organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Chloro-6-[(E)-2-(1-phenyl­ethyl­­idene)hydrazin­yl]pyridazine

aDepartment of Chemistry, Islamia University, Bahawalpur, Pakistan, bApplied Chemistry Research Center, PCSIR Laboratories Complex, Lahore 54600, Pakistan, cDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and dInstitute of Chemistry, University of the Punjab, Lahore, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 20 June 2010; accepted 23 June 2010; online 24 July 2010)

Two independent mol­ecules are present in the asymmetric unit of the title compound, C12H11ClN4, (Z′ = 2): the dihedral angles between the phenyl and pyridizine rings are 8.35 (10) and 37.64 (6)°. In the crystal, the two mol­ecules form inversion dimers with R22(8) ring motifs through inter­molecular N—H⋯N hydrogen bonds. The crystal structure is stabilized by ππ inter­actions between the pyridazine rings of symmetry-related molecules. In one of the independent mol­ecules, the centroid–centroid separations are 3.6927 (13) and 3.7961 (13) Å, whereas in the other, the separations are 3.6909 (13) and 3.9059 (13) Å.

Related literature

For related structures, see: Ather et al. (2009[Ather, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2009). Acta Cryst. E65, o1628.], 2010a[Ather, A. Q., Şahin, O., Khan, I. U., Khan, M. A. & Büyükgüngör, O. (2010a). Acta Cryst. E66, o1295.],b[Ather, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2010b). Acta Cryst. E66, o1327.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C12H11ClN4

  • Mr = 246.70

  • Monoclinic, P 21 /n

  • a = 12.8006 (6) Å

  • b = 7.4703 (5) Å

  • c = 24.9520 (14) Å

  • β = 90.737 (2)°

  • V = 2385.8 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 296 K

  • 0.30 × 0.14 × 0.14 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.982, Tmax = 0.988

  • 22389 measured reflections

  • 5900 independent reflections

  • 3179 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.148

  • S = 1.06

  • 5900 reflections

  • 309 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N7i 0.86 2.35 3.102 (2) 146
N6—H6A⋯N3i 0.86 2.35 3.138 (2) 153
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

In continuation to pyridazine derivatives (Ather et al., 2009, 2010a, 2010b), the title compound (I, Fig. 1) is being reported here.

The title compound consists of two molecules in the crystallographic asymmetric unit which differ from each other geometrically. In one molecule, the phenyl ring A (C1—C6) of 1-phenylethanimine, the central part B (C8/C7/N1/N2) and the chloro substituated pyridazine C (C9–C12/N3/N4/CL1) are planar with r. m. s. deviation of 0.0063, 0.0009 and 0.0053 Å respectively. The dihedral angle between A/B, A/C and B/C is 4.66 (13)°, 8.40 (9)° and 4.39 (10)°, respectively. In second molecule, the phenyl ring D (C13—C18) of 1-phenylethanimine, the central part E (C20/C19/N5/N6) and the chloro substituated pyridazine F (C21–C24/N7/N8/CL2) are planar with r. m. s. deviation of 0.0056, 0.0009 and 0.0033 Å respectively. The dihedral angle between D/E, D/F and E/F is 38.46 (7)°, 37.77 (5)° and 0.75 (9)°, respectively. These values confirm that the selection of crystal system and space group is correct. The two molecules form dimers (Fig. 2) with each other through intermolecular H-bondings of N—H···N type with R22(8) ring motifs (Bernstein et al., 1995). There exist ππ interactions between the similar pyridazine rings. In first molecule the distance between the centroids of pyridazine rings is 3.6927 (13) and 3.7961 (13) Å, whereas in the second molecules the separation between the pyridazine rings is 3.6909 (13) and 3.9059 (13) Å.

Related literature top

For related structures, see: Ather et al. (2009, 2010a,b). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

3-Chloro-6-hydrazinylpyridazine (0.5 g, 3.46 mmol) was dissolved in ethanol (15 ml). 1-Phenylethanone (0.416 g, 3.46 mmol) was added to the solution and refluxed for 2 h. The reaction was monitored by TLC. After the completion, the reaction mixture was concentrated under vacuum. Distilled water (20 ml) was added to the resulting concentrated mixture, which give rise to precipitates. The filtered precipitate were dried and re-crystallized in ethanol to obtaine the light yellow needles of title compound (I).

Refinement top

The H-atoms were positioned geometrically with N–H = 0.86 Å, C–H = 0.93 and C–H = 0.96 Å for aromatic rings and methyl atoms and constrained to ride on their parent atoms with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl and x = 1.2 for all other H-atoms.

Structure description top

In continuation to pyridazine derivatives (Ather et al., 2009, 2010a, 2010b), the title compound (I, Fig. 1) is being reported here.

The title compound consists of two molecules in the crystallographic asymmetric unit which differ from each other geometrically. In one molecule, the phenyl ring A (C1—C6) of 1-phenylethanimine, the central part B (C8/C7/N1/N2) and the chloro substituated pyridazine C (C9–C12/N3/N4/CL1) are planar with r. m. s. deviation of 0.0063, 0.0009 and 0.0053 Å respectively. The dihedral angle between A/B, A/C and B/C is 4.66 (13)°, 8.40 (9)° and 4.39 (10)°, respectively. In second molecule, the phenyl ring D (C13—C18) of 1-phenylethanimine, the central part E (C20/C19/N5/N6) and the chloro substituated pyridazine F (C21–C24/N7/N8/CL2) are planar with r. m. s. deviation of 0.0056, 0.0009 and 0.0033 Å respectively. The dihedral angle between D/E, D/F and E/F is 38.46 (7)°, 37.77 (5)° and 0.75 (9)°, respectively. These values confirm that the selection of crystal system and space group is correct. The two molecules form dimers (Fig. 2) with each other through intermolecular H-bondings of N—H···N type with R22(8) ring motifs (Bernstein et al., 1995). There exist ππ interactions between the similar pyridazine rings. In first molecule the distance between the centroids of pyridazine rings is 3.6927 (13) and 3.7961 (13) Å, whereas in the second molecules the separation between the pyridazine rings is 3.6909 (13) and 3.9059 (13) Å.

For related structures, see: Ather et al. (2009, 2010a,b). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Packing diagram of the title compound (PLATON: Spek, 2009) showing that the molecules form dimers.
3-Chloro-6-[(E)-2-(1-phenylethylidene)hydrazinyl]pyridazine top
Crystal data top
C12H11ClN4F(000) = 1024
Mr = 246.70Dx = 1.374 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3179 reflections
a = 12.8006 (6) Åθ = 2.9–28.3°
b = 7.4703 (5) ŵ = 0.30 mm1
c = 24.9520 (14) ÅT = 296 K
β = 90.737 (2)°Needle, light yellow
V = 2385.8 (2) Å30.30 × 0.14 × 0.14 mm
Z = 8
Data collection top
Bruker KAPPA APEXII CCD
diffractometer
5900 independent reflections
Radiation source: fine-focus sealed tube3179 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 7.40 pixels mm-1θmax = 28.3°, θmin = 2.9°
ω scansh = 1716
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 99
Tmin = 0.982, Tmax = 0.988l = 3333
22389 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0601P)2 + 0.068P]
where P = (Fo2 + 2Fc2)/3
5900 reflections(Δ/σ)max = 0.001
309 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C12H11ClN4V = 2385.8 (2) Å3
Mr = 246.70Z = 8
Monoclinic, P21/nMo Kα radiation
a = 12.8006 (6) ŵ = 0.30 mm1
b = 7.4703 (5) ÅT = 296 K
c = 24.9520 (14) Å0.30 × 0.14 × 0.14 mm
β = 90.737 (2)°
Data collection top
Bruker KAPPA APEXII CCD
diffractometer
5900 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3179 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.988Rint = 0.054
22389 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.06Δρmax = 0.22 e Å3
5900 reflectionsΔρmin = 0.20 e Å3
309 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.14191 (4)0.12613 (9)0.08803 (2)0.0681 (3)
N10.87290 (12)0.3777 (2)0.12027 (7)0.0439 (6)
N20.84605 (12)0.3627 (3)0.06698 (7)0.0487 (6)
N30.89323 (13)0.2970 (3)0.01854 (7)0.0510 (7)
N40.96364 (13)0.2410 (3)0.05514 (7)0.0521 (7)
C10.83894 (15)0.4538 (3)0.20972 (8)0.0409 (7)
C20.93426 (16)0.3832 (3)0.22711 (9)0.0543 (9)
C30.96554 (18)0.3954 (4)0.27995 (10)0.0660 (10)
C40.9016 (2)0.4749 (3)0.31703 (9)0.0654 (10)
C50.8075 (2)0.5411 (3)0.30105 (10)0.0662 (10)
C60.77589 (17)0.5314 (3)0.24801 (9)0.0561 (8)
C70.80578 (14)0.4423 (3)0.15264 (8)0.0412 (7)
C80.69860 (15)0.5040 (3)0.13580 (9)0.0578 (9)
C90.92084 (15)0.3016 (3)0.03289 (8)0.0424 (7)
C101.01991 (15)0.2491 (3)0.05149 (9)0.0510 (8)
C111.08926 (16)0.1954 (3)0.01446 (9)0.0531 (8)
C121.05685 (16)0.1951 (3)0.03850 (9)0.0476 (8)
Cl20.62276 (4)0.87288 (9)0.08693 (2)0.0659 (3)
N50.36036 (13)0.5987 (2)0.12034 (7)0.0470 (6)
N60.32914 (13)0.6283 (3)0.06798 (7)0.0498 (6)
N70.37228 (12)0.7131 (3)0.01655 (7)0.0496 (6)
N80.44215 (13)0.7711 (3)0.05326 (7)0.0504 (7)
C130.33286 (15)0.5047 (3)0.20856 (8)0.0457 (7)
C140.43119 (16)0.4306 (3)0.21617 (9)0.0590 (9)
C150.4697 (2)0.3949 (4)0.26709 (11)0.0737 (10)
C160.4102 (3)0.4353 (4)0.31069 (11)0.0824 (11)
C170.3130 (3)0.5056 (4)0.30392 (11)0.0847 (11)
C180.27360 (19)0.5411 (4)0.25298 (10)0.0659 (10)
C190.29251 (15)0.5417 (3)0.15356 (8)0.0447 (7)
C200.18083 (15)0.5048 (4)0.14036 (9)0.0652 (10)
C210.40365 (15)0.6868 (3)0.03380 (8)0.0413 (7)
C220.50712 (15)0.7153 (3)0.05069 (9)0.0504 (8)
C230.57536 (16)0.7719 (3)0.01398 (9)0.0544 (9)
C240.53849 (15)0.7979 (3)0.03786 (8)0.0452 (8)
H20.977430.326850.202600.0652*
H2A0.784560.390780.055500.0584*
H31.030110.349810.290670.0790*
H40.922790.483150.352740.0784*
H50.763790.593610.326080.0794*
H60.711190.577630.237800.0673*
H8A0.651390.404170.135890.0867*
H8B0.701280.553840.100380.0867*
H8C0.674650.593520.160360.0867*
H101.037180.251110.087800.0612*
H111.156460.159930.024300.0637*
H6A0.265720.610740.057480.0597*
H140.471900.404470.186580.0708*
H150.535500.343970.271690.0884*
H160.436430.414430.345070.0988*
H170.272550.530200.333720.1014*
H180.207060.589480.248800.0790*
H20A0.176250.437170.107710.0976*
H20B0.144070.615980.135940.0976*
H20C0.150160.437590.168920.0976*
H220.527780.695620.086070.0605*
H230.644980.793010.023050.0652*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0605 (4)0.0800 (5)0.0644 (4)0.0011 (3)0.0209 (3)0.0083 (3)
N10.0420 (9)0.0523 (11)0.0373 (10)0.0006 (8)0.0031 (8)0.0047 (9)
N20.0408 (10)0.0648 (13)0.0403 (10)0.0052 (9)0.0023 (8)0.0052 (9)
N30.0482 (10)0.0663 (13)0.0386 (11)0.0077 (9)0.0006 (8)0.0020 (9)
N40.0502 (11)0.0642 (13)0.0420 (11)0.0021 (9)0.0035 (9)0.0037 (9)
C10.0425 (11)0.0386 (12)0.0417 (12)0.0036 (9)0.0013 (9)0.0010 (10)
C20.0477 (13)0.0680 (17)0.0472 (14)0.0022 (11)0.0001 (10)0.0013 (12)
C30.0593 (15)0.082 (2)0.0562 (16)0.0015 (13)0.0146 (12)0.0046 (14)
C40.0936 (19)0.0618 (17)0.0404 (14)0.0081 (15)0.0097 (13)0.0022 (12)
C50.0921 (19)0.0604 (17)0.0462 (15)0.0132 (14)0.0105 (13)0.0080 (13)
C60.0621 (14)0.0584 (16)0.0479 (14)0.0130 (12)0.0018 (11)0.0064 (12)
C70.0406 (11)0.0403 (12)0.0426 (12)0.0034 (9)0.0008 (9)0.0028 (10)
C80.0454 (12)0.0738 (18)0.0540 (15)0.0110 (12)0.0040 (10)0.0104 (13)
C90.0422 (12)0.0443 (13)0.0405 (12)0.0052 (9)0.0011 (9)0.0030 (10)
C100.0395 (12)0.0689 (16)0.0445 (13)0.0028 (11)0.0064 (10)0.0072 (11)
C110.0350 (11)0.0679 (17)0.0563 (15)0.0024 (11)0.0041 (10)0.0040 (12)
C120.0445 (12)0.0505 (14)0.0479 (14)0.0034 (10)0.0071 (10)0.0031 (11)
Cl20.0597 (4)0.0801 (5)0.0584 (4)0.0044 (3)0.0162 (3)0.0076 (3)
N50.0486 (10)0.0556 (12)0.0366 (10)0.0048 (8)0.0034 (8)0.0064 (9)
N60.0419 (10)0.0677 (13)0.0395 (10)0.0068 (9)0.0062 (8)0.0074 (9)
N70.0458 (10)0.0656 (13)0.0374 (10)0.0068 (9)0.0032 (8)0.0041 (9)
N80.0507 (11)0.0614 (13)0.0390 (10)0.0037 (9)0.0006 (8)0.0047 (9)
C130.0501 (12)0.0482 (14)0.0387 (12)0.0074 (10)0.0005 (10)0.0024 (10)
C140.0483 (13)0.0776 (19)0.0511 (15)0.0038 (12)0.0009 (10)0.0149 (13)
C150.0681 (16)0.089 (2)0.0636 (18)0.0096 (14)0.0178 (14)0.0238 (16)
C160.114 (2)0.086 (2)0.0465 (17)0.0165 (19)0.0203 (16)0.0158 (15)
C170.118 (2)0.093 (2)0.0435 (17)0.009 (2)0.0174 (16)0.0029 (15)
C180.0769 (17)0.0728 (19)0.0482 (15)0.0164 (14)0.0107 (12)0.0031 (13)
C190.0458 (12)0.0435 (13)0.0447 (13)0.0009 (10)0.0011 (10)0.0003 (10)
C200.0483 (13)0.088 (2)0.0591 (16)0.0086 (13)0.0044 (11)0.0115 (14)
C210.0414 (11)0.0439 (13)0.0384 (12)0.0027 (9)0.0038 (9)0.0023 (10)
C220.0409 (12)0.0673 (16)0.0427 (13)0.0010 (11)0.0090 (10)0.0045 (11)
C230.0372 (12)0.0737 (18)0.0520 (15)0.0000 (11)0.0047 (10)0.0025 (12)
C240.0446 (12)0.0464 (14)0.0446 (13)0.0014 (10)0.0034 (10)0.0006 (10)
Geometric parameters (Å, º) top
Cl1—C121.736 (2)C4—H40.9300
Cl2—C241.735 (2)C5—H50.9300
N1—C71.281 (3)C6—H60.9300
N1—N21.374 (2)C8—H8A0.9600
N2—C91.367 (3)C8—H8B0.9600
N3—C91.327 (3)C8—H8C0.9600
N3—N41.357 (2)C10—H100.9300
N4—C121.304 (3)C11—H110.9300
N2—H2A0.8600C13—C141.386 (3)
N5—C191.281 (3)C13—C191.486 (3)
N5—N61.379 (2)C13—C181.378 (3)
N6—C211.360 (3)C14—C151.383 (4)
N7—C211.329 (3)C15—C161.370 (4)
N7—N81.359 (2)C16—C171.359 (5)
N8—C241.302 (3)C17—C181.387 (4)
N6—H6A0.8600C19—C201.489 (3)
C1—C61.386 (3)C21—C221.401 (3)
C1—C21.393 (3)C22—C231.342 (3)
C1—C71.483 (3)C23—C241.385 (3)
C2—C31.376 (3)C14—H140.9300
C3—C41.378 (3)C15—H150.9300
C4—C51.357 (4)C16—H160.9300
C5—C61.381 (3)C17—H170.9300
C7—C81.502 (3)C18—H180.9300
C9—C101.401 (3)C20—H20A0.9600
C10—C111.351 (3)C20—H20B0.9600
C11—C121.380 (3)C20—H20C0.9600
C2—H20.9300C22—H220.9300
C3—H30.9300C23—H230.9300
Cl1···C8i3.645 (2)C16···H20Bxii2.8200
Cl1···C9ii3.574 (2)C18···H20C2.7200
Cl1···C10ii3.609 (2)C20···H182.7900
Cl2···C22iii3.617 (2)C20···H10xi2.9400
Cl2···C21iii3.564 (2)C20···H6A2.4800
Cl1···H5iv3.1300C22···H8B3.0100
Cl1···H8Bi3.1400H2···H20Cx2.5200
Cl1···H16iv3.1100H2···N12.4700
Cl2···H4v3.1400H2A···H8B1.9800
Cl2···H17vi2.8700H2A···C82.4500
N2···N7vii3.102 (2)H2A···N7vii2.3500
N3···N6vii3.138 (2)H4···Cl2xiii3.1400
N4···C20vii3.383 (3)H5···C7viii2.8100
N6···N3vii3.138 (2)H5···Cl1xiv3.1300
N7···N2vii3.102 (2)H6···H8C1.9900
N8···C8vii3.408 (3)H6···C2viii3.0800
N1···H22.4700H6···C82.6100
N1···H102.4500H6A···C202.4800
N2···H8B2.4900H6A···H20B2.5200
N3···H6Avii2.3500H6A···N3vii2.3500
N4···H16iv2.7700H6A···H20A2.1400
N4···H20Bvii2.6500H8A···N8vii2.7100
N5···H222.4300H8B···C223.0100
N5···H142.6100H8B···N22.4900
N6···H20A2.6300H8B···Cl1i3.1400
N6···H20B2.9300H8B···H2A1.9800
N7···H2Avii2.3500H8B···H222.4800
N8···H8Avii2.7100H8C···C4viii3.0700
C5···C7viii3.530 (3)H8C···C62.5700
C7···C5ix3.530 (3)H8C···H61.9900
C8···N8vii3.408 (3)H10···H20Ax2.3100
C8···C223.588 (3)H10···N12.4500
C8···Cl1i3.645 (2)H10···C20x2.9400
C9···Cl1ii3.574 (2)H14···N52.6100
C10···C20x3.563 (3)H16···H20Bxii2.5000
C10···C12ii3.475 (3)H16···Cl1xiv3.1100
C10···Cl1ii3.609 (2)H16···N4xiv2.7700
C11···C12ii3.521 (3)H17···Cl2xv2.8700
C12···C11ii3.521 (3)H18···C202.7900
C12···C10ii3.475 (3)H18···H20C2.4000
C20···N4vii3.383 (3)H20A···N62.6300
C20···C10xi3.563 (3)H20A···C10xi2.8100
C21···Cl2iii3.564 (2)H20A···H6A2.1400
C22···Cl2iii3.617 (2)H20A···H10xi2.3100
C22···C83.588 (3)H20B···N62.9300
C23···C24iii3.582 (3)H20B···H6A2.5200
C24···C23iii3.582 (3)H20B···C16xvi2.8200
C2···H6ix3.0800H20B···H16xvi2.5000
C4···H8Cix3.0700H20B···N4vii2.6500
C6···H8C2.5700H20C···C182.7200
C7···H5ix2.8100H20C···H2xi2.5200
C8···H2A2.4500H20C···H182.4000
C8···H222.8800H22···N52.4300
C8···H62.6100H22···C82.8800
C10···H20Ax2.8100H22···H8B2.4800
N2—N1—C7118.65 (16)H8A—C8—H8B109.00
N1—N2—C9117.45 (16)C7—C8—H8C109.00
N4—N3—C9119.19 (17)C11—C10—H10121.00
N3—N4—C12118.65 (18)C9—C10—H10121.00
N1—N2—H2A121.00C10—C11—H11121.00
C9—N2—H2A121.00C12—C11—H11121.00
N6—N5—C19118.40 (17)C14—C13—C18118.5 (2)
N5—N6—C21116.66 (16)C14—C13—C19120.34 (18)
N8—N7—C21119.40 (16)C18—C13—C19121.17 (19)
N7—N8—C24118.61 (17)C13—C14—C15121.0 (2)
N5—N6—H6A122.00C14—C15—C16119.5 (3)
C21—N6—H6A122.00C15—C16—C17120.3 (3)
C6—C1—C7121.62 (18)C16—C17—C18120.6 (3)
C2—C1—C6117.33 (19)C13—C18—C17120.1 (2)
C2—C1—C7121.04 (18)N5—C19—C13115.40 (17)
C1—C2—C3121.1 (2)N5—C19—C20125.14 (19)
C2—C3—C4120.3 (2)C13—C19—C20119.42 (18)
C3—C4—C5119.5 (2)N6—C21—N7115.77 (17)
C4—C5—C6120.7 (2)N7—C21—C22122.35 (19)
C1—C6—C5121.1 (2)N6—C21—C22121.88 (19)
N1—C7—C1116.18 (17)C21—C22—C23117.6 (2)
C1—C7—C8119.99 (17)C22—C23—C24117.69 (19)
N1—C7—C8123.83 (18)N8—C24—C23124.33 (19)
N2—C9—N3115.49 (17)Cl2—C24—N8115.87 (15)
N3—C9—C10122.81 (19)Cl2—C24—C23119.79 (15)
N2—C9—C10121.70 (18)C13—C14—H14119.00
C9—C10—C11117.2 (2)C15—C14—H14119.00
C10—C11—C12117.61 (19)C14—C15—H15120.00
Cl1—C12—C11119.91 (16)C16—C15—H15120.00
Cl1—C12—N4115.54 (17)C15—C16—H16120.00
N4—C12—C11124.5 (2)C17—C16—H16120.00
C3—C2—H2119.00C16—C17—H17120.00
C1—C2—H2119.00C18—C17—H17120.00
C2—C3—H3120.00C13—C18—H18120.00
C4—C3—H3120.00C17—C18—H18120.00
C3—C4—H4120.00C19—C20—H20A109.00
C5—C4—H4120.00C19—C20—H20B109.00
C6—C5—H5120.00C19—C20—H20C109.00
C4—C5—H5120.00H20A—C20—H20B109.00
C1—C6—H6119.00H20A—C20—H20C109.00
C5—C6—H6119.00H20B—C20—H20C109.00
C7—C8—H8A109.00C21—C22—H22121.00
C7—C8—H8B109.00C23—C22—H22121.00
H8A—C8—H8C109.00C22—C23—H23121.00
H8B—C8—H8C109.00C24—C23—H23121.00
C7—N1—N2—C9176.9 (2)C7—C1—C6—C5179.9 (2)
N2—N1—C7—C1179.52 (18)C1—C2—C3—C41.4 (4)
N2—N1—C7—C80.3 (3)C2—C3—C4—C50.0 (4)
N1—N2—C9—N3177.00 (19)C3—C4—C5—C60.8 (4)
N1—N2—C9—C102.5 (3)C4—C5—C6—C10.1 (4)
C9—N3—N4—C120.7 (3)N3—C9—C10—C111.3 (3)
N4—N3—C9—N2178.8 (2)N2—C9—C10—C11178.2 (2)
N4—N3—C9—C100.7 (3)C9—C10—C11—C120.5 (3)
N3—N4—C12—Cl1179.75 (17)C10—C11—C12—Cl1179.57 (17)
N3—N4—C12—C111.5 (4)C10—C11—C12—N40.9 (4)
N6—N5—C19—C13177.23 (18)C18—C13—C14—C150.5 (4)
N6—N5—C19—C200.3 (3)C19—C13—C14—C15179.8 (2)
C19—N5—N6—C21179.3 (2)C14—C13—C18—C170.7 (4)
N5—N6—C21—C220.2 (3)C19—C13—C18—C17179.9 (3)
N5—N6—C21—N7179.46 (19)C14—C13—C19—N537.7 (3)
N8—N7—C21—N6179.8 (2)C14—C13—C19—C20140.0 (2)
C21—N7—N8—C240.5 (3)C18—C13—C19—N5143.0 (2)
N8—N7—C21—C220.5 (3)C18—C13—C19—C2039.3 (3)
N7—N8—C24—Cl2179.70 (17)C13—C14—C15—C160.8 (4)
N7—N8—C24—C230.3 (4)C14—C15—C16—C171.7 (5)
C6—C1—C2—C32.0 (3)C15—C16—C17—C181.4 (5)
C7—C1—C2—C3179.3 (2)C16—C17—C18—C130.2 (5)
C2—C1—C7—N15.4 (3)N6—C21—C22—C23179.5 (2)
C2—C1—C7—C8174.3 (2)N7—C21—C22—C230.3 (3)
C6—C1—C7—N1175.9 (2)C21—C22—C23—C240.0 (3)
C6—C1—C7—C84.3 (3)C22—C23—C24—Cl2179.42 (18)
C2—C1—C6—C51.2 (3)C22—C23—C24—N80.0 (4)
Symmetry codes: (i) x+2, y+1, z; (ii) x+2, y, z; (iii) x+1, y+2, z; (iv) x+1/2, y+1/2, z1/2; (v) x1/2, y+3/2, z1/2; (vi) x+1/2, y+3/2, z1/2; (vii) x+1, y+1, z; (viii) x+3/2, y+1/2, z+1/2; (ix) x+3/2, y1/2, z+1/2; (x) x+1, y, z; (xi) x1, y, z; (xii) x+1/2, y1/2, z+1/2; (xiii) x+1/2, y+3/2, z+1/2; (xiv) x1/2, y+1/2, z+1/2; (xv) x1/2, y+3/2, z+1/2; (xvi) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N7vii0.86002.35003.102 (2)146.00
N6—H6A···N3vii0.86002.35003.138 (2)153.00
Symmetry code: (vii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H11ClN4
Mr246.70
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)12.8006 (6), 7.4703 (5), 24.9520 (14)
β (°) 90.737 (2)
V3)2385.8 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.30 × 0.14 × 0.14
Data collection
DiffractometerBruker KAPPA APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.982, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
22389, 5900, 3179
Rint0.054
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.148, 1.06
No. of reflections5900
No. of parameters309
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.20

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX publication routines (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N7i0.86002.35003.102 (2)146.00
N6—H6A···N3i0.86002.35003.138 (2)153.00
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationAther, A. Q., Şahin, O., Khan, I. U., Khan, M. A. & Büyükgüngör, O. (2010a). Acta Cryst. E66, o1295.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAther, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2009). Acta Cryst. E65, o1628.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAther, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2010b). Acta Cryst. E66, o1327.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds