metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-(cyclo­pentyl­imino­meth­yl)-5-meth­­oxy­phenolato]copper(II)

aSchool of Chemistry and Environmental Science, Shaanxi University of Technology, Hanzhong 723000, People's Republic of China
*Correspondence e-mail: jiufulu@163.com

(Received 26 June 2010; accepted 29 June 2010; online 3 July 2010)

The title compound, [Cu(C13H16NO2)2], is a mononuclear copper(II) complex derived from the Schiff base ligand 2-(cyclo­pentyl­imino­meth­yl)-5-meth­oxy­phenol and copper acetate. The CuII atom is four-coordinated by the phenolate O atoms and imine N atoms from two Schiff base ligands, in a highly distorted square-planar geometry. The O- and N-donor atoms are mutually trans and the dihedral angle between the two benzene rings is 55.8 (3)°.

Related literature

For background to complexes with Schiff bases, see: Hamaker et al. (2010[Hamaker, C. G., Maryashina, O. S., Daley, D. K. & Wadler, A. L. (2010). J. Chem. Crystallogr. 40, 34-39.]); Wang et al. (2010[Wang, W., Zhang, F. X., Li, J. & Hu, W. B. (2010). Russ. J. Coord. Chem. 36, 33-36.]); Mirkhani et al. (2010[Mirkhani, V., Kia, R., Milic, D., Vartooni, A. R. & Matkovic-Calogovic, D. (2010). Transition Met. Chem. 35, 81-87.]); Liu & Yang (2009[Liu, Y.-C. & Yang, Z.-Y. (2009). Eur. J. Med. Chem. 44, 5080-5089.]); Keypour et al. (2009[Keypour, H., Azadbakht, R., Rudbari, H. A., Heydarinekoo, A. & Khavasi, H. (2009). Transition Met. Chem. 34, 835-839.]); Adhikary et al. (2009[Adhikary, C., Sen, R., Bocelli, G., Cantoni, A., Solzi, M., Chaudhuri, S. & Koner, S. (2009). J. Coord. Chem. 62, 3573-3582.]); Peng et al. (2009[Peng, S.-J., Hou, H.-Y. & Zhou, C.-S. (2009). Synth. React. Inorg. Met. Org. Nano-Met. Chem. 39, 462-466.]). For similar copper complexes, see: Friščić et al. (2002[Friščić, T., Lough, A. J., Ferguson, G. & Kaitner, B. (2002). Acta Cryst. C58, m313-m315.]); Marsh & Spek (2001[Marsh, R. E. & Spek, A. L. (2001). Acta Cryst. B57, 800-805.]); Han et al. (2001[Han, Q.-F., Jian, F.-F., Lu, L.-D., Yang, X.-J. & Wang, X. (2001). J. Chem. Crystallogr. 31, 247-255.]); Akitsu & Einaga (2004[Akitsu, T. & Einaga, Y. (2004). Acta Cryst. E60, m436-m438.]); Dhar et al. (2003[Dhar, S., Senapati, D., Das, P. K., Chattopadhyay, P., Nethaji, M. & Chakravarty, A. R. (2003). J. Am. Chem. Soc. 125, 12118-12124.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C13H16NO2)2]

  • Mr = 500.08

  • Monoclinic, P 21 /n

  • a = 8.496 (1) Å

  • b = 14.054 (2) Å

  • c = 20.442 (2) Å

  • β = 100.236 (3)°

  • V = 2402.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 298 K

  • 0.23 × 0.21 × 0.21 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.812, Tmax = 0.826

  • 12222 measured reflections

  • 4333 independent reflections

  • 3131 reflections with I > 2σ(I)

  • Rint = 0.081

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.163

  • S = 1.00

  • 4333 reflections

  • 300 parameters

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −1.16 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.890 (2)
Cu1—O3 1.891 (2)
Cu1—N2 1.967 (3)
Cu1—N1 1.978 (3)
O1—Cu1—O3 144.60 (13)
O1—Cu1—N2 93.93 (11)
O3—Cu1—N2 95.32 (11)
O1—Cu1—N1 95.40 (11)
O3—Cu1—N1 94.20 (11)
N2—Cu1—N1 148.66 (12)

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases are known to be versatile ligands in coordination chemistry (Hamaker et al., 2010; Wang et al., 2010; Mirkhani et al., 2010; Liu & Yang, 2009). A large number of complexes with Schiff bases have been reported because of their interesting structures and potential applications (Keypour et al., 2009; Adhikary et al., 2009; Peng et al., 2009). We report here the crystal structure of the title new copper complex with the Schiff base ligand 2-(cyclopentyliminomethyl)-5-methoxyphenol.

The Cu atom in the complex is four-coordinated by two phenolate O atoms and two imine N atoms from two Schiff base ligands, forming a distorted square planar geometry (Fig. 1). The dihedral angle between the C1-C6 and C14-C19 benzene rings is 55.8 (3)°. The bond lengths (Table 1) involving the Cu atom are comparable to those observed in similar copper complexes (Friščić et al., 2002; Marsh & Spek, 2001; Han et al., 2001; Akitsu & Einaga, 2004; Dhar et al., 2003).

Related literature top

For background to complexes with Schiff bases, see: Hamaker et al. (2010); Wang et al. (2010); Mirkhani et al. (2010); Liu & Yang (2009); Keypour et al. (2009); Adhikary et al. (2009); Peng et al. (2009). For similar copper complexes, see: Friščić et al. (2002); Marsh & Spek (2001); Han et al. (2001); Akitsu & Einaga, 2004; Dhar et al. (2003).

Experimental top

4-Methoxysalicylaldehyde (0.1 mmol, 15.2 mg) and cyclopentylamine (0.1 mmol, 8.5 mg) were mixed and stirred in methanol (10 ml) for 30 min. Then a methanol solution (5 ml) of copper acetate (0.1 mmol, 19.9 mg) was added to the mixture. The final mixture was stirred for another 30 min to give a blue solution. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of the solution at room temperature.

Refinement top

H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined using a riding model, with with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmetyl). Rotating group models were used for the methyl groups.

Structure description top

Schiff bases are known to be versatile ligands in coordination chemistry (Hamaker et al., 2010; Wang et al., 2010; Mirkhani et al., 2010; Liu & Yang, 2009). A large number of complexes with Schiff bases have been reported because of their interesting structures and potential applications (Keypour et al., 2009; Adhikary et al., 2009; Peng et al., 2009). We report here the crystal structure of the title new copper complex with the Schiff base ligand 2-(cyclopentyliminomethyl)-5-methoxyphenol.

The Cu atom in the complex is four-coordinated by two phenolate O atoms and two imine N atoms from two Schiff base ligands, forming a distorted square planar geometry (Fig. 1). The dihedral angle between the C1-C6 and C14-C19 benzene rings is 55.8 (3)°. The bond lengths (Table 1) involving the Cu atom are comparable to those observed in similar copper complexes (Friščić et al., 2002; Marsh & Spek, 2001; Han et al., 2001; Akitsu & Einaga, 2004; Dhar et al., 2003).

For background to complexes with Schiff bases, see: Hamaker et al. (2010); Wang et al. (2010); Mirkhani et al. (2010); Liu & Yang (2009); Keypour et al. (2009); Adhikary et al. (2009); Peng et al. (2009). For similar copper complexes, see: Friščić et al. (2002); Marsh & Spek (2001); Han et al. (2001); Akitsu & Einaga, 2004; Dhar et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
Bis[2-(cyclopentyliminomethyl)-5-methoxyphenolato]copper(II) top
Crystal data top
[Cu(C13H16NO2)2]F(000) = 1052
Mr = 500.08Dx = 1.383 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3695 reflections
a = 8.496 (1) Åθ = 2.5–25.1°
b = 14.054 (2) ŵ = 0.94 mm1
c = 20.442 (2) ÅT = 298 K
β = 100.236 (3)°Block, blue
V = 2402.0 (5) Å30.23 × 0.21 × 0.21 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4333 independent reflections
Radiation source: fine-focus sealed tube3131 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.081
ω scansθmax = 25.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 910
Tmin = 0.812, Tmax = 0.826k = 1616
12222 measured reflectionsl = 2417
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0973P)2]
where P = (Fo2 + 2Fc2)/3
4333 reflections(Δ/σ)max = 0.001
300 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 1.16 e Å3
Crystal data top
[Cu(C13H16NO2)2]V = 2402.0 (5) Å3
Mr = 500.08Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.496 (1) ŵ = 0.94 mm1
b = 14.054 (2) ÅT = 298 K
c = 20.442 (2) Å0.23 × 0.21 × 0.21 mm
β = 100.236 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4333 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3131 reflections with I > 2σ(I)
Tmin = 0.812, Tmax = 0.826Rint = 0.081
12222 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.00Δρmax = 0.69 e Å3
4333 reflectionsΔρmin = 1.16 e Å3
300 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00311 (5)0.84349 (3)0.75910 (2)0.0392 (2)
N10.0266 (3)0.8673 (2)0.85224 (14)0.0387 (7)
N20.0215 (3)0.8950 (2)0.67202 (13)0.0367 (7)
O10.2109 (3)0.80068 (19)0.77995 (11)0.0460 (6)
O20.6781 (3)0.6732 (2)0.91142 (15)0.0597 (8)
O30.2181 (3)0.8050 (2)0.73199 (11)0.0487 (7)
O40.6953 (3)0.7268 (2)0.58341 (13)0.0608 (8)
C10.2376 (4)0.8058 (3)0.89943 (16)0.0387 (8)
C20.2940 (4)0.7847 (2)0.83963 (16)0.0376 (8)
C30.4436 (4)0.7414 (2)0.84350 (17)0.0408 (8)
H30.48170.72760.80470.049*
C40.5355 (4)0.7190 (3)0.90438 (18)0.0438 (9)
C50.4826 (5)0.7423 (3)0.96339 (18)0.0510 (10)
H50.54570.72891.00440.061*
C60.3390 (4)0.7843 (3)0.96003 (18)0.0481 (10)
H60.30510.79990.99950.058*
C70.7322 (5)0.6397 (3)0.8541 (2)0.0614 (12)
H7A0.65250.59900.82930.092*
H7B0.82970.60460.86710.092*
H7C0.75130.69280.82700.092*
C80.0844 (4)0.8467 (2)0.90186 (18)0.0404 (9)
H80.06250.85990.94390.049*
C90.1767 (4)0.9093 (3)0.86370 (17)0.0414 (8)
H90.26300.86650.84360.050*
C100.2091 (5)1.0059 (3)0.8299 (2)0.0653 (12)
H10A0.11171.04330.83490.078*
H10B0.25080.99800.78280.078*
C110.3317 (6)1.0539 (4)0.8645 (3)0.0819 (16)
H11A0.29541.11690.87960.098*
H11B0.43321.05990.83440.098*
C120.3499 (5)0.9915 (3)0.9232 (2)0.0670 (13)
H12A0.44580.95290.91310.080*
H12B0.35551.02980.96220.080*
C130.2011 (5)0.9294 (3)0.9345 (2)0.0563 (11)
H13A0.21860.87110.95750.068*
H13B0.11020.96290.95960.068*
C140.2496 (4)0.8557 (2)0.61796 (17)0.0393 (9)
C150.3019 (4)0.8089 (3)0.67175 (17)0.0390 (8)
C160.4528 (4)0.7646 (3)0.66019 (17)0.0432 (9)
H160.48800.73240.69470.052*
C170.5492 (4)0.7683 (3)0.59848 (18)0.0448 (9)
C180.4993 (5)0.8175 (3)0.54602 (19)0.0540 (11)
H180.56560.82130.50470.065*
C190.3540 (4)0.8592 (3)0.55627 (18)0.0497 (10)
H190.32160.89160.52130.060*
C200.7465 (6)0.6658 (3)0.6315 (3)0.0699 (14)
H20A0.66420.62020.64690.105*
H20B0.84230.63320.61150.105*
H20C0.76750.70320.66830.105*
C210.0928 (4)0.8941 (2)0.62103 (17)0.0400 (8)
H210.07070.92150.58220.048*
C220.1781 (4)0.9340 (2)0.66504 (17)0.0386 (8)
H220.25400.88080.67020.046*
C230.1945 (4)0.9857 (3)0.60076 (18)0.0472 (9)
H23A0.19850.94080.56510.057*
H23B0.10571.02900.58730.057*
C240.3521 (5)1.0401 (3)0.6185 (2)0.0557 (11)
H24A0.34211.10320.59890.067*
H24B0.43721.00650.60220.067*
C250.3882 (5)1.0467 (3)0.6946 (2)0.0631 (12)
H25A0.48231.00960.71240.076*
H25B0.40671.11230.70870.076*
C260.2415 (5)1.0072 (3)0.71846 (19)0.0493 (10)
H26A0.16321.05670.72080.059*
H26B0.27030.97740.76170.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0408 (3)0.0561 (3)0.0189 (3)0.00078 (18)0.00073 (19)0.00373 (18)
N10.0382 (17)0.0517 (17)0.0256 (16)0.0011 (13)0.0040 (13)0.0007 (13)
N20.0390 (16)0.0482 (17)0.0227 (15)0.0050 (13)0.0045 (12)0.0025 (13)
O10.0477 (15)0.0664 (16)0.0218 (13)0.0132 (13)0.0001 (11)0.0091 (12)
O20.0506 (17)0.082 (2)0.0432 (17)0.0161 (14)0.0017 (14)0.0044 (15)
O30.0483 (15)0.0762 (17)0.0189 (13)0.0110 (13)0.0013 (11)0.0067 (12)
O40.0481 (17)0.093 (2)0.0370 (16)0.0184 (15)0.0033 (13)0.0022 (15)
C10.044 (2)0.049 (2)0.0206 (18)0.0027 (16)0.0030 (15)0.0013 (16)
C20.047 (2)0.0435 (19)0.0215 (17)0.0014 (16)0.0030 (15)0.0049 (15)
C30.045 (2)0.052 (2)0.0262 (18)0.0029 (17)0.0067 (16)0.0036 (16)
C40.042 (2)0.050 (2)0.036 (2)0.0022 (16)0.0022 (16)0.0066 (17)
C50.051 (2)0.070 (3)0.027 (2)0.0025 (19)0.0074 (17)0.0035 (19)
C60.055 (2)0.067 (3)0.0202 (18)0.0014 (19)0.0018 (17)0.0019 (18)
C70.053 (3)0.071 (3)0.061 (3)0.019 (2)0.012 (2)0.009 (2)
C80.044 (2)0.055 (2)0.0227 (18)0.0036 (16)0.0081 (16)0.0031 (16)
C90.040 (2)0.055 (2)0.0281 (19)0.0057 (16)0.0050 (15)0.0045 (17)
C100.062 (3)0.073 (3)0.064 (3)0.018 (2)0.021 (2)0.018 (2)
C110.092 (4)0.082 (3)0.076 (4)0.032 (3)0.028 (3)0.010 (3)
C120.070 (3)0.073 (3)0.063 (3)0.009 (2)0.024 (2)0.017 (2)
C130.061 (3)0.072 (3)0.038 (2)0.005 (2)0.017 (2)0.005 (2)
C140.042 (2)0.056 (2)0.0185 (18)0.0033 (16)0.0012 (15)0.0013 (15)
C150.043 (2)0.051 (2)0.0215 (18)0.0045 (16)0.0028 (15)0.0023 (16)
C160.044 (2)0.061 (2)0.0234 (18)0.0042 (17)0.0024 (16)0.0031 (17)
C170.044 (2)0.060 (2)0.0279 (19)0.0007 (17)0.0004 (16)0.0064 (18)
C180.049 (2)0.086 (3)0.023 (2)0.002 (2)0.0044 (17)0.001 (2)
C190.048 (2)0.077 (3)0.023 (2)0.0010 (19)0.0031 (17)0.0059 (18)
C200.061 (3)0.087 (3)0.060 (3)0.026 (2)0.005 (2)0.003 (3)
C210.044 (2)0.054 (2)0.0228 (18)0.0017 (17)0.0071 (15)0.0070 (16)
C220.038 (2)0.045 (2)0.0319 (19)0.0040 (15)0.0053 (15)0.0026 (16)
C230.053 (2)0.056 (2)0.034 (2)0.0034 (18)0.0110 (18)0.0057 (18)
C240.059 (3)0.058 (2)0.053 (3)0.013 (2)0.020 (2)0.002 (2)
C250.065 (3)0.068 (3)0.053 (3)0.018 (2)0.000 (2)0.005 (2)
C260.057 (2)0.056 (2)0.034 (2)0.0040 (18)0.0031 (18)0.0020 (18)
Geometric parameters (Å, º) top
Cu1—O11.890 (2)C11—H11A0.9700
Cu1—O31.891 (2)C11—H11B0.9700
Cu1—N21.967 (3)C12—C131.520 (6)
Cu1—N11.978 (3)C12—H12A0.9700
N1—C81.289 (4)C12—H12B0.9700
N1—C91.462 (4)C13—H13A0.9700
N2—C211.292 (4)C13—H13B0.9700
N2—C221.469 (4)C14—C191.408 (5)
O1—C21.316 (4)C14—C151.419 (5)
O2—C41.356 (4)C14—C211.428 (5)
O2—C71.414 (5)C15—C161.407 (5)
O3—C151.309 (4)C16—C171.378 (5)
O4—C171.356 (4)C16—H160.9300
O4—C201.429 (5)C17—C181.403 (5)
C1—C61.410 (5)C18—C191.349 (5)
C1—C21.421 (5)C18—H180.9300
C1—C81.432 (5)C19—H190.9300
C2—C31.398 (5)C20—H20A0.9600
C3—C41.383 (5)C20—H20B0.9600
C3—H30.9300C20—H20C0.9600
C4—C51.399 (5)C21—H210.9300
C5—C61.346 (5)C22—C261.527 (5)
C5—H50.9300C22—C231.529 (5)
C6—H60.9300C22—H220.9800
C7—H7A0.9600C23—C241.529 (5)
C7—H7B0.9600C23—H23A0.9700
C7—H7C0.9600C23—H23B0.9700
C8—H80.9300C24—C251.535 (6)
C9—C131.524 (5)C24—H24A0.9700
C9—C101.527 (5)C24—H24B0.9700
C9—H90.9800C25—C261.522 (5)
C10—C111.518 (6)C25—H25A0.9700
C10—H10A0.9700C25—H25B0.9700
C10—H10B0.9700C26—H26A0.9700
C11—C121.516 (6)C26—H26B0.9700
O1—Cu1—O3144.60 (13)C13—C12—H12B110.8
O1—Cu1—N293.93 (11)H12A—C12—H12B108.9
O3—Cu1—N295.32 (11)C12—C13—C9102.3 (3)
O1—Cu1—N195.40 (11)C12—C13—H13A111.3
O3—Cu1—N194.20 (11)C9—C13—H13A111.3
N2—Cu1—N1148.66 (12)C12—C13—H13B111.3
C8—N1—C9120.1 (3)C9—C13—H13B111.3
C8—N1—Cu1122.4 (2)H13A—C13—H13B109.2
C9—N1—Cu1117.6 (2)C19—C14—C15118.5 (3)
C21—N2—C22119.3 (3)C19—C14—C21117.4 (3)
C21—N2—Cu1122.7 (2)C15—C14—C21124.0 (3)
C22—N2—Cu1118.0 (2)O3—C15—C16117.8 (3)
C2—O1—Cu1126.8 (2)O3—C15—C14123.7 (3)
C4—O2—C7119.1 (3)C16—C15—C14118.5 (3)
C15—O3—Cu1126.8 (2)C17—C16—C15120.8 (3)
C17—O4—C20118.7 (3)C17—C16—H16119.6
C6—C1—C2117.6 (3)C15—C16—H16119.6
C6—C1—C8118.2 (3)O4—C17—C16124.2 (3)
C2—C1—C8124.1 (3)O4—C17—C18115.3 (3)
O1—C2—C3117.4 (3)C16—C17—C18120.5 (3)
O1—C2—C1123.7 (3)C19—C18—C17119.2 (3)
C3—C2—C1118.9 (3)C19—C18—H18120.4
C4—C3—C2120.8 (3)C17—C18—H18120.4
C4—C3—H3119.6C18—C19—C14122.5 (4)
C2—C3—H3119.6C18—C19—H19118.8
O2—C4—C3123.7 (4)C14—C19—H19118.8
O2—C4—C5115.9 (3)O4—C20—H20A109.5
C3—C4—C5120.4 (3)O4—C20—H20B109.5
C6—C5—C4119.1 (3)H20A—C20—H20B109.5
C6—C5—H5120.5O4—C20—H20C109.5
C4—C5—H5120.5H20A—C20—H20C109.5
C5—C6—C1123.1 (4)H20B—C20—H20C109.5
C5—C6—H6118.5N2—C21—C14126.9 (3)
C1—C6—H6118.5N2—C21—H21116.5
O2—C7—H7A109.5C14—C21—H21116.5
O2—C7—H7B109.5N2—C22—C26113.1 (3)
H7A—C7—H7B109.5N2—C22—C23118.9 (3)
O2—C7—H7C109.5C26—C22—C23102.7 (3)
H7A—C7—H7C109.5N2—C22—H22107.2
H7B—C7—H7C109.5C26—C22—H22107.2
N1—C8—C1127.2 (3)C23—C22—H22107.2
N1—C8—H8116.4C24—C23—C22104.1 (3)
C1—C8—H8116.4C24—C23—H23A110.9
N1—C9—C13119.8 (3)C22—C23—H23A110.9
N1—C9—C10112.2 (3)C24—C23—H23B110.9
C13—C9—C10102.8 (3)C22—C23—H23B110.9
N1—C9—H9107.1H23A—C23—H23B109.0
C13—C9—H9107.1C23—C24—C25106.2 (3)
C10—C9—H9107.1C23—C24—H24A110.5
C11—C10—C9105.5 (3)C25—C24—H24A110.5
C11—C10—H10A110.6C23—C24—H24B110.5
C9—C10—H10A110.6C25—C24—H24B110.5
C11—C10—H10B110.6H24A—C24—H24B108.7
C9—C10—H10B110.6C26—C25—C24106.0 (3)
H10A—C10—H10B108.8C26—C25—H25A110.5
C12—C11—C10106.7 (4)C24—C25—H25A110.5
C12—C11—H11A110.4C26—C25—H25B110.5
C10—C11—H11A110.4C24—C25—H25B110.5
C12—C11—H11B110.4H25A—C25—H25B108.7
C10—C11—H11B110.4C25—C26—C22102.8 (3)
H11A—C11—H11B108.6C25—C26—H26A111.2
C11—C12—C13104.6 (3)C22—C26—H26A111.2
C11—C12—H12A110.8C25—C26—H26B111.2
C13—C12—H12A110.8C22—C26—H26B111.2
C11—C12—H12B110.8H26A—C26—H26B109.1

Experimental details

Crystal data
Chemical formula[Cu(C13H16NO2)2]
Mr500.08
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)8.496 (1), 14.054 (2), 20.442 (2)
β (°) 100.236 (3)
V3)2402.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.23 × 0.21 × 0.21
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.812, 0.826
No. of measured, independent and
observed [I > 2σ(I)] reflections
12222, 4333, 3131
Rint0.081
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.163, 1.00
No. of reflections4333
No. of parameters300
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 1.16

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—O11.890 (2)Cu1—N21.967 (3)
Cu1—O31.891 (2)Cu1—N11.978 (3)
O1—Cu1—O3144.60 (13)O1—Cu1—N195.40 (11)
O1—Cu1—N293.93 (11)O3—Cu1—N194.20 (11)
O3—Cu1—N295.32 (11)N2—Cu1—N1148.66 (12)
 

Acknowledgements

The authors thank the Scientific Research Foundation of Shaanxi University of Technology (project No. SLGQD0708) for financial support.

References

First citationAdhikary, C., Sen, R., Bocelli, G., Cantoni, A., Solzi, M., Chaudhuri, S. & Koner, S. (2009). J. Coord. Chem. 62, 3573–3582.  Web of Science CSD CrossRef CAS Google Scholar
First citationAkitsu, T. & Einaga, Y. (2004). Acta Cryst. E60, m436–m438.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDhar, S., Senapati, D., Das, P. K., Chattopadhyay, P., Nethaji, M. & Chakravarty, A. R. (2003). J. Am. Chem. Soc. 125, 12118–12124.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFriščić, T., Lough, A. J., Ferguson, G. & Kaitner, B. (2002). Acta Cryst. C58, m313–m315.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHamaker, C. G., Maryashina, O. S., Daley, D. K. & Wadler, A. L. (2010). J. Chem. Crystallogr. 40, 34–39.  Web of Science CSD CrossRef CAS Google Scholar
First citationHan, Q.-F., Jian, F.-F., Lu, L.-D., Yang, X.-J. & Wang, X. (2001). J. Chem. Crystallogr. 31, 247–255.  Web of Science CSD CrossRef CAS Google Scholar
First citationKeypour, H., Azadbakht, R., Rudbari, H. A., Heydarinekoo, A. & Khavasi, H. (2009). Transition Met. Chem. 34, 835–839.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Y.-C. & Yang, Z.-Y. (2009). Eur. J. Med. Chem. 44, 5080–5089.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMarsh, R. E. & Spek, A. L. (2001). Acta Cryst. B57, 800–805.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMirkhani, V., Kia, R., Milic, D., Vartooni, A. R. & Matkovic-Calogovic, D. (2010). Transition Met. Chem. 35, 81–87.  Web of Science CSD CrossRef CAS Google Scholar
First citationPeng, S.-J., Hou, H.-Y. & Zhou, C.-S. (2009). Synth. React. Inorg. Met. Org. Nano-Met. Chem. 39, 462–466.  CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, W., Zhang, F. X., Li, J. & Hu, W. B. (2010). Russ. J. Coord. Chem. 36, 33–36.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds