supplementary materials


si2279 scheme

Acta Cryst. (2010). E66, o2159    [ doi:10.1107/S1600536810029569 ]

3-(4-Methylphenyl)-2-thioxo-1,3-thiazolidin-4-one

D. Shahwar, M. N. Tahir, N. Ahmad, M. A. Raza and S. Aslam

Abstract top

In the title compound, C10H9NOS2, the toluene group and the 2-thioxo-1,3-thiazolidin-4-one unit are planar with r.m.s. deviations of 0.0082 and 0.0136 Å, respectively. The dihedral angle between them is 71.20 (9)°. In the crystal, the molecules are stabilized through intermolecular C-H...O contacts, forming polymeric sheets extending parallel to the (0\overline{1}1) plane. C-H...[pi] contacts also occur.

Comment top

In continuation to synthesize various derivatives of 2-thioxo-1,3-thiazolidin-4-one, the title compound (I, Fig. 1) is being reported.

The crystal structure of (II) 3-(2-methylphenyl)-2-thioxo-1,3-thiazolidin-4-one (Shahwar et al., 2009a) and (III) 3-(3-methylphenyl)-2-thioxo-1,3-thiazolidin-4-one (Shahwar et al., 2009b) have been published which differ from (I) due to the position of methyl group.

In (I), the toluene group A (C1—C7) and group B (N1/C8—C10/S1/S2/O1) of 2-thioxo-1,3-thiazolidin-4-one moiety are planar with maximum r. m. s. deviations of 0.0082 and 0.0136 Å, respectively. The dihedral angle between A/B is 71.20 (9)°. This value is different from 84.44 (9)° and 83.30 (3)° as observed in (II) and (III), respectively. The molecules are stabilized in the form polymeric sheets due to C—H···O type of intermolecular H-bondings and C—H···π contacts (Table 1). The polymeric sheets extend parallel to the (0 1 1) plane (Fig. 2).

Related literature top

For related structures and the preparation, see: Shahwar et al. (2009a,b).

Experimental top

The title compound has been prepared by the method described in (Shahwar et al., 2009a) and (Shahwar et al., 2009b).

Refinement top

All H-atoms were positioned geometrically (C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.2 for aryl and x = 1.5 for methyl H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009) which shows that molecules form polymeric sheets extending parallel to (0 1 1).
3-(4-Methylphenyl)-2-sulfanylidene-1,3-thiazolidin-4-one top
Crystal data top
C10H9NOS2F(000) = 464
Mr = 223.30Dx = 1.428 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1371 reflections
a = 14.5885 (18) Åθ = 3.3–25.2°
b = 5.5766 (6) ŵ = 0.48 mm1
c = 12.9910 (15) ÅT = 296 K
β = 100.603 (6)°Prism, light yellow
V = 1038.8 (2) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1871 independent reflections
Radiation source: fine-focus sealed tube1371 reflections with I > 2σ(I)
graphiteRint = 0.051
Detector resolution: 8.10 pixels mm-1θmax = 25.2°, θmin = 3.2°
ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 66
Tmin = 0.939, Tmax = 0.950l = 1415
7426 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1099P)2 + 0.6595P]
where P = (Fo2 + 2Fc2)/3
1871 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C10H9NOS2V = 1038.8 (2) Å3
Mr = 223.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.5885 (18) ŵ = 0.48 mm1
b = 5.5766 (6) ÅT = 296 K
c = 12.9910 (15) Å0.30 × 0.20 × 0.20 mm
β = 100.603 (6)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1871 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1371 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.950Rint = 0.051
7426 measured reflectionsθmax = 25.2°
Refinement top
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.191Δρmax = 0.45 e Å3
S = 1.07Δρmin = 0.31 e Å3
1871 reflectionsAbsolute structure: ?
128 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.07809 (7)0.7565 (2)0.48054 (8)0.0640 (4)
S20.08797 (7)0.4645 (2)0.29429 (9)0.0645 (4)
O10.29145 (18)1.1330 (5)0.45318 (19)0.0576 (9)
N10.20548 (18)0.8215 (5)0.3708 (2)0.0419 (8)
C10.2640 (2)0.7927 (6)0.2936 (2)0.0422 (10)
C20.3229 (2)0.5995 (7)0.2997 (3)0.0486 (11)
C30.3830 (3)0.5829 (7)0.2290 (3)0.0559 (12)
C40.3849 (3)0.7554 (7)0.1539 (3)0.0522 (11)
C50.3251 (3)0.9453 (8)0.1489 (3)0.0638 (14)
C60.2640 (3)0.9667 (7)0.2192 (3)0.0561 (14)
C70.4528 (3)0.7357 (9)0.0792 (3)0.0774 (18)
C80.2270 (2)0.9984 (6)0.4471 (3)0.0455 (11)
C90.1587 (3)0.9972 (8)0.5211 (3)0.0559 (12)
C100.1289 (2)0.6787 (6)0.3748 (3)0.0470 (11)
H20.322420.481790.350290.0584*
H30.422960.452100.232480.0672*
H50.325171.062120.097820.0767*
H60.223781.097100.215550.0676*
H7A0.483040.887360.075080.1162*
H7B0.419730.691350.011010.1162*
H7C0.498760.615740.104150.1162*
H9A0.125911.149090.517890.0672*
H9B0.191100.971750.592440.0672*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0506 (6)0.0820 (8)0.0656 (7)0.0038 (5)0.0268 (5)0.0086 (5)
S20.0524 (6)0.0690 (8)0.0715 (8)0.0092 (5)0.0097 (5)0.0155 (5)
O10.0639 (16)0.0610 (17)0.0485 (15)0.0104 (14)0.0122 (12)0.0037 (12)
N10.0403 (14)0.0497 (16)0.0369 (14)0.0036 (12)0.0106 (11)0.0002 (12)
C10.0431 (18)0.050 (2)0.0345 (16)0.0003 (14)0.0098 (13)0.0013 (14)
C20.051 (2)0.052 (2)0.0429 (19)0.0044 (16)0.0093 (15)0.0068 (16)
C30.051 (2)0.066 (2)0.052 (2)0.0110 (18)0.0132 (16)0.0024 (19)
C40.049 (2)0.070 (2)0.0395 (18)0.0142 (18)0.0133 (15)0.0076 (17)
C50.089 (3)0.063 (2)0.044 (2)0.003 (2)0.024 (2)0.0133 (18)
C60.075 (3)0.049 (2)0.047 (2)0.0102 (18)0.0185 (18)0.0057 (17)
C70.060 (3)0.123 (4)0.055 (2)0.022 (2)0.026 (2)0.019 (2)
C80.052 (2)0.0459 (19)0.0391 (18)0.0040 (16)0.0099 (15)0.0013 (14)
C90.056 (2)0.069 (2)0.045 (2)0.0045 (18)0.0150 (16)0.0037 (17)
C100.0400 (18)0.053 (2)0.048 (2)0.0015 (15)0.0080 (14)0.0010 (15)
Geometric parameters (Å, °) top
S1—C91.798 (5)C4—C71.513 (6)
S1—C101.732 (4)C5—C61.394 (6)
S2—C101.627 (4)C8—C91.507 (5)
O1—C81.194 (4)C2—H20.9300
N1—C11.441 (4)C3—H30.9300
N1—C81.393 (4)C5—H50.9300
N1—C101.381 (4)C6—H60.9300
C1—C21.371 (5)C7—H7A0.9600
C1—C61.370 (5)C7—H7B0.9600
C2—C31.385 (5)C7—H7C0.9600
C3—C41.374 (5)C9—H9A0.9700
C4—C51.366 (6)C9—H9B0.9700
S1···N12.568 (3)C6···H9Bvii3.0300
S1···S1i3.7490 (16)C7···H3viii3.0200
S1···S1ii3.6396 (16)C8···H63.0500
S2···C23.497 (3)C8···H7Bv2.9800
S2···C8iii3.651 (4)C10···H23.1000
S1···H9Aii3.0300H2···O1iii2.4500
S2···H6iii3.1500H2···C103.1000
O1···C2iv3.360 (5)H3···H7C2.3500
O1···C63.132 (5)H3···C7ix3.0200
O1···C7v3.321 (5)H5···H7A2.5700
O1···H2iv2.4500H5···O1x2.5100
O1···H5vi2.5100H6···S2iv3.1500
O1···H7Bv2.6100H6···C83.0500
N1···S12.568 (3)H7A···H52.5700
C2···S23.497 (3)H7A···H7Axi2.4500
C2···O1iii3.360 (5)H7B···O1vii2.6100
C4···C8vii3.500 (5)H7B···C2vii3.0800
C6···O13.132 (5)H7B···C8vii2.9800
C7···O1vii3.321 (5)H7C···H32.3500
C8···S2iv3.651 (4)H9A···S1ii3.0300
C8···C4v3.500 (5)H9B···C1v3.0200
C1···H9Bvii3.0200H9B···C2v3.0300
C2···H9Bvii3.0300H9B···C3v3.0400
C2···H7Bv3.0800H9B···C4v3.0700
C3···H9Bvii3.0400H9B···C5v3.0400
C4···H9Bvii3.0700H9B···C6v3.0300
C5···H9Bvii3.0400
C9—S1—C1093.85 (18)S2—C10—N1127.1 (3)
C1—N1—C8119.3 (3)C1—C2—H2121.00
C1—N1—C10123.3 (3)C3—C2—H2121.00
C8—N1—C10117.4 (3)C2—C3—H3119.00
N1—C1—C2119.5 (3)C4—C3—H3119.00
N1—C1—C6119.3 (3)C4—C5—H5120.00
C2—C1—C6121.1 (3)C6—C5—H5119.00
C1—C2—C3118.7 (3)C1—C6—H6121.00
C2—C3—C4121.5 (4)C5—C6—H6120.00
C3—C4—C5118.7 (4)C4—C7—H7A109.00
C3—C4—C7120.4 (4)C4—C7—H7B109.00
C5—C4—C7120.9 (4)C4—C7—H7C109.00
C4—C5—C6121.0 (4)H7A—C7—H7B109.00
C1—C6—C5119.0 (4)H7A—C7—H7C109.00
O1—C8—N1124.3 (3)H7B—C7—H7C109.00
O1—C8—C9124.5 (3)S1—C9—H9A110.00
N1—C8—C9111.2 (3)S1—C9—H9B110.00
S1—C9—C8106.9 (3)C8—C9—H9A110.00
S1—C10—S2122.26 (19)C8—C9—H9B110.00
S1—C10—N1110.7 (2)H9A—C9—H9B109.00
C9—S1—C10—N11.8 (3)C10—N1—C8—C90.3 (4)
C10—S1—C9—C81.9 (3)N1—C1—C6—C5176.0 (3)
C9—S1—C10—S2178.1 (3)C6—C1—C2—C30.1 (5)
C10—N1—C1—C272.1 (4)N1—C1—C2—C3175.8 (3)
C8—N1—C10—S2178.7 (3)C2—C1—C6—C50.0 (5)
C8—N1—C1—C669.3 (4)C1—C2—C3—C40.3 (6)
C10—N1—C1—C6111.9 (4)C2—C3—C4—C7178.6 (4)
C8—N1—C1—C2106.7 (4)C2—C3—C4—C50.7 (6)
C1—N1—C10—S1177.6 (2)C3—C4—C5—C60.9 (6)
C8—N1—C10—S11.2 (4)C7—C4—C5—C6178.5 (4)
C1—N1—C10—S22.5 (5)C4—C5—C6—C10.5 (6)
C1—N1—C8—O10.7 (5)O1—C8—C9—S1178.3 (3)
C10—N1—C8—O1179.5 (3)N1—C8—C9—S11.5 (4)
C1—N1—C8—C9179.1 (3)
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y+2, −z+1; (iii) x, y−1, z; (iv) x, y+1, z; (v) x, −y+3/2, z+1/2; (vi) x, −y+5/2, z+1/2; (vii) x, −y+3/2, z−1/2; (viii) −x+1, y+1/2, −z+1/2; (ix) −x+1, y−1/2, −z+1/2; (x) x, −y+5/2, z−1/2; (xi) −x+1, −y+2, −z.
Hydrogen-bond geometry (Å, °) top
Cg2 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O1iii0.932.453.360 (5)167
C5—H5···O1x0.932.513.432 (5)169
C9—H9B···Cg2v0.972.713.565 (4)147
Symmetry codes: (iii) x, y−1, z; (x) x, −y+5/2, z−1/2; (v) x, −y+3/2, z+1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
Cg2 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.453.360 (5)167
C5—H5···O1ii0.932.513.432 (5)169
C9—H9B···Cg2iii0.972.713.565 (4)147
Symmetry codes: (i) x, y−1, z; (ii) x, −y+5/2, z−1/2; (iii) x, −y+3/2, z+1/2.
Acknowledgements top

DS is grateful to the Higher Education Commission (Pakistan) for funding this project and Professor Dr Islam Ullah Khan for providing research facilities at Government College University, Lahore, Pakistan.

references
References top

Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Shahwar, D., Tahir, M. N., Yasmeen, A., Ahmad, N. & Khan, M. A. (2009a). Acta Cryst. E65, o3014.

Shahwar, D., Tahir, M. N., Yasmeen, A., Ahmad, N. & Khan, M. A. (2009b). Acta Cryst. E65, o3016.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.