metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[{μ10-[(phosphono­meth­yl)imino­di­methyl­ene]di­phospho­nato}dithallium(I)]

aDepartment of Chemistry, Tarbiat Modares University, PO Box 14115-175 Tehran, Iran
*Correspondence e-mail: gholi_kh@modares.ac.ir, arfmhf@yahoo.com

(Received 9 July 2009; accepted 4 August 2009; online 3 July 2010)

The title compound, [Tl2(C3H10NO9P3)]n, a TlI organic–inorganic hybrid complex, was synthesized by the reaction of nitrilo­tris(methyl­enephospho­nic acid) with thallium(I) nitrate. There are two types of Tl+ ions in the complex, with coordination numbers of eight and seven and with stereochemically active and inactive lone-pair electrons, respectively. In the crystal, the doubly deprotonated ligands form two-dimensional hydrogen-bonded layers through O—H⋯O hydrogen bonds. The NH group is involved in a trifurcated intra­molecular hydrogen bond. Coordination of the phospho­nate ligands to the Tl+ ions creates a three-dimensional structure.

Related literature

For related metal phospho­nate complexes of the same ligand, see: Sharma et al. (2001[Sharma, C. V. K., Clearfield, A., Cabeza, A., Aranda, M. A. G. & Bruque, S. (2001). J. Am. Chem. Soc. 123, 2885-2886.]).

[Scheme 1]

Experimental

Crystal data
  • [Tl2(C3H10NO9P3)]

  • Mr = 705.77

  • Triclinic, [P \overline 1]

  • a = 7.9236 (6) Å

  • b = 8.0932 (6) Å

  • c = 10.9136 (8) Å

  • α = 81.422 (1)°

  • β = 79.023 (1)°

  • γ = 68.085 (1)°

  • V = 635.06 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 25.76 mm−1

  • T = 100 K

  • 0.16 × 0.14 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: numerical (XPREP; Bruker, 2007[Bruker (2007). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.104, Tmax = 0.183

  • 6627 measured reflections

  • 2744 independent reflections

  • 2437 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.055

  • S = 1.05

  • 2744 reflections

  • 163 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 1.72 e Å−3

  • Δρmin = −1.83 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3 0.87 2.39 2.882 (5) 116
N1—H1N⋯O5 0.87 2.53 2.957 (6) 111
N1—H1N⋯O8 0.87 2.19 2.837 (7) 131
O1—H1O⋯O1i 0.82 1.78 2.504 (8) 147
O2—H2O⋯O2ii 0.82 1.68 2.497 (7) 171
O6—H6O⋯O9iii 0.82 1.67 2.484 (6) 171
O7—H7O⋯O4iv 0.82 1.70 2.521 (6) 180
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y, -z+1; (iii) x+1, y-1, z; (iv) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. ]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. ]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. ]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal phosphonate complexes of the ligand nitrilotris(methylenephosphonic acid (H6L), giving two different types of 1:1 (M/L) metal phosphonate complexes, M[NH(CH2PO3H)3(H2O)3](M = Mn, Co, Ni, Cu, Zn, Cd), with two-dimensional hydrogen-bonded layered structures, have been prepared previously by (Sharma et al., 2001).

In the structure of the title compound, synthesized by the reaction of the same ligand with thallium(I) nitrate, the nitrilotris(methylenephosphonate) (H4L2-) group is doublely deprotonated and two different environments for the Thallium atoms are observed, as shown in Figs. 1 and 2. Eight O-atoms of five H4L2- phosphonate ligands are coordinated to the Tl1 ion (Fig. 1), while seven oxygen atoms of five H4L2- phosphonate ligands are coordinated to the Tl2 ion (Fig. 2).

The conformation of the doublely deprotonated nitrilotris(methylenephosphonate) ligand is illustrated in Fig. 3. The hydrogen atoms on atoms O1 and O2 are positionally disordered with relative occupancies of 0.5:0.5. Each H4L2- dianion links to five Tl1 and five Tl2 ions (Fig. 4).

The doublely deprotonated H4L2- ligand forms two-dimensional hydrogen bonded layers via O—H···O hydrogen bonds involving hydroxyl groups O1, O2, O6 and O7 (Table 1 and Fig. 5). Atoms O3, O5 and O8 do not contribute in this type of hydrogen bond, rather they coordinate only to the Tl+ions. The NH group is involved in a 4-centre trifurcated intramolecular hydrogen bond with O-atoms O3, O5 and O8 (Table 1). Coordination of the ligand to the metal ions in the interlayer space creates a three-dimensional structure (Fig. 6).

Related literature top

For related metal phosphonate complexes of the same ligand, see: Sharma et al. (2001).

Experimental top

Thallium(I)nitrate (0.133 g, 0.5 mmol) was added in several portions to a solution of nitrilotris(methylenephosphonicacid) (H6L) (0.104 g, 0.35 mmol) in 12 ml of a deionized water-ethanol mixture (3:5). The solution was stirred for seven days and a white precipitate was obtained. This was filtered off and recrystallized from deionized water at rt. Colorless prism-like crystals of the title compound were obtained in 68% yield (based on the Tl atom). Elemental analysis for Tl2(H4L), C3H10NO9P3Tl2:C, 5.06; H, 1.36; N, 2.03%. Calc.: C, 5.10; H, 1.41; N, 1.98%.

Refinement top

The NH and OH H-atoms were located in a difference electron-density map and were refined with distance restraints: O—H = 0.82 (2) and N—H = 0.86 (2) Å, with Uiso(H) = 1.2Ueq(N,O). The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.99 Å, with Uiso(H) = 1.2 times Ueq(C).

Structure description top

Metal phosphonate complexes of the ligand nitrilotris(methylenephosphonic acid (H6L), giving two different types of 1:1 (M/L) metal phosphonate complexes, M[NH(CH2PO3H)3(H2O)3](M = Mn, Co, Ni, Cu, Zn, Cd), with two-dimensional hydrogen-bonded layered structures, have been prepared previously by (Sharma et al., 2001).

In the structure of the title compound, synthesized by the reaction of the same ligand with thallium(I) nitrate, the nitrilotris(methylenephosphonate) (H4L2-) group is doublely deprotonated and two different environments for the Thallium atoms are observed, as shown in Figs. 1 and 2. Eight O-atoms of five H4L2- phosphonate ligands are coordinated to the Tl1 ion (Fig. 1), while seven oxygen atoms of five H4L2- phosphonate ligands are coordinated to the Tl2 ion (Fig. 2).

The conformation of the doublely deprotonated nitrilotris(methylenephosphonate) ligand is illustrated in Fig. 3. The hydrogen atoms on atoms O1 and O2 are positionally disordered with relative occupancies of 0.5:0.5. Each H4L2- dianion links to five Tl1 and five Tl2 ions (Fig. 4).

The doublely deprotonated H4L2- ligand forms two-dimensional hydrogen bonded layers via O—H···O hydrogen bonds involving hydroxyl groups O1, O2, O6 and O7 (Table 1 and Fig. 5). Atoms O3, O5 and O8 do not contribute in this type of hydrogen bond, rather they coordinate only to the Tl+ions. The NH group is involved in a 4-centre trifurcated intramolecular hydrogen bond with O-atoms O3, O5 and O8 (Table 1). Coordination of the ligand to the metal ions in the interlayer space creates a three-dimensional structure (Fig. 6).

For related metal phosphonate complexes of the same ligand, see: Sharma et al. (2001).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Environment of the Tl1 atom.
[Figure 2] Fig. 2. Environment of the Tl2 atom.
[Figure 3] Fig. 3. The conformation of the doubly deprotonated nitrilotris(methylenephosphonate) ligand.
[Figure 4] Fig. 4. Each H4L2- dianion links to five Tl1 and five Tl2 ions.
[Figure 5] Fig. 5. Two-dimensional hydrogen-bonded layers formed via O—H···O hydrogen bonds involving hydroxyl groups.
[Figure 6] Fig. 6. The three-dimensional structure resulting from the coordination of the ligand to the metal ions in the interlayer space.
[Figure 7] Fig. 7. Reaction scheme.
Poly[{µ-[(phosphonomethyl)iminodimethylene]diphosphonato}dithallium(I)] top
Crystal data top
[Tl2(C3H10NO9P3)]Z = 2
Mr = 705.77F(000) = 628
Triclinic, P1Dx = 3.691 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9236 (6) ÅCell parameters from 266 reflections
b = 8.0932 (6) Åθ = 3–26°
c = 10.9136 (8) ŵ = 25.76 mm1
α = 81.422 (1)°T = 100 K
β = 79.023 (1)°Prism, colorless
γ = 68.085 (1)°0.16 × 0.14 × 0.10 mm
V = 635.06 (8) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2744 independent reflections
Radiation source: fine-focus sealed tube2437 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 27.0°, θmin = 1.9°
Absorption correction: numerical
(XPREP; Bruker, 2007)
h = 1010
Tmin = 0.104, Tmax = 0.183k = 1010
6627 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0225P)2 + 1.104P]
where P = (Fo2 + 2Fc2)/3
2744 reflections(Δ/σ)max = 0.003
163 parametersΔρmax = 1.72 e Å3
12 restraintsΔρmin = 1.83 e Å3
Crystal data top
[Tl2(C3H10NO9P3)]γ = 68.085 (1)°
Mr = 705.77V = 635.06 (8) Å3
Triclinic, P1Z = 2
a = 7.9236 (6) ÅMo Kα radiation
b = 8.0932 (6) ŵ = 25.76 mm1
c = 10.9136 (8) ÅT = 100 K
α = 81.422 (1)°0.16 × 0.14 × 0.10 mm
β = 79.023 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2744 independent reflections
Absorption correction: numerical
(XPREP; Bruker, 2007)
2437 reflections with I > 2σ(I)
Tmin = 0.104, Tmax = 0.183Rint = 0.029
6627 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02512 restraints
wR(F2) = 0.055H-atom parameters constrained
S = 1.05Δρmax = 1.72 e Å3
2744 reflectionsΔρmin = 1.83 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Tl10.29076 (3)0.05875 (3)0.25484 (2)0.01064 (7)
Tl20.23248 (3)0.24843 (3)0.54672 (2)0.01703 (8)
P10.7521 (3)0.2462 (3)0.42352 (16)0.0201 (4)
P20.7554 (2)0.0669 (2)0.10302 (14)0.0090 (3)
P30.2557 (2)0.4329 (2)0.20298 (14)0.0091 (3)
O10.6684 (8)0.4387 (7)0.4597 (5)0.0331 (13)
H1O0.57530.48940.50720.040*0.50
O20.9424 (7)0.1622 (8)0.4631 (5)0.0311 (12)
H2O0.98280.05860.49360.037*0.50
O30.6291 (6)0.1391 (5)0.4655 (4)0.0119 (9)
O40.7469 (6)0.1263 (6)0.0199 (4)0.0148 (9)
O50.6365 (6)0.1126 (6)0.2173 (4)0.0151 (9)
O60.9564 (6)0.1194 (5)0.1274 (4)0.0129 (9)
H6O1.00470.21570.16600.015*
O70.2360 (6)0.4303 (6)0.0624 (4)0.0145 (9)
H7O0.24180.33130.04850.017*
O80.2641 (6)0.2594 (5)0.2794 (4)0.0108 (8)
O90.1203 (6)0.6039 (6)0.2530 (4)0.0141 (9)
N10.6274 (7)0.2583 (6)0.2032 (4)0.0086 (10)
H1N0.55900.20940.25600.010*
C10.7944 (8)0.2553 (8)0.2523 (6)0.0116 (12)
H1A0.82250.36380.21770.014*
H1B0.90180.14970.22510.014*
C20.6768 (8)0.1763 (8)0.0791 (5)0.0089 (11)
H2A0.77490.21300.02570.011*
H2B0.56770.22090.03510.011*
C30.4836 (8)0.4433 (8)0.1986 (6)0.0111 (12)
H3A0.51400.51330.12090.013*
H3B0.48280.50470.27080.013*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tl10.00946 (12)0.01138 (12)0.01117 (12)0.00463 (9)0.00049 (9)0.00006 (9)
Tl20.01643 (14)0.01862 (14)0.00967 (13)0.00101 (10)0.00066 (10)0.00088 (10)
P10.0291 (10)0.0340 (10)0.0090 (8)0.0260 (9)0.0018 (7)0.0005 (7)
P20.0088 (7)0.0092 (7)0.0072 (7)0.0023 (6)0.0003 (6)0.0001 (6)
P30.0081 (7)0.0095 (7)0.0080 (7)0.0021 (6)0.0001 (6)0.0003 (6)
O10.048 (3)0.031 (2)0.028 (2)0.026 (2)0.006 (2)0.0084 (19)
O20.023 (2)0.051 (3)0.027 (2)0.0233 (19)0.0095 (18)0.0074 (19)
O30.011 (2)0.012 (2)0.013 (2)0.0062 (17)0.0001 (18)0.0018 (17)
O40.023 (2)0.010 (2)0.011 (2)0.0034 (18)0.0045 (19)0.0010 (17)
O50.010 (2)0.020 (2)0.011 (2)0.0038 (18)0.0011 (18)0.0028 (18)
O60.010 (2)0.010 (2)0.015 (2)0.0028 (17)0.0031 (18)0.0090 (17)
O70.020 (2)0.012 (2)0.011 (2)0.0045 (19)0.0062 (19)0.0013 (17)
O80.010 (2)0.009 (2)0.012 (2)0.0033 (17)0.0013 (17)0.0001 (16)
O90.011 (2)0.013 (2)0.014 (2)0.0010 (18)0.0017 (18)0.0027 (18)
N10.009 (2)0.011 (2)0.007 (2)0.005 (2)0.0031 (19)0.0031 (19)
C10.009 (3)0.016 (3)0.014 (3)0.007 (2)0.001 (2)0.004 (2)
C20.006 (3)0.011 (3)0.007 (3)0.001 (2)0.002 (2)0.001 (2)
C30.010 (3)0.012 (3)0.009 (3)0.003 (2)0.004 (2)0.006 (2)
Geometric parameters (Å, º) top
Tl1—O82.555 (4)P3—C31.830 (6)
Tl1—O52.569 (4)O1—Tl2iii2.906 (5)
Tl1—O4i2.778 (4)O1—H1O0.8200
Tl1—O3ii3.159 (4)O2—Tl2vi2.965 (5)
Tl2—O5ii2.870 (4)O2—H2O0.8201
Tl2—O82.871 (4)O3—Tl2ii2.926 (4)
Tl2—O1iii2.906 (5)O3—Tl1ii3.159 (4)
Tl2—O32.922 (4)O4—Tl1i2.778 (4)
Tl2—O3ii2.926 (4)O5—Tl2ii2.870 (4)
Tl2—O2iv2.965 (5)O6—H6O0.8200
Tl2—O9v3.159 (4)O7—H7O0.8201
P1—O31.501 (4)O9—Tl2v3.159 (4)
P1—O21.522 (5)N1—C31.506 (7)
P1—O11.529 (6)N1—C11.510 (7)
P1—C11.829 (6)N1—C21.517 (7)
P2—O51.502 (5)N1—H1N0.8699
P2—O41.512 (4)C1—H1A0.9900
P2—O61.552 (4)C1—H1B0.9900
P2—C21.823 (6)C2—H2A0.9900
P3—O91.503 (4)C2—H2B0.9900
P3—O81.507 (4)C3—H3A0.9900
P3—O71.576 (4)C3—H3B0.9900
O8—Tl1—O582.65 (14)O9—P3—O7109.6 (2)
O8—Tl1—O4i73.72 (13)O8—P3—O7112.4 (2)
O5—Tl1—O4i90.64 (13)O9—P3—C3105.9 (3)
O8—Tl1—O3ii84.83 (12)O8—P3—C3104.2 (3)
O5—Tl1—O3ii80.14 (12)O7—P3—C3105.6 (3)
O4i—Tl1—O3ii157.62 (11)P1—O1—Tl2iii140.5 (3)
O8—Tl1—Tl242.43 (9)P1—O1—H1O131.2
O5—Tl1—Tl288.38 (10)Tl2iii—O1—H1O87.0
O4i—Tl1—Tl2115.70 (8)P1—O2—Tl2vi142.9 (3)
O3ii—Tl1—Tl244.31 (7)P1—O2—H2O122.8
O5ii—Tl2—O8153.26 (12)Tl2vi—O2—H2O91.4
O5ii—Tl2—O1iii90.93 (14)P1—O3—Tl2131.5 (2)
O8—Tl2—O1iii94.48 (13)P1—O3—Tl2ii121.5 (2)
O5ii—Tl2—O379.76 (12)Tl2—O3—Tl2ii106.77 (13)
O8—Tl2—O376.90 (12)P1—O3—Tl1ii95.14 (19)
O1iii—Tl2—O372.87 (14)Tl2—O3—Tl1ii91.85 (11)
O5ii—Tl2—O3ii76.88 (12)Tl2ii—O3—Tl1ii86.74 (11)
O8—Tl2—O3ii84.01 (11)P2—O4—Tl1i130.9 (2)
O1iii—Tl2—O3ii145.49 (14)P2—O5—Tl1130.2 (2)
O3—Tl2—O3ii73.23 (13)P2—O5—Tl2ii122.6 (2)
O5ii—Tl2—O2iv123.69 (14)Tl1—O5—Tl2ii106.85 (15)
O8—Tl2—O2iv66.41 (13)P2—O6—H6O119.1
O1iii—Tl2—O2iv137.28 (16)P3—O7—H7O111.0
O3—Tl2—O2iv132.04 (14)P3—O8—Tl1141.1 (2)
O3ii—Tl2—O2iv73.22 (14)P3—O8—Tl2118.2 (2)
O5ii—Tl2—O9v76.06 (12)Tl1—O8—Tl2100.67 (13)
O8—Tl2—O9v129.64 (11)P3—O9—Tl2v141.9 (3)
O1iii—Tl2—O9v92.73 (14)C3—N1—C1111.4 (4)
O3—Tl2—O9v151.59 (11)C3—N1—C2112.6 (4)
O3ii—Tl2—O9v114.72 (11)C1—N1—C2112.4 (4)
O2iv—Tl2—O9v74.91 (13)C3—N1—H1N95.5
O5ii—Tl2—Tl1125.55 (9)C1—N1—H1N113.9
O8—Tl2—Tl136.90 (8)C2—N1—H1N109.9
O1iii—Tl2—Tl1129.09 (10)N1—C1—P1110.2 (4)
O3—Tl2—Tl179.78 (8)N1—C1—H1A109.6
O3ii—Tl2—Tl148.95 (8)P1—C1—H1A109.6
O2iv—Tl2—Tl152.33 (11)N1—C1—H1B109.6
O9v—Tl2—Tl1126.82 (8)P1—C1—H1B109.6
O3—P1—O2115.2 (3)H1A—C1—H1B108.1
O3—P1—O1114.5 (3)N1—C2—P2110.9 (4)
O2—P1—O1108.2 (3)N1—C2—H2A109.5
O3—P1—C1106.0 (3)P2—C2—H2A109.5
O2—P1—C1104.8 (3)N1—C2—H2B109.5
O1—P1—C1107.4 (3)P2—C2—H2B109.5
O5—P2—O4117.4 (3)H2A—C2—H2B108.1
O5—P2—O6111.2 (2)N1—C3—P3110.7 (4)
O4—P2—O6112.0 (3)N1—C3—H3A109.5
O5—P2—C2106.8 (3)P3—C3—H3A109.5
O4—P2—C2104.8 (3)N1—C3—H3B109.5
O6—P2—C2103.2 (3)P3—C3—H3B109.5
O9—P3—O8118.1 (3)H3A—C3—H3B108.1
O8—Tl1—Tl2—O5ii151.22 (18)O5—P2—O4—Tl1i132.5 (3)
O5—Tl1—Tl2—O5ii70.36 (17)O6—P2—O4—Tl1i97.0 (3)
O4i—Tl1—Tl2—O5ii160.29 (15)C2—P2—O4—Tl1i14.2 (4)
O3ii—Tl1—Tl2—O5ii7.15 (15)O4—P2—O5—Tl151.5 (4)
O5—Tl1—Tl2—O880.86 (17)O6—P2—O5—Tl1177.6 (3)
O4i—Tl1—Tl2—O89.07 (17)C2—P2—O5—Tl165.7 (4)
O3ii—Tl1—Tl2—O8158.37 (18)O4—P2—O5—Tl2ii136.2 (3)
O8—Tl1—Tl2—O1iii23.9 (2)O6—P2—O5—Tl2ii5.3 (3)
O5—Tl1—Tl2—O1iii56.95 (18)C2—P2—O5—Tl2ii106.6 (3)
O4i—Tl1—Tl2—O1iii32.99 (19)O8—Tl1—O5—P277.8 (3)
O3ii—Tl1—Tl2—O1iii134.46 (19)O4i—Tl1—O5—P24.3 (3)
O8—Tl1—Tl2—O381.77 (16)O3ii—Tl1—O5—P2163.8 (3)
O5—Tl1—Tl2—O30.90 (12)Tl2—Tl1—O5—P2120.0 (3)
O4i—Tl1—Tl2—O390.84 (13)O8—Tl1—O5—Tl2ii95.39 (16)
O3ii—Tl1—Tl2—O376.60 (15)O4i—Tl1—O5—Tl2ii168.88 (15)
O8—Tl1—Tl2—O3ii158.37 (18)O3ii—Tl1—O5—Tl2ii9.39 (13)
O5—Tl1—Tl2—O3ii77.51 (15)Tl2—Tl1—O5—Tl2ii53.19 (12)
O4i—Tl1—Tl2—O3ii167.44 (15)O9—P3—O8—Tl1137.8 (3)
O8—Tl1—Tl2—O2iv100.75 (19)O7—P3—O8—Tl18.7 (5)
O5—Tl1—Tl2—O2iv178.39 (16)C3—P3—O8—Tl1105.1 (4)
O4i—Tl1—Tl2—O2iv91.67 (17)O9—P3—O8—Tl239.7 (3)
O3ii—Tl1—Tl2—O2iv100.88 (17)O7—P3—O8—Tl2168.8 (2)
O8—Tl1—Tl2—O9v109.29 (17)C3—P3—O8—Tl277.3 (3)
O5—Tl1—Tl2—O9v169.85 (14)O5—Tl1—O8—P386.5 (4)
O4i—Tl1—Tl2—O9v100.22 (15)O4i—Tl1—O8—P36.3 (4)
O3ii—Tl1—Tl2—O9v92.34 (15)O3ii—Tl1—O8—P3167.2 (4)
O3—P1—O1—Tl2iii173.5 (4)Tl2—Tl1—O8—P3177.8 (5)
O2—P1—O1—Tl2iii43.6 (5)O5—Tl1—O8—Tl295.68 (14)
C1—P1—O1—Tl2iii69.0 (5)O4i—Tl1—O8—Tl2171.49 (16)
O3—P1—O2—Tl2vi143.4 (4)O3ii—Tl1—O8—Tl214.98 (12)
O1—P1—O2—Tl2vi13.9 (6)O5ii—Tl2—O8—P3121.0 (3)
C1—P1—O2—Tl2vi100.4 (5)O1iii—Tl2—O8—P320.0 (3)
O2—P1—O3—Tl2144.1 (3)O3—Tl2—O8—P391.2 (2)
O1—P1—O3—Tl217.7 (4)O3ii—Tl2—O8—P3165.3 (3)
C1—P1—O3—Tl2100.5 (3)O2iv—Tl2—O8—P3120.4 (3)
O2—P1—O3—Tl2ii42.3 (4)O9v—Tl2—O8—P377.3 (3)
O1—P1—O3—Tl2ii168.6 (3)Tl1—Tl2—O8—P3178.4 (3)
C1—P1—O3—Tl2ii73.1 (3)O5ii—Tl2—O8—Tl160.5 (3)
O2—P1—O3—Tl1ii47.0 (3)O1iii—Tl2—O8—Tl1161.60 (16)
O1—P1—O3—Tl1ii79.3 (3)O3—Tl2—O8—Tl190.36 (14)
C1—P1—O3—Tl1ii162.5 (2)O3ii—Tl2—O8—Tl116.23 (13)
O5ii—Tl2—O3—P1106.4 (3)O2iv—Tl2—O8—Tl158.05 (16)
O8—Tl2—O3—P186.7 (3)O9v—Tl2—O8—Tl1101.10 (16)
O1iii—Tl2—O3—P112.2 (3)O8—P3—O9—Tl2v15.8 (5)
O3ii—Tl2—O3—P1174.3 (4)O7—P3—O9—Tl2v114.7 (4)
O2iv—Tl2—O3—P1127.0 (3)C3—P3—O9—Tl2v131.9 (4)
O9v—Tl2—O3—P174.5 (4)C3—N1—C1—P180.8 (5)
Tl1—Tl2—O3—P1124.3 (3)C2—N1—C1—P1151.7 (4)
O5ii—Tl2—O3—Tl2ii79.25 (14)O3—P1—C1—N133.2 (5)
O8—Tl2—O3—Tl2ii87.61 (13)O2—P1—C1—N1155.5 (4)
O1iii—Tl2—O3—Tl2ii173.44 (17)O1—P1—C1—N189.7 (5)
O3ii—Tl2—O3—Tl2ii0.0C3—N1—C2—P2152.4 (4)
O2iv—Tl2—O3—Tl2ii47.3 (2)C1—N1—C2—P280.8 (5)
O9v—Tl2—O3—Tl2ii111.2 (2)O5—P2—C2—N139.1 (4)
Tl1—Tl2—O3—Tl2ii50.01 (10)O4—P2—C2—N1164.3 (4)
O5ii—Tl2—O3—Tl1ii7.90 (11)O6—P2—C2—N178.3 (4)
O8—Tl2—O3—Tl1ii174.76 (12)C1—N1—C3—P3156.6 (4)
O1iii—Tl2—O3—Tl1ii86.28 (14)C2—N1—C3—P376.0 (5)
O3ii—Tl2—O3—Tl1ii87.15 (13)O9—P3—C3—N1156.2 (4)
O2iv—Tl2—O3—Tl1ii134.49 (15)O8—P3—C3—N131.0 (4)
O9v—Tl2—O3—Tl1ii24.0 (3)O7—P3—C3—N187.6 (4)
Tl1—Tl2—O3—Tl1ii137.17 (9)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x+1, y+1, z+1; (iv) x1, y, z; (v) x, y+1, z+1; (vi) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O30.872.392.882 (5)116
N1—H1N···O50.872.532.957 (6)111
N1—H1N···O80.872.192.837 (7)131
O1—H1O···O1iii0.821.782.504 (8)147
O2—H2O···O2vii0.821.682.497 (7)171
O6—H6O···O9viii0.821.672.484 (6)171
O7—H7O···O4i0.821.702.521 (6)180
Symmetry codes: (i) x+1, y, z; (iii) x+1, y+1, z+1; (vii) x+2, y, z+1; (viii) x+1, y1, z.

Experimental details

Crystal data
Chemical formula[Tl2(C3H10NO9P3)]
Mr705.77
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.9236 (6), 8.0932 (6), 10.9136 (8)
α, β, γ (°)81.422 (1), 79.023 (1), 68.085 (1)
V3)635.06 (8)
Z2
Radiation typeMo Kα
µ (mm1)25.76
Crystal size (mm)0.16 × 0.14 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionNumerical
(XPREP; Bruker, 2007)
Tmin, Tmax0.104, 0.183
No. of measured, independent and
observed [I > 2σ(I)] reflections
6627, 2744, 2437
Rint0.029
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.055, 1.05
No. of reflections2744
No. of parameters163
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.72, 1.83

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O30.872.392.882 (5)116
N1—H1N···O50.872.532.957 (6)111
N1—H1N···O80.872.192.837 (7)131
O1—H1O···O1i0.821.782.504 (8)147
O2—H2O···O2ii0.821.682.497 (7)171
O6—H6O···O9iii0.821.672.484 (6)171
O7—H7O···O4iv0.821.702.521 (6)180
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y, z+1; (iii) x+1, y1, z; (iv) x+1, y, z.
 

Acknowledgements

Support of this investigation by Tarbiat Modares University Research Council is gratefully acknowledged.

References

First citationBruker (2007). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSharma, C. V. K., Clearfield, A., Cabeza, A., Aranda, M. A. G. & Bruque, S. (2001). J. Am. Chem. Soc. 123, 2885–2886.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.   Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds