organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Guanidinium phenyl­arsonate–guanidine–water (1/1/2)

aFaculty of Science and Technology, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au

(Received 24 June 2010; accepted 25 June 2010; online 3 July 2010)

In the structure of the title compound, CH6N3+·C6H6AsO3·CH5N3·2H2O, the phenyl­arsonate anion participates in two R22(8) cyclic hydrogen-bonding inter­actions, one with a guanidinium cation, the other with a guanidine mol­ecule. The anions are also bridged by the water mol­ecules, one of which completes a cyclic R53(9) hydrogen-bonding association with the guanidinum cation, conjoint with one of the three R22(8) associations about that ion, as well as forming an R21(6) cyclic association with the guanidine mol­ecule. The result is a three-dimensional framework structure.

Related literature

For chemical data on phenyl­arsonic acid, see: O'Neil (2001[O'Neil, M. J. (2001). The Merck Index, 13th ed., p. 183. Whitehouse Station, New Jersey: Merck & Co.]). For related guanidinium structures, see: Smith et al. (2001[Smith, G., Bott, R. C. & Wermuth, U. D. (2001). Acta Cryst. E57, o640-o642.]); Smith & Wermuth (2010[Smith, G. & Wermuth, U. D. (2010). Acta Cryst. E66, o1946.]); Sun et al. (2002[Sun, Y.-Q., Zhang, J. & Yang, G.-Y. (2002). Acta Cryst. E58, o904-o906.]); Swift & Ward (1998[Swift, J. A. & Ward, M. D. (1998). Chem. Mater. 12, 1501-1504.]); Swift et al. (1998[Swift, J. A., Reynolds, A. M. & Ward, M. D. (1998). Chem. Mater. 10, 4159-4168.]); Mak & Xue (2000[Mak, T. C. W. & Xue, F. (2000). J. Am. Chem. Soc. 122, 9860-9861.]). For graph-set analysis, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • CH6N3+·C6H6AsO3·CH5N3·2H2O

  • Mr = 356.23

  • Monoclinic, C c

  • a = 18.6545 (14) Å

  • b = 7.6394 (3) Å

  • c = 12.6319 (10) Å

  • β = 121.856 (10)°

  • V = 1529.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.25 mm−1

  • T = 200 K

  • 0.27 × 0.25 × 0.20 mm

Data collection
  • Oxford Diffraction Gemini-S CCD-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.935, Tmax = 0.985

  • 4919 measured reflections

  • 2095 independent reflections

  • 1940 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.035

  • S = 0.96

  • 2095 reflections

  • 245 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 590 Friedel pairs

  • Flack parameter: 0.020 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H21⋯N3B 0.99 (6) 1.77 (6) 2.753 (5) 180 (6)
N1A—H11A⋯O3 0.85 (3) 2.06 (3) 2.903 (3) 173 (3)
N1A—H12A⋯O1i 0.90 (3) 2.05 (3) 2.943 (4) 172 (3)
N2A—H21A⋯O2i 0.80 (3) 2.08 (3) 2.867 (4) 167 (3)
N2A—H22A⋯O3ii 0.94 (3) 2.00 (3) 2.925 (4) 167 (3)
N3A—H31A⋯O2ii 0.82 (3) 2.32 (3) 3.132 (3) 179 (5)
N3A—H32A⋯O1 0.95 (2) 1.91 (2) 2.859 (4) 174 (2)
N1B—H11B⋯O2Wiii 0.89 (4) 2.34 (3) 3.151 (5) 151 (3)
N2B—H21B⋯O2Wiii 0.88 (5) 2.18 (5) 3.026 (5) 163 (4)
N2B—H22B⋯O3 0.93 (4) 2.10 (4) 3.002 (4) 165 (3)
N3B—H31B⋯O2Wiv 0.80 (3) 2.15 (3) 2.935 (5) 169 (4)
O1W—H11W⋯O3 0.95 (3) 1.81 (3) 2.737 (3) 167 (4)
O1W—H12W⋯O2v 0.88 (3) 1.85 (4) 2.715 (4) 168 (4)
O2W—H21W⋯O1i 0.78 (4) 1.93 (4) 2.701 (4) 171 (4)
O2W—H22W⋯O1W 0.78 (4) 2.01 (4) 2.673 (4) 143 (4)
Symmetry codes: (i) [x, -y+2, z+{\script{1\over 2}}]; (ii) x, y+1, z; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z-1]; (v) [x, -y+1, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The guanidinium cation has the capacity to form extended hydrogen-bonded structures through its six trigonally disposed H-donor sites. This ability is best illustrated in the host–guest clathrate structures with 4,4'-biphenyldisulfonate (Swift et al., 1998, Swift & Ward, 1998) or the supramolecular rosette ribbons with HCO3- and terephthalic acid (Mak & Xue, 2000). The hydrogen-bonded structures found in the guanidinium salts of carboxylic acids are largely three-dimensional and usually feature cyclic associations involving either two NH···Ocarboxyl links [graph set R22(8) (Etter et al., 1990)] or three-centre NH···O,O'carboxyl links [graph set R21(6)]. Some examples of the structures of the guanidinium salts of monocyclic aromatic acids are those with pyromellitic acid (Sun et al., 2002), 3,5-dinitrosalicylic acid (Smith et al., 2001) and phenylacetic acid (Smith & Wermuth, 2010). This last compound has both types of cation-anion interaction but shows an unusual one-dimensional columnar structure. The structure of the guanidinium salt of phenylarsonic acid [benzenearsonic acid (O'Neil, 2001)] has not been previously reported.

Our 2:1 stoichiometric reaction of phenylarsonic acid with guanidinium carbonate aqueous propan-2-ol gave large, high-quality crystals of the title compound, the adduct hydrate CH6N3+ C6H6AsO3-. CH5N3. 2H2O (I), the structure of which is reported here.

In (I) the phenylarsonate anion gives two R22(8) cyclic hydrogen-bonding interactions, one with a guanidinium cation (A), the other with a guanidine molecule (B), in which the second donor H atom is provided by the arsonate O–H group (Fig. 1). The anions are also bridged by the linked water molecules, one of which (O2W) completes a cyclic R53(9) hydrogen-bonding association with a guanidinum cation (Fig. 2) (Table 1). This ring is conjoint with one of the three R22(8) associations about the cation, whereas with the guanidine molecule there is one R22(8) and one R12(6) association, also with O2W. The overall result is a three-dimensional framework structure (Fig. 3).

It is notable that the As environment has a total of eight As–H contacts both inter- and intra-molecular with a range of 2.95 (3)–3.15 (3) Å. Also, one of the H atoms of the guanidine cation (H12B) has no feasibly situated acceptor atom.

Related literature top

For chemical data on phenylarsonic acid, see: O'Neil (2001). For related guanidinium structures, see: Smith et al. (2001); Smith & Wermuth (2010); Sun et al. (2002); Swift & Ward (1998); Swift et al. (1998); Mak & Xue (2000). For graph-set analysis, see: Etter et al. (1990).

Experimental top

The title compound was synthesized by heating together under reflux for 10 minutes, 1 mmol of phenylarsonic acid (benzenearsonic acid) and 0.5 mmol of guanidine carbonate in 50% aqueous propan-2-ol. After concentration to ca 30 ml, room temperature evaporation of the hot-filtered solution to moist dryness gave colourless plates of (I) (m.p. 505 K), from which a specimen suitable for X-ray analysis was cleaved.

Refinement top

Hydrogen atoms involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. The aromatic H atoms were included in the refinement in calculated positions (C–H = 0.93 Å) and treated as riding, with Uiso(H) = 1.2Ueq(C).

Structure description top

The guanidinium cation has the capacity to form extended hydrogen-bonded structures through its six trigonally disposed H-donor sites. This ability is best illustrated in the host–guest clathrate structures with 4,4'-biphenyldisulfonate (Swift et al., 1998, Swift & Ward, 1998) or the supramolecular rosette ribbons with HCO3- and terephthalic acid (Mak & Xue, 2000). The hydrogen-bonded structures found in the guanidinium salts of carboxylic acids are largely three-dimensional and usually feature cyclic associations involving either two NH···Ocarboxyl links [graph set R22(8) (Etter et al., 1990)] or three-centre NH···O,O'carboxyl links [graph set R21(6)]. Some examples of the structures of the guanidinium salts of monocyclic aromatic acids are those with pyromellitic acid (Sun et al., 2002), 3,5-dinitrosalicylic acid (Smith et al., 2001) and phenylacetic acid (Smith & Wermuth, 2010). This last compound has both types of cation-anion interaction but shows an unusual one-dimensional columnar structure. The structure of the guanidinium salt of phenylarsonic acid [benzenearsonic acid (O'Neil, 2001)] has not been previously reported.

Our 2:1 stoichiometric reaction of phenylarsonic acid with guanidinium carbonate aqueous propan-2-ol gave large, high-quality crystals of the title compound, the adduct hydrate CH6N3+ C6H6AsO3-. CH5N3. 2H2O (I), the structure of which is reported here.

In (I) the phenylarsonate anion gives two R22(8) cyclic hydrogen-bonding interactions, one with a guanidinium cation (A), the other with a guanidine molecule (B), in which the second donor H atom is provided by the arsonate O–H group (Fig. 1). The anions are also bridged by the linked water molecules, one of which (O2W) completes a cyclic R53(9) hydrogen-bonding association with a guanidinum cation (Fig. 2) (Table 1). This ring is conjoint with one of the three R22(8) associations about the cation, whereas with the guanidine molecule there is one R22(8) and one R12(6) association, also with O2W. The overall result is a three-dimensional framework structure (Fig. 3).

It is notable that the As environment has a total of eight As–H contacts both inter- and intra-molecular with a range of 2.95 (3)–3.15 (3) Å. Also, one of the H atoms of the guanidine cation (H12B) has no feasibly situated acceptor atom.

For chemical data on phenylarsonic acid, see: O'Neil (2001). For related guanidinium structures, see: Smith et al. (2001); Smith & Wermuth (2010); Sun et al. (2002); Swift & Ward (1998); Swift et al. (1998); Mak & Xue (2000). For graph-set analysis, see: Etter et al. (1990).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom naming scheme for the guanidinium cation (A and the guanidine molecule B), the phenylarsonate anion and the two water molecules of solvation in (I). Inter-species hydrogen bonds are shown as dashed lines. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. The hydrogen-bonding extensions of the basic asymmetric unit in the structure of (I), showing hydrogen-bonding associations as dashed lines. For symmetry codes, see Table 1.
[Figure 3] Fig. 3. The hydrogen-bonded framework structure of (I) viewed down the b axial direction of the unit cell, showing hydrogen-bonding associations as dashed lines. Non-associative hydrogen atoms are deleted.
Guanidinium phenylarsonate–guanidine–water (1/1/2) top
Crystal data top
CH6N3+·C6H6AsO3·CH5N3·2H2OF(000) = 736
Mr = 356.23Dx = 1.548 Mg m3
Monoclinic, CcMelting point: 505 K
Hall symbol: C -2ycMo Kα radiation, λ = 0.71073 Å
a = 18.6545 (14) ÅCell parameters from 3772 reflections
b = 7.6394 (3) Åθ = 3.1–28.7°
c = 12.6319 (10) ŵ = 2.25 mm1
β = 121.856 (10)°T = 200 K
V = 1529.0 (2) Å3Block, colourless
Z = 40.27 × 0.25 × 0.20 mm
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2095 independent reflections
Radiation source: Enhance (Mo) X-ray source1940 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 16.08 pixels mm-1θmax = 26.0°, θmin = 3.1°
ω scansh = 2221
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 99
Tmin = 0.935, Tmax = 0.985l = 1115
4919 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.035 w = 1/[σ2(Fo2) + (0.0159P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max = 0.002
2095 reflectionsΔρmax = 0.17 e Å3
245 parametersΔρmin = 0.22 e Å3
2 restraintsAbsolute structure: Flack (1983), 590 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.020 (7)
Crystal data top
CH6N3+·C6H6AsO3·CH5N3·2H2OV = 1529.0 (2) Å3
Mr = 356.23Z = 4
Monoclinic, CcMo Kα radiation
a = 18.6545 (14) ŵ = 2.25 mm1
b = 7.6394 (3) ÅT = 200 K
c = 12.6319 (10) Å0.27 × 0.25 × 0.20 mm
β = 121.856 (10)°
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2095 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1940 reflections with I > 2σ(I)
Tmin = 0.935, Tmax = 0.985Rint = 0.024
4919 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.019H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.035Δρmax = 0.17 e Å3
S = 0.96Δρmin = 0.22 e Å3
2095 reflectionsAbsolute structure: Flack (1983), 590 Friedel pairs
245 parametersAbsolute structure parameter: 0.020 (7)
2 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
As10.85472 (1)0.69726 (3)0.45636 (2)0.0162 (1)
O10.85598 (11)0.8928 (2)0.39683 (17)0.0220 (6)
O20.79876 (11)0.5495 (2)0.34181 (17)0.0223 (6)
O30.81253 (10)0.7081 (2)0.54592 (15)0.0209 (6)
C10.96902 (16)0.6103 (3)0.5496 (2)0.0214 (8)
C21.00375 (19)0.5330 (4)0.6658 (3)0.0312 (10)
C31.0834 (2)0.4638 (5)0.7248 (4)0.0393 (12)
C41.1311 (2)0.4729 (5)0.6705 (3)0.0388 (11)
C51.0978 (2)0.5496 (5)0.5556 (4)0.0423 (16)
C61.0164 (2)0.6166 (5)0.4950 (3)0.0326 (11)
N1A0.81112 (15)1.0554 (3)0.6380 (3)0.0214 (8)
N2A0.79667 (18)1.3549 (4)0.6207 (3)0.0253 (9)
N3A0.80233 (15)1.1956 (4)0.4697 (2)0.0259 (8)
C1A0.80313 (16)1.2018 (4)0.5759 (2)0.0185 (8)
N1B0.50840 (19)0.4864 (5)0.2386 (4)0.0452 (11)
N2B0.6296 (2)0.6056 (4)0.4032 (3)0.0391 (12)
N3B0.6265 (2)0.5171 (5)0.2284 (4)0.0391 (11)
C1B0.5899 (2)0.5383 (4)0.2899 (4)0.0301 (11)
O1W0.88312 (19)0.7021 (3)0.7987 (2)0.0416 (10)
O2W0.99736 (15)0.9183 (4)0.9723 (2)0.0421 (8)
H20.972700.528000.704100.0370*
H31.105600.410200.802000.0470*
H41.185600.427200.711700.0470*
H51.129600.556700.518600.0510*
H60.993500.666500.416400.0390*
H210.737 (3)0.538 (7)0.301 (4)0.042 (11)*
H11A0.8076 (16)0.956 (4)0.606 (3)0.036 (8)*
H12A0.823 (2)1.061 (4)0.717 (3)0.043 (10)*
H21A0.7921 (16)1.368 (4)0.680 (3)0.038 (7)*
H22A0.7998 (16)1.461 (4)0.585 (3)0.045 (8)*
H31A0.8017 (17)1.287 (4)0.436 (3)0.035 (8)*
H32A0.8159 (13)1.093 (3)0.441 (2)0.037 (6)*
H11B0.486 (2)0.501 (5)0.285 (3)0.048 (11)*
H12B0.480 (2)0.444 (5)0.166 (4)0.052 (12)*
H21B0.599 (2)0.613 (5)0.437 (4)0.053 (12)*
H22B0.683 (2)0.653 (4)0.436 (3)0.055 (9)*
H31B0.5958 (18)0.495 (4)0.156 (3)0.050 (9)*
H11W0.8672 (19)0.702 (4)0.714 (3)0.052 (9)*
H12W0.859 (2)0.610 (4)0.809 (3)0.046 (10)*
H21W0.960 (2)0.982 (5)0.954 (3)0.046 (12)*
H22W0.973 (2)0.830 (5)0.950 (4)0.048 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
As10.0201 (1)0.0152 (1)0.0153 (1)0.0004 (2)0.0107 (1)0.0003 (2)
O10.0286 (10)0.0189 (10)0.0231 (11)0.0003 (8)0.0167 (9)0.0020 (8)
O20.0206 (10)0.0247 (10)0.0215 (11)0.0028 (8)0.0111 (8)0.0049 (8)
O30.0278 (10)0.0226 (9)0.0174 (10)0.0002 (8)0.0155 (8)0.0031 (8)
C10.0212 (14)0.0191 (13)0.0205 (15)0.0008 (11)0.0087 (12)0.0026 (12)
C20.0302 (17)0.0396 (18)0.0248 (17)0.0038 (14)0.0153 (14)0.0063 (14)
C30.034 (2)0.051 (2)0.027 (2)0.0097 (18)0.0121 (17)0.0101 (18)
C40.0249 (19)0.051 (2)0.033 (2)0.0132 (17)0.0101 (15)0.0051 (18)
C50.026 (2)0.070 (3)0.039 (3)0.0116 (19)0.0226 (19)0.013 (2)
C60.0287 (19)0.0407 (19)0.0261 (18)0.0037 (15)0.0130 (14)0.0105 (16)
N1A0.0329 (14)0.0147 (12)0.0211 (14)0.0015 (10)0.0174 (12)0.0009 (11)
N2A0.0425 (18)0.0191 (15)0.0245 (16)0.0001 (12)0.0246 (14)0.0022 (12)
N3A0.0440 (15)0.0198 (12)0.0223 (13)0.0015 (12)0.0233 (11)0.0028 (12)
C1A0.0165 (13)0.0203 (14)0.0167 (14)0.0022 (12)0.0075 (11)0.0028 (13)
N1B0.0262 (17)0.061 (2)0.046 (2)0.0091 (14)0.0175 (16)0.0030 (17)
N2B0.027 (2)0.054 (2)0.032 (2)0.0023 (15)0.0127 (16)0.0048 (15)
N3B0.0340 (19)0.049 (2)0.031 (2)0.0045 (16)0.0150 (17)0.0104 (17)
C1B0.0252 (19)0.027 (2)0.034 (2)0.0006 (15)0.0128 (19)0.0063 (18)
O1W0.068 (2)0.0355 (17)0.0222 (14)0.0275 (14)0.0245 (14)0.0064 (13)
O2W0.0281 (13)0.0333 (14)0.0532 (16)0.0002 (12)0.0134 (12)0.0182 (13)
Geometric parameters (Å, º) top
As1—O11.6781 (17)N2B—C1B1.320 (5)
As1—O21.6921 (17)N3B—C1B1.287 (6)
As1—O31.687 (2)N1B—H11B0.89 (4)
As1—C11.930 (3)N1B—H12B0.85 (4)
O2—H210.99 (6)N2B—H21B0.88 (5)
O1W—H11W0.95 (3)N2B—H22B0.93 (4)
O1W—H12W0.88 (3)N3B—H31B0.80 (3)
O2W—H21W0.78 (4)C1—C21.385 (4)
O2W—H22W0.78 (4)C1—C61.379 (5)
N1A—C1A1.329 (4)C2—C31.369 (6)
N2A—C1A1.332 (4)C3—C41.383 (6)
N3A—C1A1.335 (3)C4—C51.373 (5)
N1A—H12A0.90 (3)C5—C61.388 (6)
N1A—H11A0.85 (3)C2—H20.9300
N2A—H21A0.80 (3)C3—H30.9300
N2A—H22A0.94 (3)C4—H40.9300
N3A—H31A0.82 (3)C5—H50.9300
N3A—H32A0.95 (2)C6—H60.9300
N1B—C1B1.360 (6)
As1···H11A3.16 (3)As1···H32A3.09 (2)
As1···H11W3.14 (3)As1···H12Wii3.02 (3)
As1···H22Ai2.95 (3)As1···H21Aiii3.08 (3)
As1···H22B3.09 (4)As1···H21Wiii3.15 (4)
O1—As1—O2111.03 (9)As1—C1—C6118.4 (2)
O1—As1—O3112.25 (9)C2—C1—C6118.7 (3)
O1—As1—C1107.92 (11)As1—C1—C2122.8 (3)
O2—As1—O3108.09 (10)C1—C2—C3120.5 (4)
O2—As1—C1106.05 (10)C2—C3—C4120.6 (4)
O3—As1—C1111.34 (10)C3—C4—C5119.7 (4)
As1—O2—H21122 (3)C4—C5—C6119.6 (4)
H11W—O1W—H12W107 (3)C1—C6—C5121.0 (3)
H21W—O2W—H22W100 (4)C3—C2—H2120.00
H11A—N1A—H12A119 (3)C1—C2—H2120.00
C1A—N1A—H11A121 (2)C2—C3—H3120.00
C1A—N1A—H12A120 (2)C4—C3—H3120.00
H21A—N2A—H22A114 (3)C5—C4—H4120.00
C1A—N2A—H21A126 (2)C3—C4—H4120.00
C1A—N2A—H22A121 (2)C6—C5—H5120.00
H31A—N3A—H32A116 (3)C4—C5—H5120.00
C1A—N3A—H32A123.2 (14)C5—C6—H6119.00
C1A—N3A—H31A119 (2)C1—C6—H6120.00
C1B—N1B—H11B117 (2)N2A—C1A—N3A120.2 (3)
H11B—N1B—H12B121 (4)N1A—C1A—N2A119.7 (3)
C1B—N1B—H12B122 (3)N1A—C1A—N3A120.1 (3)
C1B—N2B—H22B120 (2)N2B—C1B—N3B122.1 (4)
C1B—N2B—H21B115 (3)N1B—C1B—N2B118.5 (4)
H21B—N2B—H22B125 (4)N1B—C1B—N3B119.5 (4)
C1B—N3B—H31B115 (3)
O1—As1—C1—C2136.3 (2)C6—C1—C2—C30.2 (5)
O1—As1—C1—C647.5 (2)As1—C1—C6—C5177.4 (3)
O2—As1—C1—C2104.7 (2)C2—C1—C6—C51.0 (5)
O2—As1—C1—C671.6 (2)C1—C2—C3—C41.3 (5)
O3—As1—C1—C212.7 (2)C2—C3—C4—C51.0 (6)
O3—As1—C1—C6171.1 (2)C3—C4—C5—C60.3 (6)
As1—C1—C2—C3176.0 (3)C4—C5—C6—C11.3 (6)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z1/2; (iii) x, y+2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H21···N3B0.99 (6)1.77 (6)2.753 (5)180 (6)
N1A—H11A···O30.85 (3)2.06 (3)2.903 (3)173 (3)
N1A—H12A···O1iv0.90 (3)2.05 (3)2.943 (4)172 (3)
N2A—H21A···O2iv0.80 (3)2.08 (3)2.867 (4)167 (3)
N2A—H22A···O3v0.94 (3)2.00 (3)2.925 (4)167 (3)
N3A—H31A···O2v0.82 (3)2.32 (3)3.132 (3)179 (5)
N3A—H32A···O10.95 (2)1.91 (2)2.859 (4)174 (2)
N1B—H11B···O2Wvi0.89 (4)2.34 (3)3.151 (5)151 (3)
N2B—H21B···O2Wvi0.88 (5)2.18 (5)3.026 (5)163 (4)
N2B—H22B···O30.93 (4)2.10 (4)3.002 (4)165 (3)
N3B—H31B···O2Wvii0.80 (3)2.15 (3)2.935 (5)169 (4)
O1W—H11W···O30.95 (3)1.81 (3)2.737 (3)167 (4)
O1W—H12W···O2viii0.88 (3)1.85 (4)2.715 (4)168 (4)
O2W—H21W···O1iv0.78 (4)1.93 (4)2.701 (4)171 (4)
O2W—H22W···O1W0.78 (4)2.01 (4)2.673 (4)143 (4)
Symmetry codes: (iv) x, y+2, z+1/2; (v) x, y+1, z; (vi) x1/2, y+3/2, z1/2; (vii) x1/2, y1/2, z1; (viii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaCH6N3+·C6H6AsO3·CH5N3·2H2O
Mr356.23
Crystal system, space groupMonoclinic, Cc
Temperature (K)200
a, b, c (Å)18.6545 (14), 7.6394 (3), 12.6319 (10)
β (°) 121.856 (10)
V3)1529.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.25
Crystal size (mm)0.27 × 0.25 × 0.20
Data collection
DiffractometerOxford Diffraction Gemini-S CCD-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.935, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
4919, 2095, 1940
Rint0.024
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.035, 0.96
No. of reflections2095
No. of parameters245
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.22
Absolute structureFlack (1983), 590 Friedel pairs
Absolute structure parameter0.020 (7)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H21···N3B0.99 (6)1.77 (6)2.753 (5)180 (6)
N1A—H11A···O30.85 (3)2.06 (3)2.903 (3)173 (3)
N1A—H12A···O1i0.90 (3)2.05 (3)2.943 (4)172 (3)
N2A—H21A···O2i0.80 (3)2.08 (3)2.867 (4)167 (3)
N2A—H22A···O3ii0.94 (3)2.00 (3)2.925 (4)167 (3)
N3A—H31A···O2ii0.82 (3)2.32 (3)3.132 (3)179 (5)
N3A—H32A···O10.95 (2)1.91 (2)2.859 (4)174 (2)
N1B—H11B···O2Wiii0.89 (4)2.34 (3)3.151 (5)151 (3)
N2B—H21B···O2Wiii0.88 (5)2.18 (5)3.026 (5)163 (4)
N2B—H22B···O30.93 (4)2.10 (4)3.002 (4)165 (3)
N3B—H31B···O2Wiv0.80 (3)2.15 (3)2.935 (5)169 (4)
O1W—H11W···O30.95 (3)1.81 (3)2.737 (3)167 (4)
O1W—H12W···O2v0.88 (3)1.85 (4)2.715 (4)168 (4)
O2W—H21W···O1i0.78 (4)1.93 (4)2.701 (4)171 (4)
O2W—H22W···O1W0.78 (4)2.01 (4)2.673 (4)143 (4)
Symmetry codes: (i) x, y+2, z+1/2; (ii) x, y+1, z; (iii) x1/2, y+3/2, z1/2; (iv) x1/2, y1/2, z1; (v) x, y+1, z+1/2.
 

Acknowledgements

The authors acknowledge financial support from the Australian Research Council and the Faculty of Science and Technology, Queensland University of Technology.

References

First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMak, T. C. W. & Xue, F. (2000). J. Am. Chem. Soc. 122, 9860–9861.  Web of Science CSD CrossRef CAS Google Scholar
First citationO'Neil, M. J. (2001). The Merck Index, 13th ed., p. 183. Whitehouse Station, New Jersey: Merck & Co.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Bott, R. C. & Wermuth, U. D. (2001). Acta Cryst. E57, o640–o642.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2010). Acta Cryst. E66, o1946.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-Q., Zhang, J. & Yang, G.-Y. (2002). Acta Cryst. E58, o904–o906.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSwift, J. A., Reynolds, A. M. & Ward, M. D. (1998). Chem. Mater. 10, 4159–4168.  Web of Science CSD CrossRef CAS Google Scholar
First citationSwift, J. A. & Ward, M. D. (1998). Chem. Mater. 12, 1501–1504.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds