metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(quinoline-2-carboxyl­ato-κ2N,O)lead(II)

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 11 July 2010; accepted 11 July 2010; online 17 July 2010)

The PbII atom in the title compound, [Pb(C10H6NO2)2], is N,O-chelated by two quinoline-2-carboxyl­ate anions in a distorted Ψ-trigonal–bipyramidal environment; four atoms are connected to the PbII atom by regular coordination bonds. The structure also features two somewhat long Pb⋯O inter­actions [2.952 (3) and 3.014 (3) Å]. These long inter­actions give rise to a layer coordination polymer having the lead atom in a distorted Ψ-monocapped octa­hedral geometry.

Related literature

For a related structure, see: Zhang et al. (2007[Zhang, W.-Z., Wei, D.-Z., Gao, E.-J. & Sun, Y.-G. (2007). Chin. J. Struct. Chem. 26, 357-360.]).

[Scheme 1]

Experimental

Crystal data
  • [Pb(C10H6NO2)2]

  • Mr = 551.51

  • Monoclinic, P 21 /c

  • a = 16.4510 (15) Å

  • b = 7.2895 (7) Å

  • c = 14.1877 (13) Å

  • β = 108.981 (1)°

  • V = 1608.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 10.52 mm−1

  • T = 100 K

  • 0.15 × 0.10 × 0.05 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.301, Tmax = 0.621

  • 9758 measured reflections

  • 3669 independent reflections

  • 3119 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.058

  • S = 1.03

  • 3669 reflections

  • 244 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 1.64 e Å−3

  • Δρmin = −0.93 e Å−3

Table 1
Selected bond lengths (Å)

Pb1—O1 2.304 (3)
Pb1—O2i 2.952 (3)
Pb1—O3 2.295 (3)
Pb1—O4ii 3.014 (3)
Pb1—N1 2.567 (4)
Pb1—N2 2.531 (4)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The lone-pair of electrons in lead(II) compounds is usually stereochemically active but the interpretation of the geometry when longer interactions are taken into account is, on the other hand, not usually so rigorous. Lead bis(quinoline-2-carboxylate) crystallizes as a DMSO-coordinated monohydrate but there is no mention of the geometry (Zhang et al., 2007). An examination of the published figure suggests a Ψ-octahedral arrangement.

In the title anhydrous compound (Scheme I, Fig. 1), the lead atom is N,O-chelated by the carboxylate anions in a Ψ-trigonal bipyramidal environment. However, when two other weaker interactions are considered, the lead atom the exists in a Ψ-monocapped octahedral geometry (Fig. 2).

Related literature top

For a related structure, see: Zhang et al. (2007).

Experimental top

Lead(II) acetate (1 mmol, 0.38 g), quinoline-2-carboxylic acid (1 mmol, 0.17 g) and sodium nitrite (1 mmol, 0.07 g) were loaded into one arm of a convection tube and both of the arms were filled slowly by methanol. The chemical-bearing arm was immersed in an oil bath kept at 333 K. Crystals were formed on the inside surface of the arm kept at room temperature after a week.

Refinement top

Hydrogen atoms were placed in calculated positions (C–H 0.95 Å) and included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The anisotropic temperature factors of the C10 atom were restrained to be nearly isotropic so as to prevent the atom from going non-positive definite.

The final difference Fourier map had a peak/hole in the vicinity of Pb1.

Structure description top

The lone-pair of electrons in lead(II) compounds is usually stereochemically active but the interpretation of the geometry when longer interactions are taken into account is, on the other hand, not usually so rigorous. Lead bis(quinoline-2-carboxylate) crystallizes as a DMSO-coordinated monohydrate but there is no mention of the geometry (Zhang et al., 2007). An examination of the published figure suggests a Ψ-octahedral arrangement.

In the title anhydrous compound (Scheme I, Fig. 1), the lead atom is N,O-chelated by the carboxylate anions in a Ψ-trigonal bipyramidal environment. However, when two other weaker interactions are considered, the lead atom the exists in a Ψ-monocapped octahedral geometry (Fig. 2).

For a related structure, see: Zhang et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of the molecule of Pb(C10H6NO2)2 depicted as a part of a layer at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. Details of the Pb···O interactions are given in Table 1.
[Figure 2] Fig. 2. Ψ-Monocapped octahedral geometry of lead. Symmetry codes are given in Table 1.
Bis(quinoline-2-carboxylato-κ2N,O)lead(II) top
Crystal data top
[Pb(C10H6NO2)2]F(000) = 1040
Mr = 551.51Dx = 2.277 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3819 reflections
a = 16.4510 (15) Åθ = 2.6–28.3°
b = 7.2895 (7) ŵ = 10.52 mm1
c = 14.1877 (13) ÅT = 100 K
β = 108.981 (1)°Prism, colorless
V = 1608.9 (3) Å30.15 × 0.10 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
3669 independent reflections
Radiation source: fine-focus sealed tube3119 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 27.5°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1221
Tmin = 0.301, Tmax = 0.621k = 89
9758 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0278P)2 + 0.2749P]
where P = (Fo2 + 2Fc2)/3
3669 reflections(Δ/σ)max = 0.002
244 parametersΔρmax = 1.64 e Å3
6 restraintsΔρmin = 0.93 e Å3
Crystal data top
[Pb(C10H6NO2)2]V = 1608.9 (3) Å3
Mr = 551.51Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.4510 (15) ŵ = 10.52 mm1
b = 7.2895 (7) ÅT = 100 K
c = 14.1877 (13) Å0.15 × 0.10 × 0.05 mm
β = 108.981 (1)°
Data collection top
Bruker SMART APEX
diffractometer
3669 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3119 reflections with I > 2σ(I)
Tmin = 0.301, Tmax = 0.621Rint = 0.033
9758 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0266 restraints
wR(F2) = 0.058H-atom parameters constrained
S = 1.03Δρmax = 1.64 e Å3
3669 reflectionsΔρmin = 0.93 e Å3
244 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.747914 (11)0.70412 (2)0.535665 (12)0.00980 (6)
O10.7953 (2)0.6837 (4)0.4000 (2)0.0147 (7)
O20.7691 (2)0.6491 (5)0.2362 (2)0.0184 (7)
O30.7075 (2)1.0028 (4)0.4949 (2)0.0144 (7)
O40.7419 (2)1.2990 (4)0.4913 (3)0.0196 (7)
N10.6232 (2)0.6704 (5)0.3714 (3)0.0107 (8)
N20.8766 (2)0.9163 (5)0.5793 (3)0.0114 (8)
C10.7447 (3)0.6590 (6)0.3111 (3)0.0126 (10)
C20.6487 (3)0.6425 (6)0.2937 (3)0.0103 (9)
C30.5919 (3)0.6023 (6)0.1978 (3)0.0131 (9)
H30.61310.58080.14390.016*
C40.5058 (3)0.5948 (6)0.1835 (3)0.0138 (9)
H40.46630.57010.11910.017*
C50.4753 (3)0.6238 (6)0.2649 (3)0.0136 (9)
C60.3874 (3)0.6160 (6)0.2565 (3)0.0155 (10)
H60.34560.59140.19360.019*
C70.3621 (3)0.6437 (6)0.3383 (4)0.0176 (10)
H70.30290.63580.33200.021*
C80.4233 (3)0.6839 (6)0.4319 (4)0.0159 (10)
H80.40490.70410.48800.019*
C90.5090 (3)0.6940 (6)0.4427 (3)0.0152 (10)
H90.54960.72280.50580.018*
C100.5372 (3)0.6615 (6)0.3599 (3)0.0087 (9)
C110.7614 (3)1.1369 (6)0.5093 (3)0.0134 (10)
C120.8565 (3)1.0885 (6)0.5515 (3)0.0104 (9)
C130.9195 (3)1.2240 (6)0.5577 (3)0.0138 (10)
H130.90311.34560.53560.017*
C141.0048 (3)1.1769 (6)0.5963 (3)0.0146 (10)
H141.04801.26570.60020.018*
C151.0278 (3)0.9972 (6)0.6300 (3)0.0126 (9)
C161.1143 (3)0.9387 (6)0.6713 (3)0.0155 (10)
H161.15971.02430.68050.019*
C171.1325 (3)0.7599 (7)0.6981 (3)0.0169 (10)
H171.19070.72130.72330.020*
C181.0664 (3)0.6316 (7)0.6888 (3)0.0141 (10)
H181.08030.50820.70930.017*
C190.9823 (3)0.6841 (6)0.6505 (3)0.0136 (10)
H190.93790.59730.64460.016*
C200.9612 (3)0.8672 (6)0.6195 (3)0.0093 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.00792 (9)0.01030 (9)0.01183 (8)0.00087 (7)0.00412 (6)0.00058 (7)
O10.0075 (17)0.0208 (19)0.0172 (16)0.0020 (14)0.0061 (13)0.0022 (13)
O20.0192 (19)0.0226 (18)0.0175 (16)0.0033 (15)0.0117 (14)0.0028 (14)
O30.0095 (17)0.0113 (17)0.0208 (16)0.0028 (14)0.0028 (14)0.0009 (13)
O40.020 (2)0.0117 (17)0.0315 (19)0.0039 (15)0.0149 (15)0.0054 (15)
N10.012 (2)0.0061 (18)0.0169 (18)0.0005 (15)0.0080 (16)0.0009 (14)
N20.014 (2)0.0097 (19)0.0115 (17)0.0021 (16)0.0052 (15)0.0014 (14)
C10.013 (3)0.008 (2)0.020 (2)0.0001 (18)0.009 (2)0.0037 (17)
C20.007 (2)0.006 (2)0.017 (2)0.0002 (17)0.0025 (18)0.0001 (16)
C30.014 (2)0.013 (2)0.013 (2)0.0032 (19)0.0045 (18)0.0013 (18)
C40.015 (3)0.007 (2)0.015 (2)0.0004 (19)0.0009 (18)0.0007 (17)
C50.014 (3)0.010 (2)0.016 (2)0.000 (2)0.0039 (19)0.0010 (18)
C60.012 (3)0.013 (2)0.019 (2)0.001 (2)0.0007 (19)0.0007 (19)
C70.010 (3)0.015 (2)0.026 (3)0.000 (2)0.004 (2)0.0054 (19)
C80.013 (3)0.012 (2)0.023 (2)0.001 (2)0.007 (2)0.0040 (19)
C90.014 (3)0.013 (2)0.016 (2)0.001 (2)0.0012 (19)0.0003 (18)
C100.005 (2)0.005 (2)0.014 (2)0.0006 (16)0.0015 (17)0.0007 (15)
C110.017 (3)0.013 (2)0.012 (2)0.005 (2)0.0062 (19)0.0029 (17)
C120.013 (2)0.012 (2)0.0087 (19)0.0034 (18)0.0066 (17)0.0013 (16)
C130.019 (3)0.008 (2)0.014 (2)0.001 (2)0.0065 (19)0.0034 (17)
C140.015 (3)0.013 (2)0.017 (2)0.0075 (19)0.0074 (19)0.0052 (18)
C150.014 (2)0.013 (2)0.013 (2)0.0028 (19)0.0073 (18)0.0023 (17)
C160.010 (2)0.017 (2)0.020 (2)0.0033 (19)0.0052 (19)0.0039 (19)
C170.012 (3)0.021 (3)0.016 (2)0.004 (2)0.0020 (19)0.0007 (18)
C180.012 (3)0.015 (2)0.015 (2)0.001 (2)0.0041 (19)0.0008 (18)
C190.013 (2)0.014 (2)0.013 (2)0.003 (2)0.0024 (18)0.0011 (18)
C200.007 (2)0.013 (2)0.0096 (19)0.0013 (18)0.0049 (17)0.0030 (17)
Geometric parameters (Å, º) top
Pb1—O12.304 (3)C6—H60.9500
Pb1—O2i2.952 (3)C7—C81.412 (7)
Pb1—O32.295 (3)C7—H70.9500
Pb1—O4ii3.014 (3)C8—C91.370 (7)
Pb1—N12.567 (4)C8—H80.9500
Pb1—N22.531 (4)C9—C101.417 (6)
O1—C11.279 (6)C9—H90.9500
O2—C11.255 (5)C11—C121.525 (6)
O3—C111.290 (6)C12—C131.413 (6)
O4—C111.229 (5)C13—C141.373 (7)
N1—C21.318 (6)C13—H130.9500
N1—C101.370 (6)C14—C151.404 (6)
N2—C121.325 (5)C14—H140.9500
N2—C201.368 (6)C15—C161.417 (6)
C1—C21.521 (6)C15—C201.419 (6)
C2—C31.408 (6)C16—C171.363 (6)
C3—C41.366 (6)C16—H160.9500
C3—H30.9500C17—C181.408 (7)
C4—C51.416 (6)C17—H170.9500
C4—H40.9500C18—C191.366 (6)
C5—C61.413 (6)C18—H180.9500
C5—C101.427 (6)C19—C201.413 (6)
C6—C71.370 (6)C19—H190.9500
O3—Pb1—O189.98 (11)C6—C7—H7119.8
O3—Pb1—N268.45 (11)C8—C7—H7119.8
O1—Pb1—N276.13 (11)C9—C8—C7120.6 (5)
O3—Pb1—N177.38 (11)C9—C8—H8119.7
O1—Pb1—N167.90 (11)C7—C8—H8119.7
N2—Pb1—N1129.71 (11)C8—C9—C10120.1 (4)
O3—Pb1—O2i80.37 (10)C8—C9—H9120.0
O1—Pb1—O2i149.57 (10)C10—C9—H9120.0
N2—Pb1—O2i73.48 (10)N1—C10—C9119.8 (4)
N1—Pb1—O2i135.90 (11)N1—C10—C5120.9 (4)
O3—Pb1—O4ii152.83 (10)C9—C10—C5119.3 (4)
O1—Pb1—O4ii76.09 (10)O4—C11—O3125.2 (4)
N2—Pb1—O4ii128.16 (11)O4—C11—C12118.0 (4)
N1—Pb1—O4ii75.78 (10)O3—C11—C12116.8 (4)
O2i—Pb1—O4ii122.81 (9)N2—C12—C13122.4 (4)
C1—O1—Pb1122.9 (3)N2—C12—C11117.5 (4)
C11—O3—Pb1123.4 (3)C13—C12—C11120.1 (4)
C2—N1—C10119.3 (4)C14—C13—C12118.9 (4)
C2—N1—Pb1113.3 (3)C14—C13—H13120.5
C10—N1—Pb1127.0 (3)C12—C13—H13120.5
C12—N2—C20119.6 (4)C13—C14—C15119.8 (4)
C12—N2—Pb1113.4 (3)C13—C14—H14120.1
C20—N2—Pb1126.7 (3)C15—C14—H14120.1
O2—C1—O1123.9 (4)C14—C15—C16123.0 (4)
O2—C1—C2117.3 (4)C14—C15—C20118.3 (4)
O1—C1—C2118.8 (4)C16—C15—C20118.6 (4)
N1—C2—C3123.3 (4)C17—C16—C15120.2 (4)
N1—C2—C1116.6 (4)C17—C16—H16119.9
C3—C2—C1120.1 (4)C15—C16—H16119.9
C4—C3—C2118.8 (4)C16—C17—C18121.1 (5)
C4—C3—H3120.6C16—C17—H17119.5
C2—C3—H3120.6C18—C17—H17119.5
C3—C4—C5119.9 (4)C19—C18—C17120.1 (5)
C3—C4—H4120.0C19—C18—H18119.9
C5—C4—H4120.0C17—C18—H18119.9
C6—C5—C4123.3 (4)C18—C19—C20120.2 (4)
C6—C5—C10119.0 (4)C18—C19—H19119.9
C4—C5—C10117.8 (4)C20—C19—H19119.9
C7—C6—C5120.5 (4)N2—C20—C19119.4 (4)
C7—C6—H6119.7N2—C20—C15121.0 (4)
C5—C6—H6119.7C19—C20—C15119.6 (4)
C6—C7—C8120.5 (5)
O3—Pb1—O1—C179.2 (3)C4—C5—C6—C7179.4 (5)
N2—Pb1—O1—C1147.0 (3)C10—C5—C6—C70.2 (7)
N1—Pb1—O1—C12.8 (3)C5—C6—C7—C81.2 (7)
O2i—Pb1—O1—C1149.9 (3)C6—C7—C8—C90.7 (7)
O4ii—Pb1—O1—C177.2 (3)C7—C8—C9—C100.9 (7)
O1—Pb1—O3—C1174.7 (3)C2—N1—C10—C9179.1 (4)
N2—Pb1—O3—C110.4 (3)Pb1—N1—C10—C97.8 (5)
N1—Pb1—O3—C11142.0 (3)C2—N1—C10—C50.4 (6)
O2i—Pb1—O3—C1176.3 (3)Pb1—N1—C10—C5173.5 (3)
O4ii—Pb1—O3—C11132.9 (3)C8—C9—C10—N1179.5 (4)
O3—Pb1—N1—C2100.8 (3)C8—C9—C10—C51.9 (6)
O1—Pb1—N1—C25.6 (3)C6—C5—C10—N1180.0 (4)
N2—Pb1—N1—C253.2 (3)C4—C5—C10—N10.4 (6)
O2i—Pb1—N1—C2162.2 (3)C6—C5—C10—C91.3 (6)
O4ii—Pb1—N1—C275.0 (3)C4—C5—C10—C9179.1 (4)
O3—Pb1—N1—C1085.8 (3)Pb1—O3—C11—O4177.6 (3)
O1—Pb1—N1—C10179.0 (4)Pb1—O3—C11—C122.8 (5)
N2—Pb1—N1—C10133.3 (3)C20—N2—C12—C132.8 (6)
O2i—Pb1—N1—C1024.3 (4)Pb1—N2—C12—C13172.1 (3)
O4ii—Pb1—N1—C1098.5 (3)C20—N2—C12—C11178.7 (3)
O3—Pb1—N2—C123.8 (3)Pb1—N2—C12—C116.5 (4)
O1—Pb1—N2—C1291.8 (3)O4—C11—C12—N2173.9 (4)
N1—Pb1—N2—C1246.9 (3)O3—C11—C12—N26.5 (6)
O2i—Pb1—N2—C1289.8 (3)O4—C11—C12—C137.6 (6)
O4ii—Pb1—N2—C12151.2 (2)O3—C11—C12—C13172.1 (4)
O3—Pb1—N2—C20178.2 (3)N2—C12—C13—C141.7 (6)
O1—Pb1—N2—C2082.6 (3)C11—C12—C13—C14179.8 (4)
N1—Pb1—N2—C20127.5 (3)C12—C13—C14—C150.9 (7)
O2i—Pb1—N2—C2095.9 (3)C13—C14—C15—C16179.5 (4)
O4ii—Pb1—N2—C2023.2 (4)C13—C14—C15—C202.3 (6)
Pb1—O1—C1—O2179.4 (3)C14—C15—C16—C17176.7 (4)
Pb1—O1—C1—C20.1 (5)C20—C15—C16—C171.5 (6)
C10—N1—C2—C30.4 (6)C15—C16—C17—C182.4 (7)
Pb1—N1—C2—C3173.6 (3)C16—C17—C18—C191.5 (7)
C10—N1—C2—C1178.5 (4)C17—C18—C19—C200.3 (7)
Pb1—N1—C2—C17.5 (5)C12—N2—C20—C19179.0 (4)
O2—C1—C2—N1173.8 (4)Pb1—N2—C20—C196.9 (5)
O1—C1—C2—N15.5 (6)C12—N2—C20—C151.3 (6)
O2—C1—C2—C35.2 (6)Pb1—N2—C20—C15172.8 (3)
O1—C1—C2—C3175.5 (4)C18—C19—C20—N2178.6 (4)
N1—C2—C3—C41.2 (7)C18—C19—C20—C151.1 (6)
C1—C2—C3—C4177.7 (4)C14—C15—C20—N21.3 (6)
C2—C3—C4—C51.1 (7)C16—C15—C20—N2179.5 (4)
C3—C4—C5—C6179.2 (4)C14—C15—C20—C19178.5 (4)
C3—C4—C5—C100.4 (7)C16—C15—C20—C190.2 (6)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Pb(C10H6NO2)2]
Mr551.51
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)16.4510 (15), 7.2895 (7), 14.1877 (13)
β (°) 108.981 (1)
V3)1608.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)10.52
Crystal size (mm)0.15 × 0.10 × 0.05
Data collection
DiffractometerBruker SMART APEX
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.301, 0.621
No. of measured, independent and
observed [I > 2σ(I)] reflections
9758, 3669, 3119
Rint0.033
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.058, 1.03
No. of reflections3669
No. of parameters244
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.64, 0.93

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Pb1—O12.304 (3)Pb1—O4ii3.014 (3)
Pb1—O2i2.952 (3)Pb1—N12.567 (4)
Pb1—O32.295 (3)Pb1—N22.531 (4)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y1, z.
 

Acknowledgements

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, W.-Z., Wei, D.-Z., Gao, E.-J. & Sun, Y.-G. (2007). Chin. J. Struct. Chem. 26, 357–360.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds