organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Chloro-6-(1H-pyrazol-1-yl)pyridazine

aDepartment of Chemistry, Islamia University, Bahawalpur, Pakistan, bApplied Chemistry Research Center, PCSIR Laboratories Complex, Lahore 54600, Pakistan, cDepartment of Physics, University of Sargodha, Sargodha, Pakistan, dInstitute of Chemistry, University of the Punjab, Lahore, Pakistan, and eInstituto de Quimica, Universidade Estadual de Londrina, Londrina, Pr., Brazil
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 20 June 2010; accepted 8 July 2010; online 14 July 2010)

The title compound, C7H5ClN4, is almost planar (r.m.s. deviation = 0.022 Å). The dihedral angle between the aromatic rings is 2.82 (5)°. The packing results in polymeric chains extending along the a axis. In the crystal, mol­ecules are connected to each other through inter­molecular C—H⋯N hydrogen bonds, resulting in R22(10) ring motifs.

Related literature

For related structures, see: Ather et al. (2009[Ather, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2009). Acta Cryst. E65, o1628.], 2010a[Ather, A. Q., Şahin, O., Khan, I. U., Khan, M. A. & Büyükgüngör, O. (2010a). Acta Cryst. E66, o1295.],b[Ather, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2010b). Acta Cryst. E66, o1327.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C7H5ClN4

  • Mr = 180.60

  • Triclinic, [P \overline 1]

  • a = 5.684 (3) Å

  • b = 6.526 (3) Å

  • c = 11.130 (6) Å

  • α = 83.00 (3)°

  • β = 77.64 (2)°

  • γ = 88.04 (3)°

  • V = 400.2 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 296 K

  • 0.30 × 0.14 × 0.14 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.982, Tmax = 0.988

  • 5550 measured reflections

  • 1422 independent reflections

  • 774 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.154

  • S = 1.08

  • 1422 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N2i 0.93 2.46 3.321 (6) 154
C5—H5⋯N4ii 0.93 2.55 3.468 (7) 169
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound (I, Fig. 1) has been prepared as nucleous to synthesize a series of pyrazolylpyridazine derivatives. In this context, we have already reported some compounds (Ather et al., 2009, 2010a, 2010b).

The title compound is essentially planar. The r. m. s. deviation of all heavy atoms from the mean square plane is 0.0223 Å. The angle between the heterocyclic aromatic rings is 2.82 (5)°. Each molecule is connected to the adjacent molecules through C—H···N intermolecular H-bonds (Table 1, Fig. 2) and R22(10) ring motifs (Bernstein et al., 1995) are formed. In this way the packing forms one dimensional polymeric chains extending along the crystallographic a axis.

Related literature top

For related structures, see: Ather et al. (2009, 2010a,b). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

3-Chloro-6-hydrazinylpyridazine (0.5 g, 3.46 mmol) was dissolved in ethanol (15 ml) and malon dialdehyde bis-(diethylacetal) (0.327 g, 3.46 mmol) was added dropwise under continuous stirring. Few drops of acetic acid were also added in the reaction mixture as catalyst and the solution was refluxed for 2 h. The reaction was monitored by TLC. After completion, the reaction mixture was precipitated by adding water. The filtered precipitate was dried and colorless needles of (I) appeared on the walls of the beaker due to evaporation.

Refinement top

Although all H-atoms appear in the difference Fourier map they were positioned geometrically (C–H = 0.93 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C).

Structure description top

The title compound (I, Fig. 1) has been prepared as nucleous to synthesize a series of pyrazolylpyridazine derivatives. In this context, we have already reported some compounds (Ather et al., 2009, 2010a, 2010b).

The title compound is essentially planar. The r. m. s. deviation of all heavy atoms from the mean square plane is 0.0223 Å. The angle between the heterocyclic aromatic rings is 2.82 (5)°. Each molecule is connected to the adjacent molecules through C—H···N intermolecular H-bonds (Table 1, Fig. 2) and R22(10) ring motifs (Bernstein et al., 1995) are formed. In this way the packing forms one dimensional polymeric chains extending along the crystallographic a axis.

For related structures, see: Ather et al. (2009, 2010a,b). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Packing diagram of the title compound (PLATON: Spek, 2009) showing that the molecules form polymeric chains extending along the a axis.
3-Chloro-6-(1H-pyrazol-1-yl)pyridazine top
Crystal data top
C7H5ClN4Z = 2
Mr = 180.60F(000) = 184
Triclinic, P1Dx = 1.499 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.684 (3) ÅCell parameters from 774 reflections
b = 6.526 (3) Åθ = 3.2–25.1°
c = 11.130 (6) ŵ = 0.42 mm1
α = 83.00 (3)°T = 296 K
β = 77.64 (2)°Needle, colourless
γ = 88.04 (3)°0.30 × 0.14 × 0.14 mm
V = 400.2 (4) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1422 independent reflections
Radiation source: fine-focus sealed tube774 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
Detector resolution: 8.20 pixels mm-1θmax = 25.1°, θmin = 3.2°
ω scansh = 66
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 77
Tmin = 0.982, Tmax = 0.988l = 1313
5550 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0381P)2 + 0.276P]
where P = (Fo2 + 2Fc2)/3
1422 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C7H5ClN4γ = 88.04 (3)°
Mr = 180.60V = 400.2 (4) Å3
Triclinic, P1Z = 2
a = 5.684 (3) ÅMo Kα radiation
b = 6.526 (3) ŵ = 0.42 mm1
c = 11.130 (6) ÅT = 296 K
α = 83.00 (3)°0.30 × 0.14 × 0.14 mm
β = 77.64 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1422 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
774 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.988Rint = 0.071
5550 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.08Δρmax = 0.22 e Å3
1422 reflectionsΔρmin = 0.22 e Å3
109 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.0311 (2)0.6902 (2)0.86426 (11)0.0772 (6)
N10.0066 (6)0.7294 (6)0.6368 (3)0.0586 (14)
N20.0752 (6)0.7486 (6)0.5126 (3)0.0525 (14)
N30.3753 (6)0.7757 (5)0.3384 (3)0.0449 (14)
N40.6127 (6)0.7910 (6)0.2806 (3)0.0576 (16)
C10.1521 (8)0.7182 (7)0.7066 (4)0.0503 (17)
C20.4010 (7)0.7237 (7)0.6628 (4)0.0506 (17)
C30.4819 (7)0.7451 (6)0.5399 (4)0.0450 (16)
C40.3094 (7)0.7556 (6)0.4674 (4)0.0417 (16)
C50.2316 (9)0.7798 (8)0.2556 (4)0.0676 (19)
C60.3770 (10)0.7966 (9)0.1421 (5)0.078 (2)
C70.6095 (9)0.8042 (8)0.1617 (5)0.0701 (19)
H20.506430.712940.716720.0608*
H30.645640.752540.504600.0538*
H50.064400.772510.273660.0814*
H60.331120.802000.066460.0928*
H70.746720.817080.098570.0841*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0676 (9)0.1105 (13)0.0459 (8)0.0045 (8)0.0038 (6)0.0068 (7)
N10.040 (2)0.084 (3)0.047 (2)0.002 (2)0.0002 (19)0.005 (2)
N20.028 (2)0.076 (3)0.051 (2)0.0027 (17)0.0050 (16)0.003 (2)
N30.0321 (19)0.055 (3)0.044 (2)0.0020 (17)0.0012 (16)0.0033 (18)
N40.041 (2)0.076 (3)0.049 (3)0.0033 (19)0.0048 (17)0.005 (2)
C10.046 (3)0.061 (3)0.040 (3)0.004 (2)0.002 (2)0.009 (2)
C20.040 (3)0.060 (3)0.052 (3)0.001 (2)0.011 (2)0.005 (2)
C30.031 (2)0.049 (3)0.052 (3)0.0045 (19)0.004 (2)0.001 (2)
C40.039 (2)0.038 (3)0.046 (3)0.0016 (19)0.003 (2)0.008 (2)
C50.058 (3)0.097 (4)0.051 (3)0.002 (3)0.021 (3)0.004 (3)
C60.079 (4)0.104 (5)0.050 (3)0.009 (3)0.015 (3)0.006 (3)
C70.061 (3)0.089 (4)0.051 (3)0.008 (3)0.008 (2)0.005 (3)
Geometric parameters (Å, º) top
Cl1—C11.732 (5)C2—C31.338 (6)
N1—N21.353 (5)C3—C41.392 (6)
N1—C11.306 (6)C5—C61.348 (7)
N2—C41.319 (5)C6—C71.388 (8)
N3—N41.366 (5)C2—H20.9300
N3—C41.395 (5)C3—H30.9300
N3—C51.354 (6)C5—H50.9300
N4—C71.320 (6)C6—H60.9300
C1—C21.394 (6)C7—H70.9300
Cl1···Cl1i3.632 (3)C3···N2vi3.321 (6)
Cl1···H7ii2.9500C3···C3iv3.411 (6)
N1···C2iii3.318 (6)C3···C3v3.339 (6)
N1···C3iii3.305 (6)C3···C4iv3.442 (6)
N2···C3iii3.321 (6)C3···C4v3.491 (6)
N4···C2iv3.342 (6)C4···C3iv3.442 (6)
N4···C2v3.299 (6)C4···C3v3.491 (6)
N1···H2iii2.7200C7···H5vi3.0900
N1···H3iii2.7000H2···N1vi2.7200
N2···H3iii2.4600H3···N1vi2.7000
N2···H52.6600H3···N2vi2.4600
N4···H5vi2.5500H3···N42.5200
N4···H32.5200H5···N22.6600
C2···N1vi3.318 (6)H5···N4iii2.5500
C2···N4iv3.342 (6)H5···C7iii3.0900
C2···N4v3.299 (6)H7···Cl1vii2.9500
C3···N1vi3.305 (6)
N2—N1—C1117.9 (4)N3—C5—C6106.9 (5)
N1—N2—C4119.1 (3)C5—C6—C7105.7 (5)
N4—N3—C4120.1 (3)N4—C7—C6112.0 (5)
N4—N3—C5111.4 (3)C1—C2—H2121.00
C4—N3—C5128.5 (4)C3—C2—H2121.00
N3—N4—C7104.0 (4)C2—C3—H3122.00
Cl1—C1—N1114.7 (3)C4—C3—H3122.00
Cl1—C1—C2120.4 (3)N3—C5—H5126.00
N1—C1—C2124.9 (4)C6—C5—H5127.00
C1—C2—C3117.2 (4)C5—C6—H6127.00
C2—C3—C4116.9 (4)C7—C6—H6127.00
N2—C4—N3114.7 (4)N4—C7—H7124.00
N2—C4—C3124.0 (4)C6—C7—H7124.00
N3—C4—C3121.3 (4)
C1—N1—N2—C40.1 (6)N4—N3—C5—C60.4 (6)
N2—N1—C1—Cl1179.1 (3)C4—N3—C5—C6178.6 (4)
N2—N1—C1—C20.3 (7)N3—N4—C7—C60.3 (6)
N1—N2—C4—N3180.0 (4)Cl1—C1—C2—C3179.8 (3)
N1—N2—C4—C30.2 (6)N1—C1—C2—C31.0 (7)
C4—N3—N4—C7179.0 (4)C1—C2—C3—C41.3 (6)
C5—N3—N4—C70.0 (5)C2—C3—C4—N21.0 (6)
N4—N3—C4—N2178.0 (4)C2—C3—C4—N3179.3 (4)
N4—N3—C4—C31.7 (6)N3—C5—C6—C70.6 (6)
C5—N3—C4—N23.1 (6)C5—C6—C7—N40.6 (7)
C5—N3—C4—C3177.2 (4)
Symmetry codes: (i) x, y+1, z+2; (ii) x1, y, z+1; (iii) x1, y, z; (iv) x+1, y+1, z+1; (v) x+1, y+2, z+1; (vi) x+1, y, z; (vii) x+1, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N2vi0.93002.46003.321 (6)154.00
C5—H5···N4iii0.93002.55003.468 (7)169.00
Symmetry codes: (iii) x1, y, z; (vi) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC7H5ClN4
Mr180.60
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.684 (3), 6.526 (3), 11.130 (6)
α, β, γ (°)83.00 (3), 77.64 (2), 88.04 (3)
V3)400.2 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.30 × 0.14 × 0.14
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.982, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
5550, 1422, 774
Rint0.071
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.154, 1.08
No. of reflections1422
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.22

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N2i0.93002.46003.321 (6)154.00
C5—H5···N4ii0.93002.55003.468 (7)169.00
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationAther, A. Q., Şahin, O., Khan, I. U., Khan, M. A. & Büyükgüngör, O. (2010a). Acta Cryst. E66, o1295.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAther, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2009). Acta Cryst. E65, o1628.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAther, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2010b). Acta Cryst. E66, o1327.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds