organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Chloro­phen­yl)-4-hy­dr­oxy­piperidinium maleate maleic acid solvate

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Studies in Chemistry, V.V Puram College of Science, Bangalore 560 004, India, cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and dDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, 574 199, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 4 July 2010; accepted 7 July 2010; online 14 July 2010)

In the cation of the title compound, C11H15ClNO+·C4H3O4·C4H4O4, the dihedral angle between the mean planes of the chlorine-substituted aromatic ring and the 4-hy­droxy­piperidinium ring (C–C–C–C–C–N) is 61.9 (8)°. Intra­molecular O—H⋯O and inter­molecular O—H⋯O and N—H⋯O hydrogen bonding, as well as weak π-stacking inter­actions [centroid–centroid distance = 3.646 (5) Å] help to establish the packing.

Related literature

For the synthesis and biological activity of uncondensed cyclic derivatives of piperidine, see: Vartanyan (1984[Vartanyan, R. S. (1984). Pharm. Chem. J. 18, 736-749.]). For related structures, see: James & Williams (1974[James, M. N. G. & Williams, G. J. B. (1974). Acta Cryst. B30, 1249-1257.]); Bertolasi et al. (1980[Bertolasi, V., Borea, P. A., Gilli, G. & Sacerdoti, M. (1980). Acta Cryst. B36, 2287-2291.]); Dawson et al. (1986[Dawson, B. M., Katz, H. & Glusker, J. P. (1986). Acta Cryst. C42, 67-71.]); Vyas et al. (1999[Vyas, K., Moses Babu, J. & Om Reddy, G. (1999). Acta Cryst. C55, IUC9900104.]); Kiang et al. (2003[Kiang, Y. H., Huq, A., Stephens, P. W. & Xu, W. (2003). J. Pharm. Sci. 92, 1844-1853.]); Trask et al. (2005[Trask, A. V., Motherwell, S. W. D. & Jones, W. (2005). Cryst. Growth Des. 5, 1013-1021.]); Mohamed et al. (2009[Mohamed, S., Tocher, D. A., Vickers, M., Karamertzanis, P. G. & Price, S. L. (2009). Cryst. Growth Des. 9, 2881-2889.]); Dutkiewicz et al. (2010[Dutkiewicz, G., Siddaraju, B. P., Yathirajan, H. S., Siddegowda, M. S. & Kubicki, M. (2010). Acta Cryst. E66, o562.]); Fun et al. (2010[Fun, H.-K., Hemamalini, M., Siddaraju, B. P., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o682-o683.]); Jasinski et al. (2010[Jasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o366-o367.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C11H15ClNO+·C4H3O4·C4H4O4

  • Mr = 443.83

  • Monoclinic, C 2/c

  • a = 19.282 (7) Å

  • b = 7.867 (3) Å

  • c = 25.115 (9) Å

  • β = 91.545 (5)°

  • V = 3808 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 100 K

  • 0.52 × 0.41 × 0.39 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.878, Tmax = 0.907

  • 18187 measured reflections

  • 5841 independent reflections

  • 5194 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.092

  • S = 1.03

  • 5841 reflections

  • 292 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1C—H1C⋯O2Bi 0.82 1.97 2.7852 (13) 171
O1A—H2A⋯O1Bii 0.90 (2) 1.68 (2) 2.5546 (13) 162 (2)
N1C—H13C⋯O3Biii 0.890 (17) 1.954 (18) 2.8328 (14) 168.6 (16)
N1C—H14C⋯O2Aiv 0.887 (17) 2.087 (17) 2.9144 (15) 154.9 (15)
O4A—H1A⋯O3A 0.91 (2) 1.65 (2) 2.5531 (13) 173.7 (19)
O3B—H1B⋯O4B 1.18 (2) 1.23 (2) 2.4108 (12) 177 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x, y-1, z; (iv) [x, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

4-(4-Chlorophenyl)-4-hydroxypiperidine is used as an intermediate for the synthesis of pharmaceuticals such as haloperidol (a neuroleptic drug used to treat patients with psychotic illnesses, extreme agitation, or Tourette's syndrome) and loperamide which is a synthetic piperidine derivative and a drug effective against diarrhea resulting from gastroenteritis or inflammatory bowel disease. A review on the synthesis and biological activity of uncondensed cyclic derivatives of piperidine is reported (Vartanyan, 1984). A study of the structural chemistry of maleic acid and related substances arises from the fact that these systems possess short but highly strained hydrogen bonds (James & Williams, 1974). The crystal structures of maleic acid (James & Williams, 1974), carbinoxamine maleate (Bertolasi et al., 1980), [2-(2,2-dicyclohexylethyl) piperidine] maleate (Dawson et al., 1986), domeperidone maleate (Vyas et al., 1999), enalapril maleate (Kiang et al., 2003), 1:1 co-crystal of caffeine with maleic acid (Trask et al., 2005), 4-dimethylaminopyridinium maleate (Mohamed et al., 2009), 4-(4-chlorophenyl)piperidin-4-ol (Dutkiewicz et al., 2010), bis[4-(4-chlorophenyl)-4-hydroxypiperidinium] dipicrate dimethyl sulfoxide solvate (Fun et al., 2010) and trimipraminium maleate (Jasinski et al., 2010) have been reported. In view of the importance of salts of piperidines, this paper reports the crystal structure of the title compound, C11H15Cl N O+, C4H3O4-, C4H4O4.

The asymmetric unit of the title compound (Fig.1) contains one 4-(4-chlorophenyl)-4-hydroxypiperidinium cation, one maleate anion, and one maleic acid molecule. The protonated 4-hydroxypiperidinium cation is in a chair conformation (puckering parameters Q, θ, and φ = 0.576 (2) Å, 179.0 (8)° and 159.955 (0)°, respectively; (Cremer & Pople, 1975). For an ideal chair θ has a value of 0 or 180°). Bond distances and angles are in normal ranges (Allen et al., 1987). The dihedral angle between the mean planes of the piperidinium ring in the cation (C7C/C8C/C9C/C10C/C11C/N1C) and the benzene ring (C1—C6) is 61.9 (8)°. Strong intramolecular O—H···O and intermolecular O—H···O, N—H···O hydrogen bonding interactions (Table 1, Fig. 2) dominate the crystal packing which leads to the formation of chains along [010]. In addition, weak π-stacking intermolecular interactions occur between symmetry related benzene rings (Table 2) which also influence the crystal packing.

Related literature top

For the synthesis and biological activity of uncondensed cyclic derivatives of piperidine, see: Vartanyan, (1984). For a study of the structural chemistry of maleic acid and related substances, see: James & Williams (1974). For related structures, see: James & Williams (1974); Bertolasi et al. (1980); Dawson et al. (1986); Vyas et al. (1999); Kiang et al. (2003); Trask et al. (2005); Mohamed et al. (2009); Dutkiewicz et al. (2010); Fun et al. (2010); Jasinski et al. (2010). For bond-length data, see: Allen et al. (1987). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

4-(4-chlorophenyl)-piperidin-4-ol (2.2 g, 0.01 mol) and maleic acid (1.16 g, 0.01 mol) were dissolved in 20 ml of methanol. The mixture was stirred for 30 minutes at 333 K. Then the solution was kept aside for 3 days at room temperature. Yellow crystals were obtained (m.p: 381–383 K) by slow evaporation of methanol solution.

Refinement top

The hydroxyl H atoms, H1A, H2A, H1B, H1C and N H atoms, H13C, H14C, were located by a Fourier map. These H atoms and the rest of the H atoms were then positioned geometrically and allowed to ride on their parent atoms with X—H lengths of 0.91Å (O4A), 0.90Å (O1A), 1.18Å (O3B), 0.82Å (O1C), 0.89–0.89Å (N1C), 0.93Å (CH) or 0.97Å (CH2). Isotropic displacement parameters for these atoms were set to 1.4–3.5 times (OH), 1.8 times (NH), 1.20 (CH) or 1.2 (CH2) times Ueq of the parent atom.

Structure description top

4-(4-Chlorophenyl)-4-hydroxypiperidine is used as an intermediate for the synthesis of pharmaceuticals such as haloperidol (a neuroleptic drug used to treat patients with psychotic illnesses, extreme agitation, or Tourette's syndrome) and loperamide which is a synthetic piperidine derivative and a drug effective against diarrhea resulting from gastroenteritis or inflammatory bowel disease. A review on the synthesis and biological activity of uncondensed cyclic derivatives of piperidine is reported (Vartanyan, 1984). A study of the structural chemistry of maleic acid and related substances arises from the fact that these systems possess short but highly strained hydrogen bonds (James & Williams, 1974). The crystal structures of maleic acid (James & Williams, 1974), carbinoxamine maleate (Bertolasi et al., 1980), [2-(2,2-dicyclohexylethyl) piperidine] maleate (Dawson et al., 1986), domeperidone maleate (Vyas et al., 1999), enalapril maleate (Kiang et al., 2003), 1:1 co-crystal of caffeine with maleic acid (Trask et al., 2005), 4-dimethylaminopyridinium maleate (Mohamed et al., 2009), 4-(4-chlorophenyl)piperidin-4-ol (Dutkiewicz et al., 2010), bis[4-(4-chlorophenyl)-4-hydroxypiperidinium] dipicrate dimethyl sulfoxide solvate (Fun et al., 2010) and trimipraminium maleate (Jasinski et al., 2010) have been reported. In view of the importance of salts of piperidines, this paper reports the crystal structure of the title compound, C11H15Cl N O+, C4H3O4-, C4H4O4.

The asymmetric unit of the title compound (Fig.1) contains one 4-(4-chlorophenyl)-4-hydroxypiperidinium cation, one maleate anion, and one maleic acid molecule. The protonated 4-hydroxypiperidinium cation is in a chair conformation (puckering parameters Q, θ, and φ = 0.576 (2) Å, 179.0 (8)° and 159.955 (0)°, respectively; (Cremer & Pople, 1975). For an ideal chair θ has a value of 0 or 180°). Bond distances and angles are in normal ranges (Allen et al., 1987). The dihedral angle between the mean planes of the piperidinium ring in the cation (C7C/C8C/C9C/C10C/C11C/N1C) and the benzene ring (C1—C6) is 61.9 (8)°. Strong intramolecular O—H···O and intermolecular O—H···O, N—H···O hydrogen bonding interactions (Table 1, Fig. 2) dominate the crystal packing which leads to the formation of chains along [010]. In addition, weak π-stacking intermolecular interactions occur between symmetry related benzene rings (Table 2) which also influence the crystal packing.

For the synthesis and biological activity of uncondensed cyclic derivatives of piperidine, see: Vartanyan, (1984). For a study of the structural chemistry of maleic acid and related substances, see: James & Williams (1974). For related structures, see: James & Williams (1974); Bertolasi et al. (1980); Dawson et al. (1986); Vyas et al. (1999); Kiang et al. (2003); Trask et al. (2005); Mohamed et al. (2009); Dutkiewicz et al. (2010); Fun et al. (2010); Jasinski et al. (2010). For bond-length data, see: Allen et al. (1987). For puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structures of the C11H15ClNO+, C4H3O4- and C4H4O4 entities, showing the atom labeling scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound C11H15ClNO+, C4H3O4-, C4H4O4, viewed down [100].
4-(4-Chlorophenyl)-4-hydroxypiperidinium maleate maleic acid solvate top
Crystal data top
C11H15ClNO+·C4H3O4·C4H4O4F(000) = 1856
Mr = 443.83Dx = 1.548 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8484 reflections
a = 19.282 (7) Åθ = 2.6–31.3°
b = 7.867 (3) ŵ = 0.26 mm1
c = 25.115 (9) ÅT = 100 K
β = 91.545 (5)°Block, yellow
V = 3808 (2) Å30.52 × 0.41 × 0.39 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
5841 independent reflections
Radiation source: fine-focus sealed tube5194 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 31.3°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2727
Tmin = 0.878, Tmax = 0.907k = 1111
18187 measured reflectionsl = 3535
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0463P)2 + 3.2429P]
where P = (Fo2 + 2Fc2)/3
5841 reflections(Δ/σ)max = 0.001
292 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C11H15ClNO+·C4H3O4·C4H4O4V = 3808 (2) Å3
Mr = 443.83Z = 8
Monoclinic, C2/cMo Kα radiation
a = 19.282 (7) ŵ = 0.26 mm1
b = 7.867 (3) ÅT = 100 K
c = 25.115 (9) Å0.52 × 0.41 × 0.39 mm
β = 91.545 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
5841 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
5194 reflections with I > 2σ(I)
Tmin = 0.878, Tmax = 0.907Rint = 0.021
18187 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.48 e Å3
5841 reflectionsΔρmin = 0.23 e Å3
292 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.480203 (14)0.66435 (4)0.161617 (11)0.02088 (7)
O4B0.16691 (4)0.58804 (10)0.50337 (3)0.01619 (15)
O3B0.22900 (4)0.66101 (10)0.42453 (3)0.01604 (15)
C5B0.20779 (5)0.56565 (13)0.38519 (4)0.01359 (18)
C4B0.14848 (6)0.44620 (14)0.39300 (4)0.01543 (19)
H4B0.13530.38440.36280.019*
C2B0.11909 (5)0.47937 (13)0.49149 (4)0.01414 (19)
C3B0.11113 (6)0.41304 (14)0.43602 (4)0.01520 (19)
H3B0.07470.33710.43040.018*
O3A0.46151 (4)0.35880 (11)0.96021 (3)0.01793 (16)
C2A0.44308 (6)0.35385 (13)1.00654 (4)0.01452 (19)
C3A0.38419 (6)0.45056 (14)1.02827 (4)0.0163 (2)
H3A0.37660.43491.06440.020*
C5A0.33654 (6)0.61984 (14)0.94690 (4)0.01610 (19)
C4A0.34039 (6)0.55740 (14)1.00297 (4)0.0162 (2)
H4A0.30600.60071.02440.019*
O1A0.47414 (4)0.26101 (10)1.04317 (3)0.01712 (16)
O2A0.29197 (4)0.72438 (11)0.93499 (3)0.02023 (17)
O1B0.07936 (4)0.42630 (10)0.52580 (3)0.01788 (16)
O2B0.23403 (4)0.57247 (10)0.34108 (3)0.01693 (16)
C4C0.37887 (5)0.24201 (13)0.25343 (4)0.01180 (18)
C1C0.44091 (5)0.50191 (14)0.19706 (4)0.01430 (19)
C6C0.39980 (5)0.54258 (13)0.23944 (4)0.01428 (19)
H6C0.39280.65540.24900.017*
C5C0.36902 (5)0.41155 (13)0.26767 (4)0.01336 (18)
H5C0.34150.43740.29640.016*
C3C0.42116 (5)0.20613 (14)0.21058 (4)0.01490 (19)
H3C0.42870.09360.20100.018*
C2C0.45221 (6)0.33510 (14)0.18203 (4)0.0161 (2)
H2C0.48000.31000.15340.019*
O1C0.33643 (4)0.04881 (10)0.24944 (3)0.01551 (15)
H1C0.31220.02110.22350.023*
C10C0.39685 (5)0.03445 (13)0.32796 (4)0.01363 (18)
H10A0.43950.00370.31230.016*
H10B0.40800.12910.35140.016*
C8C0.27733 (5)0.14407 (13)0.30800 (4)0.01358 (18)
H8C10.28410.24270.33070.016*
H8C20.24440.17440.27970.016*
C7C0.34665 (5)0.09495 (13)0.28369 (4)0.01154 (17)
C9C0.36671 (5)0.10930 (14)0.36035 (4)0.01464 (19)
H9C10.35940.20830.33790.018*
H9C20.39890.14010.38910.018*
C11C0.24805 (5)0.00126 (14)0.34043 (4)0.01492 (19)
H11A0.20540.03480.35660.018*
H11B0.23740.09680.31720.018*
N1C0.29935 (5)0.05450 (12)0.38279 (3)0.01394 (17)
O4A0.38012 (5)0.56565 (12)0.91126 (3)0.02079 (17)
H13C0.2810 (9)0.142 (2)0.3999 (7)0.026 (4)*
H14C0.3072 (8)0.031 (2)0.4050 (7)0.024 (4)*
H1A0.4103 (10)0.490 (3)0.9264 (8)0.042 (5)*
H2A0.5113 (11)0.206 (3)1.0307 (8)0.049 (6)*
H1B0.1992 (12)0.629 (3)0.4638 (9)0.059 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01862 (13)0.02183 (14)0.02233 (13)0.00193 (9)0.00295 (9)0.01083 (10)
O4B0.0190 (4)0.0170 (4)0.0125 (3)0.0050 (3)0.0001 (3)0.0003 (3)
O3B0.0197 (4)0.0149 (4)0.0136 (3)0.0050 (3)0.0016 (3)0.0013 (3)
C5B0.0153 (4)0.0120 (4)0.0134 (4)0.0008 (3)0.0006 (3)0.0011 (3)
C4B0.0185 (5)0.0139 (5)0.0138 (4)0.0022 (4)0.0015 (4)0.0018 (3)
C2B0.0158 (5)0.0126 (4)0.0139 (4)0.0002 (4)0.0009 (3)0.0011 (3)
C3B0.0172 (5)0.0140 (5)0.0143 (4)0.0022 (4)0.0017 (4)0.0009 (3)
O3A0.0202 (4)0.0188 (4)0.0150 (3)0.0024 (3)0.0031 (3)0.0004 (3)
C2A0.0154 (5)0.0122 (4)0.0160 (4)0.0015 (3)0.0007 (3)0.0003 (3)
C3A0.0191 (5)0.0153 (5)0.0146 (4)0.0008 (4)0.0027 (4)0.0000 (4)
C5A0.0168 (5)0.0136 (5)0.0178 (5)0.0020 (4)0.0011 (4)0.0008 (4)
C4A0.0171 (5)0.0145 (5)0.0170 (5)0.0005 (4)0.0022 (4)0.0005 (4)
O1A0.0181 (4)0.0173 (4)0.0159 (3)0.0041 (3)0.0010 (3)0.0013 (3)
O2A0.0195 (4)0.0164 (4)0.0246 (4)0.0012 (3)0.0029 (3)0.0038 (3)
O1B0.0198 (4)0.0188 (4)0.0151 (3)0.0042 (3)0.0025 (3)0.0011 (3)
O2B0.0191 (4)0.0187 (4)0.0131 (3)0.0003 (3)0.0019 (3)0.0003 (3)
C4C0.0123 (4)0.0121 (4)0.0110 (4)0.0001 (3)0.0002 (3)0.0005 (3)
C1C0.0122 (4)0.0171 (5)0.0136 (4)0.0018 (4)0.0003 (3)0.0057 (4)
C6C0.0151 (4)0.0124 (4)0.0154 (4)0.0006 (4)0.0004 (3)0.0013 (3)
C5C0.0152 (4)0.0129 (4)0.0122 (4)0.0001 (3)0.0023 (3)0.0003 (3)
C3C0.0155 (5)0.0144 (5)0.0149 (4)0.0006 (4)0.0018 (3)0.0003 (4)
C2C0.0158 (5)0.0197 (5)0.0128 (4)0.0010 (4)0.0035 (3)0.0013 (4)
O1C0.0234 (4)0.0113 (3)0.0117 (3)0.0010 (3)0.0014 (3)0.0015 (3)
C10C0.0133 (4)0.0147 (5)0.0129 (4)0.0004 (3)0.0004 (3)0.0017 (3)
C8C0.0133 (4)0.0128 (4)0.0147 (4)0.0006 (3)0.0014 (3)0.0030 (3)
C7C0.0139 (4)0.0100 (4)0.0107 (4)0.0004 (3)0.0006 (3)0.0003 (3)
C9C0.0161 (5)0.0143 (5)0.0135 (4)0.0015 (4)0.0005 (3)0.0019 (3)
C11C0.0133 (4)0.0160 (5)0.0154 (4)0.0015 (4)0.0002 (3)0.0033 (4)
N1C0.0172 (4)0.0136 (4)0.0110 (4)0.0017 (3)0.0011 (3)0.0011 (3)
O4A0.0230 (4)0.0236 (4)0.0157 (4)0.0043 (3)0.0010 (3)0.0026 (3)
Geometric parameters (Å, º) top
Cl1—C1C1.7424 (11)C1C—C2C1.3844 (16)
O4B—C2B1.2865 (13)C6C—C5C1.3929 (14)
O4B—H1B1.23 (2)C6C—H6C0.9300
O3B—C5B1.2978 (13)C5C—H5C0.9300
O3B—H1B1.18 (2)C3C—C2C1.3876 (15)
C5B—O2B1.2315 (13)C3C—H3C0.9300
C5B—C4B1.4972 (15)C2C—H2C0.9300
C4B—C3B1.3403 (15)O1C—C7C1.4314 (12)
C4B—H4B0.9300O1C—H1C0.8200
C2B—O1B1.2408 (13)C10C—C9C1.5178 (15)
C2B—C3B1.4917 (15)C10C—C7C1.5301 (15)
C3B—H3B0.9300C10C—H10A0.9700
O3A—C2A1.2265 (13)C10C—H10B0.9700
C2A—O1A1.3072 (13)C8C—C11C1.5212 (15)
C2A—C3A1.4830 (15)C8C—C7C1.5339 (15)
C3A—C4A1.3396 (16)C8C—H8C10.9700
C3A—H3A0.9300C8C—H8C20.9700
C5A—O2A1.2209 (14)C9C—N1C1.4932 (14)
C5A—O4A1.3153 (14)C9C—H9C10.9700
C5A—C4A1.4912 (16)C9C—H9C20.9700
C4A—H4A0.9300C11C—N1C1.4930 (14)
O1A—H2A0.90 (2)C11C—H11A0.9700
C4C—C5C1.3952 (15)C11C—H11B0.9700
C4C—C3C1.3965 (14)N1C—H13C0.890 (17)
C4C—C7C1.5255 (14)N1C—H14C0.887 (17)
C1C—C6C1.3816 (15)O4A—H1A0.91 (2)
C2B—O4B—H1B111.1 (10)C1C—C2C—C3C118.61 (10)
C5B—O3B—H1B111.1 (11)C1C—C2C—H2C120.7
O2B—C5B—O3B122.07 (10)C3C—C2C—H2C120.7
O2B—C5B—C4B118.62 (9)C7C—O1C—H1C109.5
O3B—C5B—C4B119.30 (9)C9C—C10C—C7C112.16 (9)
C3B—C4B—C5B131.05 (10)C9C—C10C—H10A109.2
C3B—C4B—H4B114.5C7C—C10C—H10A109.2
C5B—C4B—H4B114.5C9C—C10C—H10B109.2
O1B—C2B—O4B120.98 (10)C7C—C10C—H10B109.2
O1B—C2B—C3B118.74 (10)H10A—C10C—H10B107.9
O4B—C2B—C3B120.28 (9)C11C—C8C—C7C111.33 (9)
C4B—C3B—C2B129.85 (10)C11C—C8C—H8C1109.4
C4B—C3B—H3B115.1C7C—C8C—H8C1109.4
C2B—C3B—H3B115.1C11C—C8C—H8C2109.4
O3A—C2A—O1A123.13 (10)C7C—C8C—H8C2109.4
O3A—C2A—C3A125.25 (10)H8C1—C8C—H8C2108.0
O1A—C2A—C3A111.63 (9)O1C—C7C—C4C110.55 (8)
C4A—C3A—C2A128.80 (10)O1C—C7C—C10C105.37 (8)
C4A—C3A—H3A115.6C4C—C7C—C10C109.86 (8)
C2A—C3A—H3A115.6O1C—C7C—C8C109.32 (8)
O2A—C5A—O4A120.67 (10)C4C—C7C—C8C112.22 (8)
O2A—C5A—C4A118.03 (10)C10C—C7C—C8C109.28 (8)
O4A—C5A—C4A121.29 (10)N1C—C9C—C10C109.67 (9)
C3A—C4A—C5A132.01 (10)N1C—C9C—H9C1109.7
C3A—C4A—H4A114.0C10C—C9C—H9C1109.7
C5A—C4A—H4A114.0N1C—C9C—H9C2109.7
C2A—O1A—H2A112.2 (13)C10C—C9C—H9C2109.7
C5C—C4C—C3C118.49 (9)H9C1—C9C—H9C2108.2
C5C—C4C—C7C122.50 (9)N1C—C11C—C8C110.12 (9)
C3C—C4C—C7C118.99 (9)N1C—C11C—H11A109.6
C6C—C1C—C2C121.83 (9)C8C—C11C—H11A109.6
C6C—C1C—Cl1119.35 (9)N1C—C11C—H11B109.6
C2C—C1C—Cl1118.82 (8)C8C—C11C—H11B109.6
C1C—C6C—C5C118.81 (10)H11A—C11C—H11B108.1
C1C—C6C—H6C120.6C11C—N1C—C9C112.23 (8)
C5C—C6C—H6C120.6C11C—N1C—H13C107.2 (11)
C6C—C5C—C4C120.95 (9)C9C—N1C—H13C108.7 (11)
C6C—C5C—H5C119.5C11C—N1C—H14C109.4 (11)
C4C—C5C—H5C119.5C9C—N1C—H14C108.7 (10)
C2C—C3C—C4C121.30 (10)H13C—N1C—H14C110.6 (15)
C2C—C3C—H3C119.3C5A—O4A—H1A110.0 (12)
C4C—C3C—H3C119.3
O2B—C5B—C4B—C3B179.66 (11)Cl1—C1C—C2C—C3C179.61 (8)
O3B—C5B—C4B—C3B1.76 (18)C4C—C3C—C2C—C1C0.45 (16)
C5B—C4B—C3B—C2B3.5 (2)C5C—C4C—C7C—O1C152.93 (9)
O1B—C2B—C3B—C4B177.70 (11)C3C—C4C—C7C—O1C28.58 (13)
O4B—C2B—C3B—C4B1.50 (18)C5C—C4C—C7C—C10C91.18 (12)
O3A—C2A—C3A—C4A0.66 (19)C3C—C4C—C7C—C10C87.30 (11)
O1A—C2A—C3A—C4A179.62 (11)C5C—C4C—C7C—C8C30.61 (13)
C2A—C3A—C4A—C5A2.4 (2)C3C—C4C—C7C—C8C150.91 (9)
O2A—C5A—C4A—C3A176.96 (12)C9C—C10C—C7C—O1C62.30 (10)
O4A—C5A—C4A—C3A2.41 (19)C9C—C10C—C7C—C4C178.59 (8)
C2C—C1C—C6C—C5C0.00 (16)C9C—C10C—C7C—C8C55.07 (11)
Cl1—C1C—C6C—C5C179.61 (8)C11C—C8C—C7C—O1C60.01 (11)
C1C—C6C—C5C—C4C0.44 (16)C11C—C8C—C7C—C4C176.97 (8)
C3C—C4C—C5C—C6C0.87 (15)C11C—C8C—C7C—C10C54.84 (11)
C7C—C4C—C5C—C6C179.36 (9)C7C—C10C—C9C—N1C56.43 (11)
C5C—C4C—C3C—C2C0.88 (16)C7C—C8C—C11C—N1C56.71 (11)
C7C—C4C—C3C—C2C179.42 (9)C8C—C11C—N1C—C9C58.48 (11)
C6C—C1C—C2C—C3C0.00 (16)C10C—C9C—N1C—C11C57.97 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1C—H1C···O2Bi0.821.972.7852 (13)171
O1A—H2A···O1Bii0.90 (2)1.68 (2)2.5546 (13)162 (2)
N1C—H13C···O3Biii0.890 (17)1.954 (18)2.8328 (14)168.6 (16)
N1C—H14C···O2Aiv0.887 (17)2.087 (17)2.9144 (15)154.9 (15)
O4A—H1A···O3A0.91 (2)1.65 (2)2.5531 (13)173.7 (19)
O3B—H1B···O4B1.18 (2)1.23 (2)2.4108 (12)177 (2)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y1, z; (iv) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC11H15ClNO+·C4H3O4·C4H4O4
Mr443.83
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)19.282 (7), 7.867 (3), 25.115 (9)
β (°) 91.545 (5)
V3)3808 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.52 × 0.41 × 0.39
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.878, 0.907
No. of measured, independent and
observed [I > 2σ(I)] reflections
18187, 5841, 5194
Rint0.021
(sin θ/λ)max1)0.731
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.092, 1.03
No. of reflections5841
No. of parameters292
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.23

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1C—H1C···O2Bi0.821.972.7852 (13)170.7
O1A—H2A···O1Bii0.90 (2)1.68 (2)2.5546 (13)162 (2)
N1C—H13C···O3Biii0.890 (17)1.954 (18)2.8328 (14)168.6 (16)
N1C—H14C···O2Aiv0.887 (17)2.087 (17)2.9144 (15)154.9 (15)
O4A—H1A···O3A0.91 (2)1.65 (2)2.5531 (13)173.7 (19)
O3B—H1B···O4B1.18 (2)1.23 (2)2.4108 (12)177 (2)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y1, z; (iv) x, y+1, z1/2.
Cg···Cg interactions (Å) top
Cg2 is the centroid of the C1–C6 ring.
CgX···CgYCg···CgCgX···PerpCgY···Perp
Cg2···Cg2i3.646 (5)-3.460 (6)-3.460 (6)
Symmetry code: (i) -x ,y, 1/2-z.
 

Acknowledgements

JPJ thanks Dr Matthias Zeller and the YSU Department of Chemistry for their assistance with the data collection. The diffractometer was funded by NSF grant 0087210, by Ohio Board of Regents grant CAP-491, and by YSU. BPS thanks R. L. Fine Chem, Bangalore for a gift sample of 4-(4-chloro­phen­yl)piperidin-4-ol. HSY thanks the University of Mysore for research facilities and for sabbatical leave.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBertolasi, V., Borea, P. A., Gilli, G. & Sacerdoti, M. (1980). Acta Cryst. B36, 2287–2291.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDawson, B. M., Katz, H. & Glusker, J. P. (1986). Acta Cryst. C42, 67–71.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDutkiewicz, G., Siddaraju, B. P., Yathirajan, H. S., Siddegowda, M. S. & Kubicki, M. (2010). Acta Cryst. E66, o562.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Siddaraju, B. P., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o682–o683.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationJames, M. N. G. & Williams, G. J. B. (1974). Acta Cryst. B30, 1249–1257.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationJasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o366–o367.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKiang, Y. H., Huq, A., Stephens, P. W. & Xu, W. (2003). J. Pharm. Sci. 92, 1844–1853.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMohamed, S., Tocher, D. A., Vickers, M., Karamertzanis, P. G. & Price, S. L. (2009). Cryst. Growth Des. 9, 2881–2889.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrask, A. V., Motherwell, S. W. D. & Jones, W. (2005). Cryst. Growth Des. 5, 1013–1021.  Web of Science CSD CrossRef CAS Google Scholar
First citationVartanyan, R. S. (1984). Pharm. Chem. J. 18, 736–749.  CrossRef Google Scholar
First citationVyas, K., Moses Babu, J. & Om Reddy, G. (1999). Acta Cryst. C55, IUC9900104.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds