metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[μ-1,2-Bis(di­phenyl­phosphino)ethane-κ2P:P′]bis­­{[1,2-bis­­(di­phenyl­phosphino)ethane-κ2P,P′]cyanidocopper(I)} methanol disolvate

aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China, and bBeijing Key Laboratory for Terahertz Spectroscopy and Imaging, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: jinqh204@163.com

(Received 5 July 2010; accepted 25 July 2010; online 31 July 2010)

The title centrosymmetric complex, [Cu2(CN)2(C26H24P2)3]·2CH3OH, consists of two five-membered [Cu(dppe)CN] rings [dppe is 1,2-bis­(diphenyl­phosphino)ethane] bridged by one μ2-dppe ligand, and two methanol solvent mol­ecules. The angles around the central metal atom indicate that each CuI atom is located in the center of a distorted tetra­hedron. The coordination sphere of each CuI atom is formed by three P atoms from two dppe ligands, and one C atom from the cyanide ligand. The crystal structure is stabilized by O—H⋯N hydrogen bonds, which are formed by the O—H donor group from methanol and the N-atom acceptor from a cyanide ligand.

Related literature

For related structures, see: Jin et al. (2009[Jin, Q. H., Chen, L. M., Li, P. Z., Deng, S. F. & Wang, R. (2009). Inorg. Chim. Acta, 362, 5224-5230.]); Effendy et al. (2006[Effendy, Di Nicola, C., Pettinari, C., Pizzabiocca, A., Skelton, B. W., Somers, N. & White, A. H. (2006). Inorg. Chim. Acta, 359, 64-80.]); Sivasankar et al. (2004[Sivasankar, C., Nethaji, M. & Samuelson, A. G. (2004). Inorg. Chim. Commun. 7, 238-240.]); Di Nicola et al. (2006[Di Nicola, C., Koutsantonis, G. A., Pettinari, C., Skelton, B. W., Somers, N. & White, A. H. (2006). Inorg. Chim. Acta, 359, 2159-2169.]); Saravanabharathi et al. (2002[Saravanabharathi, D., Monika, Venugopalan, P. & Samuelson, A.G. (2002). Polyhedron, 21, 2433-2443.]). For general background to the photophysical properties of similar compounds, see: Cingolani et al. (2005[Cingolani, A., Di Nicola, C., Effendy, Pettinari, C., Skelton, B. W., Somers, N. & White, A. H. (2005). Inorg. Chim. Acta, 358, 748-762.]); Song et al. (2007[Song, L., Lin, P., Li, Z. H., Li, J. R., Du, S. W. & Wu, X. T. (2007). Polyhedron, 26, 1199-1204.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(CN)2(C26H24P2)3]·2CH4O

  • Mr = 1438.38

  • Monoclinic, C 2/c

  • a = 23.423 (2) Å

  • b = 17.7912 (16) Å

  • c = 17.6614 (18) Å

  • β = 92.194 (1)°

  • V = 7354.6 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 298 K

  • 0.44 × 0.40 × 0.25 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.732, Tmax = 0.833

  • 18242 measured reflections

  • 6494 independent reflections

  • 4140 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.149

  • S = 1.06

  • 6494 reflections

  • 425 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 2.02 2.829 (11) 171
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Copper(I) complexes containing the diphosphine ligands bis(diphenylphosphinoethane)(Dppe) are extensively studied because of their interesting structures and photophysical properties (Cingolani et al., 2005; Song et al., 2007). dppe is a very efficient bridging bidentate ligand and its chelating tendency is very suitable to lock the metal atom. As a part of the extension of our study on the systematic structural chemistry of copper(I) complexes with ligands containing phosphine and nitrogen atoms (Jin et al., 2009), we synthesized the new title complex, (1), in the presence of (NH4)2WS4 and 1,10-phenanthroline.

The molecular structure of complex (1) is depicted in Fig. 1. It consists of two five-membered [Cu(dppe)CN] rings that are bridged by one µ2-dppe ligand, and two methanol solvent molecules. The copper atom is four-coordinated by three P-atoms from two dppe ligands, and one C-atom from the cyanide ion. The Cu—P distances of 2.2832 (12) Å, 2.3041 (13) Å and 2.3291 (12) Å are longer than those in complex [Cu2(dppe)3(CN)2].2(CH3CN) (2), which vary from 2.2784 (4) to 2.3158 (4) Å (Effendy et al., 2006), but are almost equal to those in complex [Cu2(dppe)3(CN)2] (3), which vary from 2.2808 (8) to 2.3276 (8) Å (Saravanabharathi et al., 2002). The Cu—C distance of 1.952 (6)Å in complex (1) is shorter than the same distance observed in complexes (2) and (3); 1.975 (2) Å and 1.964 (4) Å, respectively.

In (1) the P—Cu—C angles are in the range 107.59 (14) - 119.11 (14)°, and the P—Cu—P angles are in the range 89.03 (4) - 115.07 (5)°. This confirms the distored tetrahedral environment around the copper(I) atom. These values are very close to those observed for complex (3), where the P—Cu—C angles range from 107.05 (9) to 120.73 (9)°, and the P—Cu—P angles are in the range 89.22 (3) - 115.16 (3) °.

Though both (NH4)2WS4 and 1,10-phenanthroline were starting materials in the prepartion of (1), they do not appear in the final product. This may be related to the solvent methanol because the O—H donor from methanol can form an O—H···N hydrogen bond with the N atom from the cyanide anion (Table 1), and this can stablize the molecular structure of the complex.

The crystal structure of complex (1) is similar with that of complex (2). Other similar complexes are adducts CuX:dppe:X, where X is a simple inorganic anion, for example, a halide (Effendy et al., 2006; Di Nicola et al., 2006), thiocyanate (Saravanabharathi et al., 2002), nitrate (Saravanabharathi et al., 2002), perchlorate (Sivasankar et al., 2004; Jin et al., 2009) and tetrafluoroborate (Jin et al., 2009).

Related literature top

For related structures, see: Jin et al. (2009); Effendy et al. (2006); Sivasankar et al. (2004); Di Nicola et al. (2006); Saravanabharathi et al. (2002). For general background to the photophysical properties of similar compounds, see: Cingolani et al. (2005); Song et al. (2007).

Experimental top

A mixture of CuCN, bis(diphenylphosphinoethane), (NH4)2WS4 and 1,10-Phenanthroline, in the molar ratio of 3:3:1:1 in CH2Cl2 and MeOH (10 ml,V/V=1/1), was stirred for 4 h at RT, then filtered. Subsequent slow evaporation of the filtrate resulted in the formation of yellow crystals of complex (1). Crystals suitable for single-crystal X-ray diffraction were selected directly from the sample as prepared.

Refinement top

The H-atoms were included in calculated positions and treated as riding atoms: O—H = 0.82 Å, C—H 0.93 - 0.96 Å with Uiso(H) = k × Ueq(parent O or C-atom), where k = 1.5 for OH and CH3 H-atoms, and k = 1.2 for all other H-atoms.

Structure description top

Copper(I) complexes containing the diphosphine ligands bis(diphenylphosphinoethane)(Dppe) are extensively studied because of their interesting structures and photophysical properties (Cingolani et al., 2005; Song et al., 2007). dppe is a very efficient bridging bidentate ligand and its chelating tendency is very suitable to lock the metal atom. As a part of the extension of our study on the systematic structural chemistry of copper(I) complexes with ligands containing phosphine and nitrogen atoms (Jin et al., 2009), we synthesized the new title complex, (1), in the presence of (NH4)2WS4 and 1,10-phenanthroline.

The molecular structure of complex (1) is depicted in Fig. 1. It consists of two five-membered [Cu(dppe)CN] rings that are bridged by one µ2-dppe ligand, and two methanol solvent molecules. The copper atom is four-coordinated by three P-atoms from two dppe ligands, and one C-atom from the cyanide ion. The Cu—P distances of 2.2832 (12) Å, 2.3041 (13) Å and 2.3291 (12) Å are longer than those in complex [Cu2(dppe)3(CN)2].2(CH3CN) (2), which vary from 2.2784 (4) to 2.3158 (4) Å (Effendy et al., 2006), but are almost equal to those in complex [Cu2(dppe)3(CN)2] (3), which vary from 2.2808 (8) to 2.3276 (8) Å (Saravanabharathi et al., 2002). The Cu—C distance of 1.952 (6)Å in complex (1) is shorter than the same distance observed in complexes (2) and (3); 1.975 (2) Å and 1.964 (4) Å, respectively.

In (1) the P—Cu—C angles are in the range 107.59 (14) - 119.11 (14)°, and the P—Cu—P angles are in the range 89.03 (4) - 115.07 (5)°. This confirms the distored tetrahedral environment around the copper(I) atom. These values are very close to those observed for complex (3), where the P—Cu—C angles range from 107.05 (9) to 120.73 (9)°, and the P—Cu—P angles are in the range 89.22 (3) - 115.16 (3) °.

Though both (NH4)2WS4 and 1,10-phenanthroline were starting materials in the prepartion of (1), they do not appear in the final product. This may be related to the solvent methanol because the O—H donor from methanol can form an O—H···N hydrogen bond with the N atom from the cyanide anion (Table 1), and this can stablize the molecular structure of the complex.

The crystal structure of complex (1) is similar with that of complex (2). Other similar complexes are adducts CuX:dppe:X, where X is a simple inorganic anion, for example, a halide (Effendy et al., 2006; Di Nicola et al., 2006), thiocyanate (Saravanabharathi et al., 2002), nitrate (Saravanabharathi et al., 2002), perchlorate (Sivasankar et al., 2004; Jin et al., 2009) and tetrafluoroborate (Jin et al., 2009).

For related structures, see: Jin et al. (2009); Effendy et al. (2006); Sivasankar et al. (2004); Di Nicola et al. (2006); Saravanabharathi et al. (2002). For general background to the photophysical properties of similar compounds, see: Cingolani et al. (2005); Song et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of complex (1), with the displacement ellipsoids drawn at the 50% probability level [Symmetry code: (i) = -x+1/2, -y+1/2, -z+1; Hydrogen atoms have been omitted for clarity].
[µ-1,2-Bis(diphenylphosphino)ethane-κ2P:P']bis{[1,2- bis(diphenylphosphino)ethane-κ2P,P']cyanidocopper(I)} methanol disolvate top
Crystal data top
[Cu2(CN)2(C26H24P2)3]·2CH4OF(000) = 3000
Mr = 1438.38Dx = 1.299 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4634 reflections
a = 23.423 (2) Åθ = 2.3–27.3°
b = 17.7912 (16) ŵ = 0.76 mm1
c = 17.6614 (18) ÅT = 298 K
β = 92.194 (1)°Block, yellow
V = 7354.6 (12) Å30.44 × 0.40 × 0.25 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
6494 independent reflections
Radiation source: fine-focus sealed tube4140 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
phi and ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2327
Tmin = 0.732, Tmax = 0.833k = 2121
18242 measured reflectionsl = 1721
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.063P)2 + 16.0608P]
where P = (Fo2 + 2Fc2)/3
6494 reflections(Δ/σ)max = 0.001
425 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Cu2(CN)2(C26H24P2)3]·2CH4OV = 7354.6 (12) Å3
Mr = 1438.38Z = 4
Monoclinic, C2/cMo Kα radiation
a = 23.423 (2) ŵ = 0.76 mm1
b = 17.7912 (16) ÅT = 298 K
c = 17.6614 (18) Å0.44 × 0.40 × 0.25 mm
β = 92.194 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6494 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4140 reflections with I > 2σ(I)
Tmin = 0.732, Tmax = 0.833Rint = 0.044
18242 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.063P)2 + 16.0608P]
where P = (Fo2 + 2Fc2)/3
6494 reflectionsΔρmax = 0.63 e Å3
425 parametersΔρmin = 0.39 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.26534 (2)0.24069 (3)0.29813 (3)0.03662 (18)
N10.3058 (2)0.4054 (3)0.3181 (3)0.0646 (13)
O10.0834 (4)0.0342 (6)0.6565 (6)0.243 (5)
H10.11550.04940.66860.292*
P10.28874 (4)0.17964 (6)0.40872 (6)0.0305 (3)
P20.30147 (5)0.18670 (7)0.18979 (7)0.0372 (3)
P30.17430 (5)0.21480 (7)0.25132 (7)0.0379 (3)
C10.2892 (2)0.3452 (3)0.3102 (3)0.0437 (11)
C20.28034 (17)0.2350 (2)0.4956 (2)0.0332 (10)
H2A0.29070.20380.53910.040*
H2B0.30660.27710.49540.040*
C30.25244 (17)0.0913 (2)0.4259 (2)0.0328 (10)
C40.2433 (2)0.0433 (3)0.3649 (3)0.0463 (12)
H40.25580.05730.31750.056*
C50.2161 (2)0.0251 (3)0.3731 (3)0.0608 (15)
H50.21030.05660.33150.073*
C60.1977 (2)0.0462 (3)0.4427 (4)0.0640 (15)
H60.17980.09240.44860.077*
C70.2057 (2)0.0011 (3)0.5039 (3)0.0594 (14)
H70.19260.01260.55100.071*
C80.2332 (2)0.0687 (3)0.4953 (3)0.0460 (12)
H80.23890.09990.53720.055*
C90.36466 (17)0.1560 (2)0.4211 (2)0.0359 (10)
C100.4037 (2)0.1964 (3)0.3819 (3)0.0572 (14)
H100.39120.23270.34720.069*
C110.4621 (2)0.1835 (4)0.3935 (4)0.0745 (18)
H110.48820.21160.36700.089*
C120.4810 (2)0.1305 (4)0.4432 (3)0.0676 (17)
H120.52000.12150.45010.081*
C130.4429 (2)0.0898 (3)0.4834 (3)0.0628 (15)
H130.45590.05380.51810.075*
C140.3848 (2)0.1026 (3)0.4721 (3)0.0504 (13)
H140.35900.07470.49930.060*
C150.23651 (19)0.1723 (3)0.1290 (3)0.0456 (12)
H15A0.22700.21880.10280.055*
H15B0.24410.13450.09120.055*
C160.18567 (19)0.1475 (3)0.1747 (3)0.0438 (11)
H16A0.19290.09790.19580.053*
H16B0.15160.14470.14170.053*
C170.33868 (19)0.0963 (3)0.1854 (2)0.0412 (11)
C180.3107 (2)0.0287 (3)0.1734 (3)0.0490 (12)
H180.27110.02830.16720.059*
C190.3406 (2)0.0385 (3)0.1706 (3)0.0584 (14)
H190.32090.08330.16230.070*
C200.3982 (3)0.0392 (3)0.1797 (3)0.0651 (16)
H200.41810.08440.17770.078*
C210.4273 (2)0.0267 (4)0.1920 (4)0.0714 (17)
H210.46700.02640.19800.086*
C220.3977 (2)0.0938 (3)0.1953 (3)0.0593 (14)
H220.41770.13820.20450.071*
C230.3481 (2)0.2435 (3)0.1316 (3)0.0455 (12)
C240.3554 (2)0.2283 (3)0.0564 (3)0.0606 (14)
H240.33430.19010.03280.073*
C250.3935 (3)0.2691 (4)0.0156 (4)0.0784 (19)
H250.39730.25920.03570.094*
C260.4252 (3)0.3234 (4)0.0498 (4)0.082 (2)
H260.45150.35010.02220.099*
C270.4192 (2)0.3396 (3)0.1245 (4)0.0757 (18)
H270.44110.37720.14780.091*
C280.3801 (2)0.2995 (3)0.1655 (3)0.0556 (14)
H280.37550.31060.21640.067*
C290.11966 (19)0.1722 (3)0.3079 (3)0.0464 (12)
C300.0944 (3)0.1036 (3)0.2908 (4)0.0761 (18)
H300.10610.07570.24960.091*
C310.0515 (3)0.0769 (4)0.3358 (5)0.101 (2)
H310.03380.03130.32400.122*
C320.0350 (3)0.1166 (4)0.3970 (4)0.098 (2)
H320.00690.09740.42740.117*
C330.0592 (3)0.1842 (4)0.4141 (4)0.084 (2)
H330.04730.21150.45550.101*
C340.1015 (2)0.2122 (3)0.3699 (3)0.0597 (14)
H340.11800.25840.38170.072*
C350.13433 (19)0.2891 (3)0.2004 (3)0.0423 (11)
C360.1637 (2)0.3484 (3)0.1707 (3)0.0548 (13)
H360.20320.35090.17790.066*
C370.1351 (3)0.4045 (3)0.1302 (3)0.0707 (17)
H370.15540.44400.10960.085*
C380.0765 (3)0.4017 (3)0.1204 (3)0.0716 (17)
H380.05730.43980.09400.086*
C390.0469 (2)0.3436 (3)0.1492 (3)0.0648 (16)
H390.00730.34190.14190.078*
C400.0750 (2)0.2864 (3)0.1895 (3)0.0530 (13)
H400.05440.24670.20900.064*
C410.0678 (5)0.0611 (8)0.5868 (8)0.200 (6)
H41A0.03150.08590.58900.300*
H41B0.06480.02020.55140.300*
H41C0.09600.09610.57070.300*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0365 (3)0.0446 (3)0.0287 (3)0.0026 (2)0.0002 (2)0.0009 (2)
N10.084 (4)0.054 (3)0.057 (3)0.012 (3)0.006 (2)0.007 (2)
O10.204 (9)0.280 (12)0.241 (12)0.122 (8)0.036 (8)0.110 (9)
P10.0297 (6)0.0359 (6)0.0260 (6)0.0033 (5)0.0006 (4)0.0011 (5)
P20.0374 (7)0.0460 (7)0.0284 (6)0.0033 (5)0.0041 (5)0.0016 (5)
P30.0319 (6)0.0469 (7)0.0346 (7)0.0047 (5)0.0016 (5)0.0020 (5)
C10.045 (3)0.057 (3)0.029 (3)0.005 (2)0.003 (2)0.003 (2)
C20.036 (2)0.036 (2)0.027 (2)0.0024 (19)0.0035 (18)0.0043 (18)
C30.031 (2)0.040 (2)0.028 (2)0.0052 (18)0.0047 (18)0.0014 (19)
C40.054 (3)0.051 (3)0.034 (3)0.002 (2)0.001 (2)0.000 (2)
C50.074 (4)0.052 (3)0.056 (4)0.009 (3)0.010 (3)0.014 (3)
C60.068 (4)0.049 (3)0.075 (4)0.012 (3)0.005 (3)0.006 (3)
C70.073 (4)0.053 (3)0.053 (4)0.007 (3)0.009 (3)0.012 (3)
C80.057 (3)0.044 (3)0.037 (3)0.004 (2)0.003 (2)0.002 (2)
C90.031 (2)0.045 (3)0.032 (2)0.006 (2)0.0013 (19)0.008 (2)
C100.041 (3)0.078 (4)0.053 (3)0.000 (3)0.001 (2)0.009 (3)
C110.043 (3)0.108 (5)0.073 (4)0.015 (3)0.009 (3)0.004 (4)
C120.036 (3)0.098 (5)0.067 (4)0.012 (3)0.005 (3)0.013 (4)
C130.049 (3)0.078 (4)0.060 (4)0.019 (3)0.014 (3)0.002 (3)
C140.040 (3)0.058 (3)0.052 (3)0.007 (2)0.004 (2)0.002 (3)
C150.051 (3)0.052 (3)0.034 (3)0.011 (2)0.006 (2)0.008 (2)
C160.040 (3)0.049 (3)0.042 (3)0.007 (2)0.002 (2)0.007 (2)
C170.042 (3)0.053 (3)0.029 (3)0.007 (2)0.003 (2)0.001 (2)
C180.045 (3)0.057 (3)0.046 (3)0.009 (2)0.006 (2)0.001 (2)
C190.063 (4)0.052 (3)0.061 (4)0.006 (3)0.003 (3)0.002 (3)
C200.066 (4)0.062 (4)0.068 (4)0.022 (3)0.005 (3)0.007 (3)
C210.048 (3)0.087 (5)0.079 (5)0.020 (3)0.001 (3)0.008 (4)
C220.049 (3)0.062 (4)0.066 (4)0.005 (3)0.002 (3)0.003 (3)
C230.048 (3)0.051 (3)0.039 (3)0.013 (2)0.012 (2)0.006 (2)
C240.068 (4)0.070 (4)0.045 (3)0.009 (3)0.014 (3)0.007 (3)
C250.083 (5)0.097 (5)0.058 (4)0.020 (4)0.032 (3)0.018 (4)
C260.075 (5)0.084 (5)0.091 (5)0.007 (4)0.043 (4)0.032 (4)
C270.065 (4)0.069 (4)0.095 (5)0.005 (3)0.025 (4)0.010 (4)
C280.056 (3)0.061 (3)0.051 (3)0.001 (3)0.017 (3)0.005 (3)
C290.038 (3)0.052 (3)0.049 (3)0.006 (2)0.000 (2)0.001 (2)
C300.070 (4)0.074 (4)0.086 (5)0.009 (3)0.030 (4)0.008 (4)
C310.105 (6)0.086 (5)0.117 (7)0.027 (4)0.046 (5)0.007 (5)
C320.094 (5)0.106 (6)0.097 (6)0.017 (5)0.049 (4)0.000 (5)
C330.076 (4)0.107 (6)0.072 (5)0.001 (4)0.027 (4)0.006 (4)
C340.054 (3)0.075 (4)0.051 (3)0.004 (3)0.007 (3)0.005 (3)
C350.042 (3)0.047 (3)0.037 (3)0.007 (2)0.006 (2)0.007 (2)
C360.050 (3)0.060 (3)0.053 (3)0.002 (3)0.011 (3)0.003 (3)
C370.075 (4)0.064 (4)0.071 (4)0.004 (3)0.020 (3)0.015 (3)
C380.075 (4)0.069 (4)0.069 (4)0.019 (3)0.026 (3)0.009 (3)
C390.048 (3)0.077 (4)0.068 (4)0.018 (3)0.015 (3)0.003 (3)
C400.044 (3)0.062 (3)0.052 (3)0.006 (3)0.007 (2)0.001 (3)
C410.166 (12)0.229 (14)0.204 (16)0.004 (10)0.006 (10)0.052 (12)
Geometric parameters (Å, º) top
Cu1—C11.951 (6)C17—C221.387 (6)
Cu1—P12.2832 (12)C18—C191.388 (6)
Cu1—P32.3041 (13)C18—H180.9300
Cu1—P22.3291 (12)C19—C201.355 (7)
N1—C11.146 (6)C19—H190.9300
O1—C411.358 (12)C20—C211.370 (8)
O1—H10.8200C20—H200.9300
P1—C31.818 (4)C21—C221.383 (7)
P1—C91.832 (4)C21—H210.9300
P1—C21.840 (4)C22—H220.9300
P2—C171.832 (5)C23—C281.370 (7)
P2—C231.833 (5)C23—C241.372 (7)
P2—C151.846 (5)C24—C251.375 (8)
P3—C291.818 (5)C24—H240.9300
P3—C161.835 (5)C25—C261.348 (9)
P3—C351.835 (5)C25—H250.9300
C2—C2i1.532 (8)C26—C271.363 (9)
C2—H2A0.9700C26—H260.9300
C2—H2B0.9700C27—C281.387 (7)
C3—C81.382 (6)C27—H270.9300
C3—C41.386 (6)C28—H280.9300
C4—C51.384 (7)C29—C301.384 (7)
C4—H40.9300C29—C341.386 (7)
C5—C61.371 (7)C30—C311.391 (8)
C5—H50.9300C30—H300.9300
C6—C71.378 (7)C31—C321.360 (9)
C6—H60.9300C31—H310.9300
C7—C81.375 (7)C32—C331.358 (9)
C7—H70.9300C32—H320.9300
C8—H80.9300C33—C341.377 (8)
C9—C101.372 (6)C33—H330.9300
C9—C141.381 (6)C34—H340.9300
C10—C111.394 (7)C35—C361.374 (7)
C10—H100.9300C35—C401.396 (6)
C11—C121.352 (8)C36—C371.387 (7)
C11—H110.9300C36—H360.9300
C12—C131.368 (8)C37—C381.376 (8)
C12—H120.9300C37—H370.9300
C13—C141.387 (6)C38—C391.355 (8)
C13—H130.9300C38—H380.9300
C14—H140.9300C39—C401.393 (7)
C15—C161.529 (6)C39—H390.9300
C15—H15A0.9700C40—H400.9300
C15—H15B0.9700C41—H41A0.9600
C16—H16A0.9700C41—H41B0.9600
C16—H16B0.9700C41—H41C0.9600
C17—C181.381 (6)
C1—Cu1—P1107.59 (14)H16A—C16—H16B108.2
C1—Cu1—P3119.11 (14)C18—C17—C22117.1 (4)
P1—Cu1—P3113.60 (5)C18—C17—P2123.1 (4)
C1—Cu1—P2111.79 (14)C22—C17—P2119.7 (4)
P1—Cu1—P2115.07 (5)C17—C18—C19121.2 (5)
P3—Cu1—P289.03 (4)C17—C18—H18119.4
C41—O1—H1109.5C19—C18—H18119.4
C3—P1—C9103.88 (19)C20—C19—C18120.4 (5)
C3—P1—C2104.93 (19)C20—C19—H19119.8
C9—P1—C299.06 (18)C18—C19—H19119.8
C3—P1—Cu1117.12 (14)C19—C20—C21119.9 (5)
C9—P1—Cu1114.28 (15)C19—C20—H20120.1
C2—P1—Cu1115.39 (14)C21—C20—H20120.1
C17—P2—C2399.5 (2)C20—C21—C22119.9 (5)
C17—P2—C15103.7 (2)C20—C21—H21120.1
C23—P2—C15104.3 (2)C22—C21—H21120.1
C17—P2—Cu1125.84 (15)C21—C22—C17121.5 (5)
C23—P2—Cu1118.46 (16)C21—C22—H22119.3
C15—P2—Cu1102.56 (15)C17—C22—H22119.3
C29—P3—C16105.0 (2)C28—C23—C24118.8 (5)
C29—P3—C35102.3 (2)C28—C23—P2118.9 (4)
C16—P3—C35101.2 (2)C24—C23—P2122.2 (4)
C29—P3—Cu1123.19 (17)C23—C24—C25120.7 (6)
C16—P3—Cu1103.70 (15)C23—C24—H24119.7
C35—P3—Cu1118.66 (16)C25—C24—H24119.7
N1—C1—Cu1176.6 (5)C26—C25—C24120.1 (6)
C2i—C2—P1113.6 (4)C26—C25—H25120.0
C2i—C2—H2A108.8C24—C25—H25120.0
P1—C2—H2A108.8C25—C26—C27120.6 (6)
C2i—C2—H2B108.8C25—C26—H26119.7
P1—C2—H2B108.8C27—C26—H26119.7
H2A—C2—H2B107.7C26—C27—C28119.5 (6)
C8—C3—C4117.7 (4)C26—C27—H27120.2
C8—C3—P1124.8 (3)C28—C27—H27120.2
C4—C3—P1117.5 (3)C23—C28—C27120.4 (6)
C5—C4—C3121.2 (5)C23—C28—H28119.8
C5—C4—H4119.4C27—C28—H28119.8
C3—C4—H4119.4C30—C29—C34118.9 (5)
C6—C5—C4119.9 (5)C30—C29—P3123.5 (4)
C6—C5—H5120.1C34—C29—P3117.6 (4)
C4—C5—H5120.1C29—C30—C31119.3 (6)
C5—C6—C7119.8 (5)C29—C30—H30120.3
C5—C6—H6120.1C31—C30—H30120.3
C7—C6—H6120.1C32—C31—C30120.7 (7)
C8—C7—C6119.9 (5)C32—C31—H31119.7
C8—C7—H7120.1C30—C31—H31119.7
C6—C7—H7120.1C33—C32—C31120.5 (6)
C7—C8—C3121.5 (5)C33—C32—H32119.7
C7—C8—H8119.2C31—C32—H32119.7
C3—C8—H8119.2C32—C33—C34119.8 (6)
C10—C9—C14118.2 (4)C32—C33—H33120.1
C10—C9—P1118.9 (4)C34—C33—H33120.1
C14—C9—P1122.8 (3)C33—C34—C29120.8 (6)
C9—C10—C11120.6 (5)C33—C34—H34119.6
C9—C10—H10119.7C29—C34—H34119.6
C11—C10—H10119.7C36—C35—C40118.9 (4)
C12—C11—C10120.4 (5)C36—C35—P3119.1 (4)
C12—C11—H11119.8C40—C35—P3122.0 (4)
C10—C11—H11119.8C35—C36—C37120.6 (5)
C11—C12—C13120.1 (5)C35—C36—H36119.7
C11—C12—H12120.0C37—C36—H36119.7
C13—C12—H12120.0C38—C37—C36119.9 (6)
C12—C13—C14119.7 (5)C38—C37—H37120.0
C12—C13—H13120.1C36—C37—H37120.0
C14—C13—H13120.1C39—C38—C37120.3 (5)
C9—C14—C13121.0 (5)C39—C38—H38119.9
C9—C14—H14119.5C37—C38—H38119.9
C13—C14—H14119.5C38—C39—C40120.6 (5)
C16—C15—P2112.0 (3)C38—C39—H39119.7
C16—C15—H15A109.2C40—C39—H39119.7
P2—C15—H15A109.2C39—C40—C35119.7 (5)
C16—C15—H15B109.2C39—C40—H40120.2
P2—C15—H15B109.2C35—C40—H40120.2
H15A—C15—H15B107.9O1—C41—H41A109.5
C15—C16—P3109.8 (3)O1—C41—H41B109.5
C15—C16—H16A109.7H41A—C41—H41B109.5
P3—C16—H16A109.7O1—C41—H41C109.5
C15—C16—H16B109.7H41A—C41—H41C109.5
P3—C16—H16B109.7H41B—C41—H41C109.5
C1—Cu1—P1—C3160.9 (2)P2—C15—C16—P354.5 (4)
P3—Cu1—P1—C326.84 (16)C29—P3—C16—C15172.6 (3)
P2—Cu1—P1—C373.77 (16)C35—P3—C16—C1581.3 (3)
C1—Cu1—P1—C977.3 (2)Cu1—P3—C16—C1542.1 (3)
P3—Cu1—P1—C9148.63 (15)C23—P2—C17—C18135.9 (4)
P2—Cu1—P1—C948.02 (16)C15—P2—C17—C1828.6 (4)
C1—Cu1—P1—C236.6 (2)Cu1—P2—C17—C1888.2 (4)
P3—Cu1—P1—C297.46 (15)C23—P2—C17—C2245.0 (4)
P2—Cu1—P1—C2161.93 (15)C15—P2—C17—C22152.3 (4)
C1—Cu1—P2—C17130.6 (2)Cu1—P2—C17—C2290.8 (4)
P1—Cu1—P2—C177.5 (2)C22—C17—C18—C190.9 (7)
P3—Cu1—P2—C17108.3 (2)P2—C17—C18—C19179.9 (4)
C1—Cu1—P2—C232.0 (2)C17—C18—C19—C200.2 (8)
P1—Cu1—P2—C23121.14 (18)C18—C19—C20—C210.1 (9)
P3—Cu1—P2—C23123.13 (18)C19—C20—C21—C220.3 (9)
C1—Cu1—P2—C15112.1 (2)C20—C21—C22—C171.1 (9)
P1—Cu1—P2—C15124.81 (16)C18—C17—C22—C211.3 (8)
P3—Cu1—P2—C159.07 (16)P2—C17—C22—C21179.6 (4)
C1—Cu1—P3—C29112.1 (2)C17—P2—C23—C28112.0 (4)
P1—Cu1—P3—C2916.2 (2)C15—P2—C23—C28141.1 (4)
P2—Cu1—P3—C29133.3 (2)Cu1—P2—C23—C2828.0 (4)
C1—Cu1—P3—C16129.4 (2)C17—P2—C23—C2463.0 (4)
P1—Cu1—P3—C16102.25 (17)C15—P2—C23—C2443.9 (5)
P2—Cu1—P3—C1614.82 (17)Cu1—P2—C23—C24157.0 (4)
C1—Cu1—P3—C3518.2 (2)C28—C23—C24—C250.8 (8)
P1—Cu1—P3—C35146.56 (17)P2—C23—C24—C25175.8 (4)
P2—Cu1—P3—C3596.37 (17)C23—C24—C25—C261.7 (9)
C3—P1—C2—C2i72.9 (4)C24—C25—C26—C271.4 (10)
C9—P1—C2—C2i180.0 (4)C25—C26—C27—C280.3 (10)
Cu1—P1—C2—C2i57.6 (4)C24—C23—C28—C270.3 (8)
C9—P1—C3—C892.8 (4)P2—C23—C28—C27174.8 (4)
C2—P1—C3—C810.7 (4)C26—C27—C28—C230.6 (9)
Cu1—P1—C3—C8140.2 (3)C16—P3—C29—C300.7 (5)
C9—P1—C3—C487.4 (4)C35—P3—C29—C30104.6 (5)
C2—P1—C3—C4169.1 (3)Cu1—P3—C29—C30118.6 (5)
Cu1—P1—C3—C439.7 (4)C16—P3—C29—C34178.7 (4)
C8—C3—C4—C50.2 (7)C35—P3—C29—C3473.4 (4)
P1—C3—C4—C5179.9 (4)Cu1—P3—C29—C3463.4 (4)
C3—C4—C5—C60.1 (8)C34—C29—C30—C310.3 (9)
C4—C5—C6—C70.9 (8)P3—C29—C30—C31177.6 (5)
C5—C6—C7—C81.3 (8)C29—C30—C31—C321.3 (12)
C6—C7—C8—C31.0 (8)C30—C31—C32—C331.7 (13)
C4—C3—C8—C70.2 (7)C31—C32—C33—C341.0 (12)
P1—C3—C8—C7179.6 (4)C32—C33—C34—C290.0 (10)
C3—P1—C9—C10151.4 (4)C30—C29—C34—C330.3 (9)
C2—P1—C9—C10100.6 (4)P3—C29—C34—C33178.4 (5)
Cu1—P1—C9—C1022.6 (4)C29—P3—C35—C36159.4 (4)
C3—P1—C9—C1433.0 (4)C16—P3—C35—C3692.4 (4)
C2—P1—C9—C1474.9 (4)Cu1—P3—C35—C3620.2 (4)
Cu1—P1—C9—C14161.8 (3)C29—P3—C35—C4022.0 (4)
C14—C9—C10—C110.0 (8)C16—P3—C35—C4086.2 (4)
P1—C9—C10—C11175.7 (4)Cu1—P3—C35—C40161.3 (3)
C9—C10—C11—C120.6 (9)C40—C35—C36—C370.3 (8)
C10—C11—C12—C131.1 (9)P3—C35—C36—C37178.3 (4)
C11—C12—C13—C141.0 (9)C35—C36—C37—C381.0 (9)
C10—C9—C14—C130.1 (7)C36—C37—C38—C391.1 (9)
P1—C9—C14—C13175.7 (4)C37—C38—C39—C400.6 (9)
C12—C13—C14—C90.4 (8)C38—C39—C40—C350.1 (8)
C17—P2—C15—C1693.9 (3)C36—C35—C40—C390.2 (7)
C23—P2—C15—C16162.3 (3)P3—C35—C40—C39178.8 (4)
Cu1—P2—C15—C1638.3 (3)
Symmetry code: (i) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.822.022.829 (11)171
Symmetry code: (i) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(CN)2(C26H24P2)3]·2CH4O
Mr1438.38
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)23.423 (2), 17.7912 (16), 17.6614 (18)
β (°) 92.194 (1)
V3)7354.6 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.76
Crystal size (mm)0.44 × 0.40 × 0.25
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.732, 0.833
No. of measured, independent and
observed [I > 2σ(I)] reflections
18242, 6494, 4140
Rint0.044
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.149, 1.06
No. of reflections6494
No. of parameters425
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.063P)2 + 16.0608P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.63, 0.39

Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.822.022.829 (11)171
Symmetry code: (i) x+1/2, y+1/2, z+1.
 

Acknowledgements

This work was supported by the National Keystone Basic Research Program (973 Program – grant Nos. 2007CB310408 and 2006CB302901), the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of the Beijing Municipality and the State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences.

References

First citationBruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCingolani, A., Di Nicola, C., Effendy, Pettinari, C., Skelton, B. W., Somers, N. & White, A. H. (2005). Inorg. Chim. Acta, 358, 748–762.  Web of Science CSD CrossRef CAS Google Scholar
First citationDi Nicola, C., Koutsantonis, G. A., Pettinari, C., Skelton, B. W., Somers, N. & White, A. H. (2006). Inorg. Chim. Acta, 359, 2159–2169.  CrossRef CAS Google Scholar
First citationEffendy, Di Nicola, C., Pettinari, C., Pizzabiocca, A., Skelton, B. W., Somers, N. & White, A. H. (2006). Inorg. Chim. Acta, 359, 64–80.  Web of Science CSD CrossRef CAS Google Scholar
First citationJin, Q. H., Chen, L. M., Li, P. Z., Deng, S. F. & Wang, R. (2009). Inorg. Chim. Acta, 362, 5224–5230.  Web of Science CSD CrossRef CAS Google Scholar
First citationSaravanabharathi, D., Monika, Venugopalan, P. & Samuelson, A.G. (2002). Polyhedron, 21, 2433–2443.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSivasankar, C., Nethaji, M. & Samuelson, A. G. (2004). Inorg. Chim. Commun. 7, 238–240.  Web of Science CSD CrossRef CAS Google Scholar
First citationSong, L., Lin, P., Li, Z. H., Li, J. R., Du, S. W. & Wu, X. T. (2007). Polyhedron, 26, 1199–1204.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds