2)
C20—C19—C23—C24174.8 (2)C14—C13—O7—C160.0 (2)
O10—C19—C23—C243.0 (3)C17—C13—O7—C16179.15 (18)
C19—C23—C24—N4179.47 (18)C21—C22—O10—C190.1 (2)
O13—C25—C26—C270.2 (2)C20—C19—O10—C220.2 (2)
C29—C25—C26—C27179.0 (2)C23—C19—O10—C22178.11 (17)
C25—C26—C27—C280.1 (3)C26—C25—O13—C280.3 (2)
C26—C27—C28—O130.1 (3)C29—C25—O13—C28179.25 (19)
C26—C25—C29—C30175.2 (2)C27—C28—O13—C250.3 (3)
O13—C25—C29—C303.4 (3)C32—C31—O16—C340.1 (2)
C25—C29—C30—N5179.79 (18)C35—C31—O16—C34179.92 (18)
O16—C31—C32—C330.1 (2)C33—C34—O16—C310.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O10i0.932.583.382 (3)145
C16—H16···O130.932.603.370 (3)141
C26—H26···O14ii0.932.593.281 (3)131
C28—H28···O8iii0.932.593.405 (3)146
C34—H34···O40.932.593.383 (3)143
Symmetry codes: (i) x, y+1, z; (ii) x+2, y, z+1; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC6H5NO3
Mr139.11
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.8407 (14), 13.4270 (19), 15.300 (2)
α, β, γ (°)91.105 (1), 108.603 (2), 91.172 (1)
V3)1914.8 (5)
Z12
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.12 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.976, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
13307, 8182, 4235
Rint0.027
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.149, 0.92
No. of reflections8182
No. of parameters541
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.22

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O10i0.932.583.382 (3)144.7
C16—H16···O130.932.603.370 (3)141.1
C26—H26···O14ii0.932.593.281 (3)131.2
C28—H28···O8iii0.932.593.405 (3)146.0
C34—H34···O40.932.593.383 (3)143.3
Symmetry codes: (i) x, y+1, z; (ii) x+2, y, z+1; (iii) x1, y, z.
 

Acknowledgements

Financial support of this work by the Natural Science Foundation of Hubei Province(2008CDB036) is greatly appreciated.

References

First citationBallini, R. & Bosica, G. (2005). Chem. Rev. 105, 933–971.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SAINT-Plus and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationOno, N. (2005). The Nitro Group in Organic Synthesis. Weinheim: Wiley-VCH.  Google Scholar
First citationRanu, B. C. & Banerjee, S. (2005). Org. Lett. 7, 3049–3052.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationValerga, P., Puerta, M. C., Rodríguez Negrín, Z., Castañedo Cancio, N. & Palma Lovillo, M. (2009). Acta Cryst. E65, o1979.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds