metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-quinolin-8-olato)-κ3N,O:O;κ3O:N,O-bis­­[chlorido­methyl­phenyl­tin(IV)]

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 12 July 2010; accepted 13 July 2010; online 17 July 2010)

The SnIV atom in the centrosymmetric dinculear title compound, [Sn2(CH3)2(C6H5)2(C9H6NO)2Cl2], shows a trans-C2SnNO2Cl distorted octa­hedral coordination [C–Sn–C = 157.83 (8)°]. The quinolin-8-olate anion chelates to the Sn atom; its O atom also binds to the inversion-related Sn atom, forming the dinuclear compound. In the crystal structure, weak inter­molecular C—H⋯Cl hydrogen bonding links the mol­ecules, forming supra­molecular chains running along [100].

Related literature

For related structures, see: Ng et al. (1989[Ng, S. W., Chen, W., Charland, J.-P. & Smith, F. E. (1989). J. Organomet. Chem. 364, 343-351.]); Shi & Hu (1987[Shi, D.-H. & Hu, S.-Z. (1987). Chin. J. Struct. Chem. 6, 193-197.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn2(CH3)2(C6H5)2(C9H6NO)2Cl2]

  • Mr = 780.84

  • Monoclinic, P 21 /c

  • a = 7.9967 (5) Å

  • b = 17.8081 (10) Å

  • c = 10.1623 (6) Å

  • β = 95.232 (1)°

  • V = 1441.14 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.95 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.592, Tmax = 0.829

  • 9127 measured reflections

  • 3245 independent reflections

  • 3088 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.047

  • S = 1.09

  • 3245 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Cl1i 0.95 2.76 3.710 (2) 174
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The anion of 8-hydroxyquinoline is known to chelate to tin in organotin(IV) quinolinolates; however, for the chloroorganotin quinolinates, the chlorine atom sometimes participates in weak intermolecular bridging. In chloridoodiethyl(quinolin-8-olato)tin, the carbon–tin–carbon angle is opened to 140.9 (3) ° owing to a tin···chlorine contact of 3.690 (2) Å (Shi & Hu, 1987). With the bis(2-carbomethoxyethyl) analog, the tin atom is six-coordinate owing to an intramolecular bond with the oxygen atom of the organo radical (Ng et al., 1989). The chloridomethylphenyltin analog exists as a centrosymmetric dimer in which the quinolin-8-olate anion N,O-chelates to the tin atom (Fig. 1). However, its oxygen atom also binds to the inversion-related tin atom so that bridging by the chlorine atom is precluded for the trans-C2SnNO2Cl octahedral dinuclear molecule. Intermolecular weak C—H···Cl hydrogen bonding links the molecules to form the one dimensional supra-molecular chain in the crystal structure (Table 1).

Related literature top

For related structures, see: Ng et al. (1989); Shi & Hu (1987).

Experimental top

Methylphenyltin dichloride (0.35 g, 1 mmol) and 8-hydroxyquinoline (0.15 g, 1 mmol) were dissolved in methanol (10 ml) to give a faint yellow solution. The solution was set aside for the growth of crystals over a few days. Slow evaporation of methanol furnished crystals.

Refinement top

Hydrogen atoms were placed in calculated positions (C–H 0.95–0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5Ueq(C).

The final difference Fourier map had a peak in the vicinity of Sn1.

Structure description top

The anion of 8-hydroxyquinoline is known to chelate to tin in organotin(IV) quinolinolates; however, for the chloroorganotin quinolinates, the chlorine atom sometimes participates in weak intermolecular bridging. In chloridoodiethyl(quinolin-8-olato)tin, the carbon–tin–carbon angle is opened to 140.9 (3) ° owing to a tin···chlorine contact of 3.690 (2) Å (Shi & Hu, 1987). With the bis(2-carbomethoxyethyl) analog, the tin atom is six-coordinate owing to an intramolecular bond with the oxygen atom of the organo radical (Ng et al., 1989). The chloridomethylphenyltin analog exists as a centrosymmetric dimer in which the quinolin-8-olate anion N,O-chelates to the tin atom (Fig. 1). However, its oxygen atom also binds to the inversion-related tin atom so that bridging by the chlorine atom is precluded for the trans-C2SnNO2Cl octahedral dinuclear molecule. Intermolecular weak C—H···Cl hydrogen bonding links the molecules to form the one dimensional supra-molecular chain in the crystal structure (Table 1).

For related structures, see: Ng et al. (1989); Shi & Hu (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of [SnCl(CH3)(C6H5)(C9H6NO)]2 at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
Bis(µ-quinolin-8-olato)- κ3N,O:O;κ3O:N,O- bis[chloridomethylphenyltin(IV)] top
Crystal data top
[Sn2(CH3)2(C6H5)2(C9H6NO)2Cl2]F(000) = 768
Mr = 780.84Dx = 1.799 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6739 reflections
a = 7.9967 (5) Åθ = 2.3–28.3°
b = 17.8081 (10) ŵ = 1.95 mm1
c = 10.1623 (6) ÅT = 100 K
β = 95.232 (1)°Block, yellow
V = 1441.14 (15) Å30.30 × 0.20 × 0.10 mm
Z = 2
Data collection top
Bruker SMART APEX
diffractometer
3245 independent reflections
Radiation source: fine-focus sealed tube3088 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 106
Tmin = 0.592, Tmax = 0.829k = 2323
9127 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.047H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.021P)2 + 1.1915P]
where P = (Fo2 + 2Fc2)/3
3245 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
[Sn2(CH3)2(C6H5)2(C9H6NO)2Cl2]V = 1441.14 (15) Å3
Mr = 780.84Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.9967 (5) ŵ = 1.95 mm1
b = 17.8081 (10) ÅT = 100 K
c = 10.1623 (6) Å0.30 × 0.20 × 0.10 mm
β = 95.232 (1)°
Data collection top
Bruker SMART APEX
diffractometer
3245 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3088 reflections with I > 2σ(I)
Tmin = 0.592, Tmax = 0.829Rint = 0.017
9127 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0180 restraints
wR(F2) = 0.047H-atom parameters constrained
S = 1.09Δρmax = 0.43 e Å3
3245 reflectionsΔρmin = 0.52 e Å3
182 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.569331 (15)0.585876 (6)0.601796 (12)0.01090 (5)
Cl10.70000 (6)0.71504 (2)0.65698 (5)0.01757 (10)
O10.42527 (16)0.48265 (7)0.60854 (13)0.0135 (3)
N10.4714 (2)0.58459 (8)0.80183 (16)0.0121 (3)
C10.8095 (2)0.53633 (10)0.6389 (2)0.0167 (4)
H1A0.79810.48160.64030.025*
H1B0.86180.55360.72450.025*
H1C0.88000.55080.56910.025*
C20.3678 (2)0.64342 (9)0.49452 (19)0.0130 (4)
C30.3885 (3)0.67691 (11)0.3733 (2)0.0169 (4)
H30.49280.67230.33610.020*
C40.2584 (3)0.71696 (11)0.3060 (2)0.0195 (4)
H40.27340.73880.22260.023*
C50.1060 (3)0.72510 (11)0.3607 (2)0.0207 (4)
H50.01760.75330.31560.025*
C60.0837 (3)0.69195 (11)0.4814 (2)0.0206 (4)
H60.01980.69750.51940.025*
C70.2136 (2)0.65061 (10)0.5464 (2)0.0164 (4)
H70.19670.62680.62790.020*
C80.3633 (2)0.52614 (10)0.81865 (18)0.0119 (3)
C90.3396 (2)0.47262 (10)0.71380 (18)0.0124 (3)
C100.2317 (2)0.41329 (10)0.7296 (2)0.0147 (4)
H100.21240.37720.66110.018*
C110.1502 (2)0.40557 (10)0.8459 (2)0.0173 (4)
H110.07720.36410.85440.021*
C120.1735 (2)0.45627 (10)0.9470 (2)0.0162 (4)
H120.11770.44971.02480.019*
C130.2812 (2)0.51873 (10)0.93531 (19)0.0133 (4)
C140.3148 (3)0.57403 (11)1.0345 (2)0.0160 (4)
H140.26160.57131.11420.019*
C150.4242 (2)0.63159 (10)1.0154 (2)0.0165 (4)
H150.44710.66881.08160.020*
C160.5016 (2)0.63503 (10)0.89730 (19)0.0146 (4)
H160.57810.67470.88510.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01182 (7)0.01028 (7)0.01071 (8)0.00014 (4)0.00166 (5)0.00028 (4)
Cl10.0161 (2)0.01251 (19)0.0241 (3)0.00307 (15)0.00144 (18)0.00177 (16)
O10.0167 (6)0.0120 (6)0.0123 (7)0.0016 (5)0.0041 (5)0.0008 (5)
N10.0147 (8)0.0107 (7)0.0110 (8)0.0009 (5)0.0018 (6)0.0001 (5)
C10.0155 (9)0.0161 (8)0.0185 (10)0.0022 (7)0.0006 (7)0.0006 (7)
C20.0149 (9)0.0093 (7)0.0144 (9)0.0004 (6)0.0006 (7)0.0027 (6)
C30.0181 (9)0.0157 (8)0.0170 (10)0.0016 (7)0.0027 (8)0.0005 (7)
C40.0269 (11)0.0179 (9)0.0133 (10)0.0027 (8)0.0012 (8)0.0020 (7)
C50.0206 (10)0.0178 (9)0.0221 (11)0.0035 (7)0.0064 (8)0.0015 (8)
C60.0146 (9)0.0228 (10)0.0242 (11)0.0002 (7)0.0009 (8)0.0043 (8)
C70.0179 (9)0.0182 (9)0.0131 (10)0.0013 (7)0.0014 (7)0.0010 (7)
C80.0128 (8)0.0120 (8)0.0107 (9)0.0014 (6)0.0005 (7)0.0015 (6)
C90.0125 (8)0.0125 (8)0.0121 (9)0.0027 (6)0.0007 (7)0.0012 (7)
C100.0154 (9)0.0127 (8)0.0159 (10)0.0003 (6)0.0006 (7)0.0013 (7)
C110.0147 (9)0.0143 (8)0.0232 (11)0.0018 (7)0.0030 (8)0.0026 (7)
C120.0149 (9)0.0178 (9)0.0169 (10)0.0018 (7)0.0057 (7)0.0032 (7)
C130.0135 (9)0.0145 (8)0.0122 (9)0.0030 (6)0.0019 (7)0.0002 (7)
C140.0207 (10)0.0196 (9)0.0084 (9)0.0042 (7)0.0045 (7)0.0001 (7)
C150.0208 (10)0.0157 (8)0.0128 (10)0.0035 (7)0.0001 (8)0.0033 (7)
C160.0155 (9)0.0132 (8)0.0148 (10)0.0007 (7)0.0003 (7)0.0010 (7)
Geometric parameters (Å, º) top
Sn1—C12.1162 (19)C5—H50.9500
Sn1—C22.1248 (18)C6—C71.390 (3)
Sn1—O12.1739 (13)C6—H60.9500
Sn1—O1i2.4651 (13)C7—H70.9500
Sn1—N12.2442 (16)C8—C131.413 (3)
Sn1—Cl12.5672 (5)C8—C91.429 (2)
O1—C91.334 (2)C9—C101.383 (3)
O1—Sn1i2.4651 (13)C10—C111.408 (3)
N1—C161.328 (2)C10—H100.9500
N1—C81.373 (2)C11—C121.367 (3)
C1—H1A0.9800C11—H110.9500
C1—H1B0.9800C12—C131.419 (3)
C1—H1C0.9800C12—H120.9500
C2—C31.392 (3)C13—C141.417 (3)
C2—C71.391 (3)C14—C151.373 (3)
C3—C41.388 (3)C14—H140.9500
C3—H30.9500C15—C161.401 (3)
C4—C51.393 (3)C15—H150.9500
C4—H40.9500C16—H160.9500
C5—C61.387 (3)
C1—Sn1—C2157.83 (8)C6—C5—C4119.75 (19)
C1—Sn1—O196.71 (6)C6—C5—H5120.1
C2—Sn1—O192.56 (6)C4—C5—H5120.1
C1—Sn1—N1102.73 (7)C5—C6—C7119.69 (19)
C2—Sn1—N199.13 (7)C5—C6—H6120.2
O1—Sn1—N174.52 (5)C7—C6—H6120.2
C1—Sn1—O1i81.99 (6)C2—C7—C6121.21 (19)
C2—Sn1—O1i82.31 (6)C2—C7—H7119.4
O1—Sn1—O1i70.12 (5)C6—C7—H7119.4
N1—Sn1—O1i144.64 (5)N1—C8—C13121.40 (16)
C1—Sn1—Cl189.42 (5)N1—C8—C9117.06 (16)
C2—Sn1—Cl187.39 (5)C13—C8—C9121.54 (16)
O1—Sn1—Cl1163.16 (4)O1—C9—C10124.56 (17)
N1—Sn1—Cl188.85 (4)O1—C9—C8117.74 (16)
O1i—Sn1—Cl1126.44 (3)C10—C9—C8117.69 (17)
C9—O1—Sn1116.80 (11)C9—C10—C11120.93 (18)
C9—O1—Sn1i132.84 (11)C9—C10—H10119.5
Sn1—O1—Sn1i109.88 (5)C11—C10—H10119.5
C16—N1—C8119.75 (17)C12—C11—C10121.63 (18)
C16—N1—Sn1126.85 (13)C12—C11—H11119.2
C8—N1—Sn1113.33 (12)C10—C11—H11119.2
Sn1—C1—H1A109.5C11—C12—C13119.79 (18)
Sn1—C1—H1B109.5C11—C12—H12120.1
H1A—C1—H1B109.5C13—C12—H12120.1
Sn1—C1—H1C109.5C14—C13—C8117.37 (17)
H1A—C1—H1C109.5C14—C13—C12124.21 (18)
H1B—C1—H1C109.5C8—C13—C12118.41 (17)
C3—C2—C7118.50 (18)C15—C14—C13119.99 (18)
C3—C2—Sn1121.01 (14)C15—C14—H14120.0
C7—C2—Sn1120.46 (14)C13—C14—H14120.0
C2—C3—C4120.78 (19)C14—C15—C16119.41 (18)
C2—C3—H3119.6C14—C15—H15120.3
C4—C3—H3119.6C16—C15—H15120.3
C5—C4—C3120.03 (19)N1—C16—C15122.08 (17)
C5—C4—H4120.0N1—C16—H16119.0
C3—C4—H4120.0C15—C16—H16119.0
C1—Sn1—O1—C9107.94 (13)C3—C4—C5—C61.1 (3)
C2—Sn1—O1—C992.24 (13)C4—C5—C6—C70.2 (3)
N1—Sn1—O1—C96.53 (12)C3—C2—C7—C61.8 (3)
O1i—Sn1—O1—C9173.12 (15)Sn1—C2—C7—C6176.04 (14)
Cl1—Sn1—O1—C92.8 (2)C5—C6—C7—C21.7 (3)
C1—Sn1—O1—Sn1i78.95 (7)C16—N1—C8—C130.7 (3)
C2—Sn1—O1—Sn1i80.88 (7)Sn1—N1—C8—C13176.16 (13)
N1—Sn1—O1—Sn1i179.65 (7)C16—N1—C8—C9178.36 (16)
O1i—Sn1—O1—Sn1i0.0Sn1—N1—C8—C94.7 (2)
Cl1—Sn1—O1—Sn1i170.35 (8)Sn1—O1—C9—C10174.90 (14)
C1—Sn1—N1—C1683.99 (16)Sn1i—O1—C9—C103.7 (3)
C2—Sn1—N1—C1692.33 (16)Sn1—O1—C9—C86.4 (2)
O1—Sn1—N1—C16177.53 (16)Sn1i—O1—C9—C8177.52 (11)
O1i—Sn1—N1—C16178.10 (13)N1—C8—C9—O10.9 (2)
Cl1—Sn1—N1—C165.16 (15)C13—C8—C9—O1178.23 (16)
C1—Sn1—N1—C899.37 (13)N1—C8—C9—C10179.70 (16)
C2—Sn1—N1—C884.31 (13)C13—C8—C9—C100.6 (3)
O1—Sn1—N1—C85.84 (12)O1—C9—C10—C11177.91 (17)
O1i—Sn1—N1—C85.27 (17)C8—C9—C10—C110.8 (3)
Cl1—Sn1—N1—C8171.48 (12)C9—C10—C11—C120.3 (3)
C1—Sn1—C2—C38.7 (3)C10—C11—C12—C130.4 (3)
O1—Sn1—C2—C3123.54 (15)N1—C8—C13—C140.0 (3)
N1—Sn1—C2—C3161.73 (14)C9—C8—C13—C14179.06 (17)
O1i—Sn1—C2—C353.99 (15)N1—C8—C13—C12178.93 (16)
Cl1—Sn1—C2—C373.32 (14)C9—C8—C13—C120.1 (3)
C1—Sn1—C2—C7173.51 (16)C11—C12—C13—C14179.50 (19)
O1—Sn1—C2—C758.69 (15)C11—C12—C13—C80.6 (3)
N1—Sn1—C2—C716.04 (15)C8—C13—C14—C150.4 (3)
O1i—Sn1—C2—C7128.23 (15)C12—C13—C14—C15178.46 (18)
Cl1—Sn1—C2—C7104.46 (14)C13—C14—C15—C160.1 (3)
C7—C2—C3—C40.4 (3)C8—N1—C16—C151.1 (3)
Sn1—C2—C3—C4177.45 (14)Sn1—N1—C16—C15175.35 (13)
C2—C3—C4—C51.1 (3)C14—C15—C16—N10.7 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···Cl1ii0.952.763.710 (2)174
Symmetry code: (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Sn2(CH3)2(C6H5)2(C9H6NO)2Cl2]
Mr780.84
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.9967 (5), 17.8081 (10), 10.1623 (6)
β (°) 95.232 (1)
V3)1441.14 (15)
Z2
Radiation typeMo Kα
µ (mm1)1.95
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.592, 0.829
No. of measured, independent and
observed [I > 2σ(I)] reflections
9127, 3245, 3088
Rint0.017
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.047, 1.09
No. of reflections3245
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.52

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···Cl1i0.952.763.710 (2)174
Symmetry code: (i) x1, y, z.
 

Acknowledgements

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNg, S. W., Chen, W., Charland, J.-P. & Smith, F. E. (1989). J. Organomet. Chem. 364, 343–351.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, D.-H. & Hu, S.-Z. (1987). Chin. J. Struct. Chem. 6, 193–197.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds