organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(3,4,5-Trimeth­­oxy­phen­yl)-1,3,4-oxa­diazole-2(3H)-thione

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, bDepartment of Chemistry, Islamia University Bhawalpur, Pakistan, and cInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: aamersaeed@yahoo.com

(Received 22 June 2010; accepted 25 June 2010; online 3 July 2010)

The two rings in the title compound, C11H12N2O4S, are roughly coplanar [dihedral angle = 6.77 (8)°]. Whereas the two outer methyl groups of the three meth­oxy groups are almost coplanar with the aromatic ring to which they are attached [C—C—O—C torsion angles = 8.5 (3) and −8.3 (3)°], the methyl group of the central meth­oxy substituent is not [C—C—C—C = −78.4 (3)°]. The crystal packing is stabilized by N—H⋯O hydrogen bonding.

Related literature

For background to the use of 1,3,4-oxadiazo­les, see: Erden et al. (2005[Erden, S. S., Ozpunar, G. A. & Sacan, M. T. (2005). J. Mol. Struct. 726, 233-237.]); Smicius et al. (2002[Smicius, R., Jakubkiene, V., Burduliene, M. M. & Vainilavicius, P. (2002). Monatsh. Chem. 133, 173-176.]); Dutta & Kataky (1992[Dutta, M. M. & Kataky, J. C. S. (1992). J. Indian Chem. Soc. 69, 107-110.]). For details of the biological activity of 1,3,4-oxadiazo­les, see: Chen, et al. (2000[Chen, H., Li, Z. & Han, Y. (2000). J. Agric. Food Chem. 48, 5312-5316.]); Mehuskiene, et al. (2003[Mehuskiene, G., Burbuliene, M. M., Jahubkiene, V., Udrenaite, E., Gaidelis, P. & Vainilarcicius, P. (2003). Chem. Heterocycl. Compd, 39, 1364-1368.]); El-Emam et al. (2004[El-Emam, A. A., Al-Deeb, A. O., Al-Omar, M. & Lehmann, J. (2004). J. Bioorg. Med. Chem. 12, 5107-5110.]); Krasovshii et al. (2000[Krasovshii, A. N., Bulgakov, A. K., Andurhko, A. P., Krarovshu, I. A., Dyachenk, A. M., Bohun, A. A., Kravchenko, N. A. & Demchenko, A. M. (2000). Pharm. Chem. J. 34, 13-16.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12N2O4S

  • Mr = 268.29

  • Monoclinic, P 21 /n

  • a = 12.506 (2) Å

  • b = 7.1577 (7) Å

  • c = 13.451 (2) Å

  • β = 96.558 (12)°

  • V = 1196.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 173 K

  • 0.37 × 0.33 × 0.32 mm

Data collection
  • Stoe IPDS II two-circle diffractometer

  • Absorption correction: multi-scan (MULABS; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.904, Tmax = 0.916

  • 7121 measured reflections

  • 2235 independent reflections

  • 1679 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.112

  • S = 0.94

  • 2235 reflections

  • 171 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O17i 0.90 (3) 2.06 (3) 2.881 (2) 151 (2)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Substituted 1,3,4-oxadiazoles attract interest in materials science due to their important applications in industrial, agricultural and polymer chemistry (Erden et al., 2005, Smicius et al., 2002, Dutta & Kataky, 1992) and their wide range of biological activities, such as bactericidal, anti-inflammatory, antiviral, antimicrobial, tuberculostatic, anti convulsive and fungicidal activities (Chen et al., 2000; Mehuskiene et al., 2003; El-Emam et al., 2004; Krasovshii et al., 2000). The title compound was prepared by refluxing 3,4,5-trimethoxybenzohydrazide and potassium hydroxide with carbon disulfide in ethanol.

The two rings in the title compound, C11H12N2O4S, are coplanar [dihedral angle = 6.77 (8) °]. Whereas the two outer methyl groups of the three methoxy groups are coplanar with the aromatic ring to which they are attached [C—C—O—C torsion angles = 8.5 (3) and -8.3 (3) °], the methyl group of the central methoxy substituent is not [C—C—C—C = -78.4 (3) °]. The crystal packing is stabilized by N—H···O hydrogen bonding.

Related literature top

For background to the use of 1,3,4-oxadiazoles, see: Erden et al. (2005); Smicius et al. (2002); Dutta & Kataky (1992). For details of the biological activity of 1,3,4-oxadiazoles, see: Chen, et al. (2000); Mehuskiene, et al. (2003); El-Emam et al. (2004); Krasovshii et al. (2000).

Experimental top

A mixture of 3,4,5-trimethoxybenzohydrazide (0.03 mol) and potassium hydroxide (0.03 mol) was dissolved in ethanol, followed by addition of carbon disulfide (0.08 mol) drop wise under stirring. The reaction mixture was heated under reflux for 14 h. After completion of reaction as indicated by TLC, the reaction mixture was concentrated and residue was dissolved in H2O, filtered and acidified with dilute hydrochloric acid (pH = 2–3). The resulting precipitate was filtered and recrystallized from ethanol to give crystalline solid in 82% yield; m.p. = 453–455 K. IR (KBr, cm-1), 3227–3012 (NH), 2939 (Ar—CH), 1581 (Cδb N), 1503, 1454, 1447 (Cδb C, aromatic), 1359 (CS), 1233–1163 (C—O—C).

Refinement top

H atoms were located in a difference Fourier map. The H atom bonded to N was freely refined. The H atoms bonded to C were refined using a riding model with isotropic displacement parameters Uiso(H) set to 1.2Ueq(C) and with C—H = 0.95 Å or Uiso(H) set to 1.5Ueq(Cmethyl) and with C—H = 0.98 Å. The methyl groups were allowed to rotate but not to tip.

Structure description top

Substituted 1,3,4-oxadiazoles attract interest in materials science due to their important applications in industrial, agricultural and polymer chemistry (Erden et al., 2005, Smicius et al., 2002, Dutta & Kataky, 1992) and their wide range of biological activities, such as bactericidal, anti-inflammatory, antiviral, antimicrobial, tuberculostatic, anti convulsive and fungicidal activities (Chen et al., 2000; Mehuskiene et al., 2003; El-Emam et al., 2004; Krasovshii et al., 2000). The title compound was prepared by refluxing 3,4,5-trimethoxybenzohydrazide and potassium hydroxide with carbon disulfide in ethanol.

The two rings in the title compound, C11H12N2O4S, are coplanar [dihedral angle = 6.77 (8) °]. Whereas the two outer methyl groups of the three methoxy groups are coplanar with the aromatic ring to which they are attached [C—C—O—C torsion angles = 8.5 (3) and -8.3 (3) °], the methyl group of the central methoxy substituent is not [C—C—C—C = -78.4 (3) °]. The crystal packing is stabilized by N—H···O hydrogen bonding.

For background to the use of 1,3,4-oxadiazoles, see: Erden et al. (2005); Smicius et al. (2002); Dutta & Kataky (1992). For details of the biological activity of 1,3,4-oxadiazoles, see: Chen, et al. (2000); Mehuskiene, et al. (2003); El-Emam et al. (2004); Krasovshii et al. (2000).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of title compound. Displacement ellipsoids are drawn at the 50% probability level.
5-(3,4,5-Trimethoxyphenyl)-1,3,4-oxadiazole-2(3H)-thione top
Crystal data top
C11H12N2O4SF(000) = 560
Mr = 268.29Dx = 1.490 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5950 reflections
a = 12.506 (2) Åθ = 3.6–25.9°
b = 7.1577 (7) ŵ = 0.28 mm1
c = 13.451 (2) ÅT = 173 K
β = 96.558 (12)°Block, colourless
V = 1196.2 (3) Å30.37 × 0.33 × 0.32 mm
Z = 4
Data collection top
Stoe IPDS II two-circle
diffractometer
2235 independent reflections
Radiation source: fine-focus sealed tube1679 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
ω scansθmax = 25.7°, θmin = 3.5°
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
h = 1215
Tmin = 0.904, Tmax = 0.916k = 78
7121 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0699P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max < 0.001
2235 reflectionsΔρmax = 0.45 e Å3
171 parametersΔρmin = 0.27 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.024 (3)
Crystal data top
C11H12N2O4SV = 1196.2 (3) Å3
Mr = 268.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.506 (2) ŵ = 0.28 mm1
b = 7.1577 (7) ÅT = 173 K
c = 13.451 (2) Å0.37 × 0.33 × 0.32 mm
β = 96.558 (12)°
Data collection top
Stoe IPDS II two-circle
diffractometer
2235 independent reflections
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
1679 reflections with I > 2σ(I)
Tmin = 0.904, Tmax = 0.916Rint = 0.075
7121 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 0.94Δρmax = 0.45 e Å3
2235 reflectionsΔρmin = 0.27 e Å3
171 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.40007 (5)0.10396 (10)0.11859 (4)0.0358 (2)
O10.40507 (12)0.1537 (2)0.31509 (9)0.0258 (4)
C10.45909 (18)0.1504 (3)0.23147 (14)0.0260 (5)
N10.56078 (16)0.1912 (3)0.26552 (13)0.0278 (4)
H10.619 (2)0.211 (4)0.233 (2)0.040 (7)*
N20.57512 (15)0.2258 (3)0.36818 (12)0.0273 (4)
C20.48040 (17)0.2018 (3)0.39406 (14)0.0234 (5)
C110.44138 (17)0.2288 (3)0.49170 (14)0.0232 (5)
C120.33315 (17)0.2074 (3)0.49941 (14)0.0248 (5)
H120.28540.17020.44280.030*
C130.29410 (17)0.2409 (3)0.59106 (14)0.0234 (5)
C140.36466 (18)0.3006 (3)0.67290 (14)0.0238 (5)
C150.47369 (17)0.3228 (3)0.66338 (14)0.0239 (5)
C160.51427 (18)0.2840 (3)0.57291 (14)0.0246 (5)
H160.58900.29480.56690.030*
O170.18925 (12)0.2223 (2)0.60687 (10)0.0289 (4)
O180.32183 (13)0.3468 (2)0.75958 (10)0.0288 (4)
O190.53524 (12)0.3899 (2)0.74645 (10)0.0307 (4)
C170.11725 (18)0.1399 (4)0.52800 (16)0.0336 (6)
H17A0.10790.22520.47070.050*
H17B0.04730.11690.55200.050*
H17C0.14740.02150.50750.050*
C180.34058 (19)0.2114 (4)0.83861 (15)0.0328 (6)
H18A0.31030.09070.81530.049*
H18B0.30610.25310.89660.049*
H18C0.41820.19800.85780.049*
C190.64872 (18)0.3968 (4)0.74341 (16)0.0335 (6)
H19A0.67680.26960.73930.050*
H19B0.68300.45750.80420.050*
H19C0.66440.46820.68460.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0358 (4)0.0522 (4)0.0195 (3)0.0034 (3)0.0042 (2)0.0050 (2)
O10.0240 (8)0.0374 (10)0.0168 (7)0.0006 (7)0.0050 (5)0.0010 (6)
C10.0267 (12)0.0313 (13)0.0212 (10)0.0023 (10)0.0076 (8)0.0022 (8)
N10.0250 (10)0.0401 (12)0.0196 (8)0.0001 (9)0.0086 (7)0.0011 (8)
N20.0262 (10)0.0376 (12)0.0186 (8)0.0003 (8)0.0050 (7)0.0000 (7)
C20.0231 (11)0.0263 (12)0.0208 (9)0.0004 (9)0.0018 (8)0.0015 (8)
C110.0273 (11)0.0243 (12)0.0186 (9)0.0029 (9)0.0051 (8)0.0017 (8)
C120.0249 (11)0.0317 (13)0.0179 (9)0.0018 (10)0.0021 (8)0.0004 (8)
C130.0218 (11)0.0284 (12)0.0203 (10)0.0009 (9)0.0037 (8)0.0013 (8)
C140.0281 (12)0.0278 (12)0.0161 (9)0.0046 (9)0.0046 (8)0.0004 (8)
C150.0252 (11)0.0265 (11)0.0190 (9)0.0027 (9)0.0012 (8)0.0010 (8)
C160.0213 (11)0.0289 (13)0.0239 (10)0.0018 (9)0.0038 (8)0.0021 (8)
O170.0209 (8)0.0453 (10)0.0212 (7)0.0042 (7)0.0053 (6)0.0041 (6)
O180.0321 (9)0.0370 (10)0.0183 (7)0.0087 (7)0.0064 (6)0.0004 (6)
O190.0245 (8)0.0438 (10)0.0228 (7)0.0001 (7)0.0020 (6)0.0049 (6)
C170.0250 (12)0.0430 (16)0.0332 (12)0.0056 (11)0.0043 (9)0.0109 (10)
C180.0358 (13)0.0436 (15)0.0197 (10)0.0028 (11)0.0060 (9)0.0018 (9)
C190.0249 (12)0.0435 (15)0.0306 (11)0.0001 (11)0.0034 (9)0.0019 (10)
Geometric parameters (Å, º) top
S1—C11.645 (2)C15—O191.369 (2)
O1—C11.377 (2)C15—C161.399 (3)
O1—C21.381 (2)C16—H160.9500
C1—N11.334 (3)O17—C171.437 (3)
N1—N21.394 (2)O18—C181.438 (3)
N1—H10.90 (3)O19—C191.425 (3)
N2—C21.284 (3)C17—H17A0.9800
C2—C111.465 (3)C17—H17B0.9800
C11—C121.378 (3)C17—H17C0.9800
C11—C161.398 (3)C18—H18A0.9800
C12—C131.398 (3)C18—H18B0.9800
C12—H120.9500C18—H18C0.9800
C13—O171.359 (3)C19—H19A0.9800
C13—C141.397 (3)C19—H19B0.9800
C14—O181.378 (2)C19—H19C0.9800
C14—C151.393 (3)
C1—O1—C2106.11 (16)C14—C15—C16120.90 (18)
N1—C1—O1104.66 (17)C11—C16—C15117.8 (2)
N1—C1—S1132.15 (17)C11—C16—H16121.1
O1—C1—S1123.19 (17)C15—C16—H16121.1
C1—N1—N2112.87 (18)C13—O17—C17117.32 (16)
C1—N1—H1131.5 (16)C14—O18—C18114.68 (17)
N2—N1—H1115.3 (16)C15—O19—C19117.23 (17)
C2—N2—N1103.10 (17)O17—C17—H17A109.5
N2—C2—O1113.23 (17)O17—C17—H17B109.5
N2—C2—C11129.62 (18)H17A—C17—H17B109.5
O1—C2—C11117.04 (18)O17—C17—H17C109.5
C12—C11—C16122.09 (18)H17A—C17—H17C109.5
C12—C11—C2118.92 (18)H17B—C17—H17C109.5
C16—C11—C2118.92 (19)O18—C18—H18A109.5
C11—C12—C13119.51 (18)O18—C18—H18B109.5
C11—C12—H12120.2H18A—C18—H18B109.5
C13—C12—H12120.2O18—C18—H18C109.5
O17—C13—C14116.15 (18)H18A—C18—H18C109.5
O17—C13—C12124.19 (18)H18B—C18—H18C109.5
C14—C13—C12119.6 (2)O19—C19—H19A109.5
O18—C14—C15121.99 (18)O19—C19—H19B109.5
O18—C14—C13117.95 (19)H19A—C19—H19B109.5
C15—C14—C13119.95 (18)O19—C19—H19C109.5
O19—C15—C14115.45 (18)H19A—C19—H19C109.5
O19—C15—C16123.6 (2)H19B—C19—H19C109.5
C2—O1—C1—N11.4 (2)C12—C13—C14—O18174.8 (2)
C2—O1—C1—S1178.55 (17)O17—C13—C14—C15179.80 (19)
O1—C1—N1—N21.4 (3)C12—C13—C14—C151.3 (3)
S1—C1—N1—N2178.49 (19)O18—C14—C15—O191.2 (3)
C1—N1—N2—C20.9 (3)C13—C14—C15—O19177.2 (2)
N1—N2—C2—O10.1 (2)O18—C14—C15—C16176.7 (2)
N1—N2—C2—C11175.9 (2)C13—C14—C15—C160.7 (3)
C1—O1—C2—N20.9 (2)C12—C11—C16—C151.8 (3)
C1—O1—C2—C11175.60 (19)C2—C11—C16—C15175.1 (2)
N2—C2—C11—C12175.1 (2)O19—C15—C16—C11175.5 (2)
O1—C2—C11—C120.8 (3)C14—C15—C16—C112.2 (3)
N2—C2—C11—C161.9 (4)C14—C13—O17—C17172.7 (2)
O1—C2—C11—C16177.8 (2)C12—C13—O17—C178.5 (3)
C16—C11—C12—C130.2 (3)C15—C14—O18—C1878.4 (3)
C2—C11—C12—C13177.1 (2)C13—C14—O18—C18105.6 (2)
C11—C12—C13—O17179.4 (2)C14—C15—O19—C19173.8 (2)
C11—C12—C13—C141.8 (3)C16—C15—O19—C198.3 (3)
O17—C13—C14—O184.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O17i0.90 (3)2.06 (3)2.881 (2)151 (2)
Symmetry code: (i) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC11H12N2O4S
Mr268.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)12.506 (2), 7.1577 (7), 13.451 (2)
β (°) 96.558 (12)
V3)1196.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.37 × 0.33 × 0.32
Data collection
DiffractometerStoe IPDS II two-circle
Absorption correctionMulti-scan
(MULABS; Spek, 2009; Blessing, 1995)
Tmin, Tmax0.904, 0.916
No. of measured, independent and
observed [I > 2σ(I)] reflections
7121, 2235, 1679
Rint0.075
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.112, 0.94
No. of reflections2235
No. of parameters171
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.27

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O17i0.90 (3)2.06 (3)2.881 (2)151 (2)
Symmetry code: (i) x+1/2, y+1/2, z1/2.
 

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChen, H., Li, Z. & Han, Y. (2000). J. Agric. Food Chem. 48, 5312–5316.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDutta, M. M. & Kataky, J. C. S. (1992). J. Indian Chem. Soc. 69, 107–110.  CAS Google Scholar
First citationEl-Emam, A. A., Al-Deeb, A. O., Al-Omar, M. & Lehmann, J. (2004). J. Bioorg. Med. Chem. 12, 5107–5110.  Web of Science CrossRef CAS Google Scholar
First citationErden, S. S., Ozpunar, G. A. & Sacan, M. T. (2005). J. Mol. Struct. 726, 233–237.  Google Scholar
First citationKrasovshii, A. N., Bulgakov, A. K., Andurhko, A. P., Krarovshu, I. A., Dyachenk, A. M., Bohun, A. A., Kravchenko, N. A. & Demchenko, A. M. (2000). Pharm. Chem. J. 34, 13–16.  Google Scholar
First citationMehuskiene, G., Burbuliene, M. M., Jahubkiene, V., Udrenaite, E., Gaidelis, P. & Vainilarcicius, P. (2003). Chem. Heterocycl. Compd, 39, 1364–1368.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmicius, R., Jakubkiene, V., Burduliene, M. M. & Vainilavicius, P. (2002). Monatsh. Chem. 133, 173–176.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds