metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Racemic tricarbon­yl(η6-7-meth­­oxy­flavan)chromium(0)

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa, and bOrganic Chemistry, Department of Chemisry, Lund University, PO Box 124, S-221 00, Lund, Sweden
*Correspondence e-mail: bezuidbc.sci@ufs.ac.za

(Received 15 February 2010; accepted 25 June 2010; online 10 July 2010)

In the title compound [systematic name: tricarbonyl(η6-7-methoxy-2-phenyl-3,4-dihydro-2H-1-benzopyran)chromium(0)], [Cr(C16H16O2)(CO)3], the Cr(CO)3 unit is coordinated by the phenyl­ene ring of the flavan ligand, exhibiting a three-legged piano-stool conformation, with a point to plane distance of 1.750 (1) Å. The phenyl ring is twisted away from the fused ring system by 36.49 (5)° (r.m.s. deviation = 0.027 Å; fitted atoms are the C6 ring and the attached fused-ring C and O atoms). The dihydro­pyran ring displays a distorted envelope configuration by displacement of the phenyl-bearing and the adjacent ring C atoms from the fused-ring system plane by 0.356 (2) and 0.402 (2) Å, respectively.

Related literature

7-Meth­oxy­flavan was synthesized via hydrogenation from 7-meth­oxy­flavanone, as described by Sato et al. (2006[Sato, S., Hiroe, K., Kumazawa, T. & Jun-ichi, O. (2006). Carbohydr. Res. 341, 1091-1095.]). For coordination of 7-meth­oxy­flavan to chromium, see: Müller et al. (1999[Müller, T. J. J., Ansorge, M. & Polburn, K. (1999). J. Organomet. Chem. 578, 252-259.]). For the importance of flavonoids in biological investigations, see: Rice-Evans & Packer (2003[Rice-Evans, C. A. & Packer, L. (2003). Flavonoids in Health and Disease, 2nd ed. New York: Marcel Dekker Inc.]). For Cr(CO)3 coordination to the phenyl­ene ring of a flavanone compound, see: Dominique et al. (1999[Dominique, S., Lepoivre, A., Lemiere, G., Rapatopoulou, C. P. & Klouras, N. D. (1999). Monatsh. Chem. 130, 305-311.]). For comparison bond distances, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: van Tonder et al. (2009a[Tonder, J. H. van, Bezuidenhoudt, B. C. B. & Janse van Rensburg, J. M. (2009a). Acta Cryst. E65, m1343.],b[Tonder, J. H. van, Bezuidenhoudt, B. C. B. & Janse van Rensburg, J. M. (2009b). Acta Cryst. E65, m1346.]). For the use of tricarbon­yl(arene)chromium complexes in regioselective organic synthesis, see: Muschalek et al. (2007[Muschalek, B., Weidner, I. & Butenschön, H. (2007). J. Organomet. Chem. 692, 2415-2424.]).

[Scheme 1]

Experimental

Crystal data
  • [Cr(C16H16O2)(CO)3]

  • Mr = 376.32

  • Monoclinic, P 21 /c

  • a = 9.8422 (2) Å

  • b = 12.3850 (3) Å

  • c = 15.0146 (3) Å

  • β = 115.171 (1)°

  • V = 1656.42 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 173 K

  • 0.41 × 0.34 × 0.24 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.757, Tmax = 0.847

  • 12982 measured reflections

  • 3985 independent reflections

  • 3224 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.085

  • S = 1.07

  • 3985 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound, (I), [Cr(C16H16O2)(CO)3], where (C16H16O2) = 7-methoxyflavan, has been examined due to the general biological activity of flavanoids (Rice-Evans & Packer, 2003) and the use of tricarbonyl(arene)chromium complexes in regioselective organic synthesis (Muschalek et al., 2007).

As with the tricarbonyl(η6-flavanone)chromium(0) complex reported by Dominique et al. (1999), the Cr(CO)3 unit of the title compound is coordinated by the phenylene ring of the flavanoid backbone (Fig.1). The chromium metal centre is displaced by 1.750 (1) Å from the A-η6-coordinated arene ring centre. The dihydropyran ring displays a distorted envelope configuration by displacement of atoms C2 and C3 from the fused ring system plane, with distances of 0.356 (2) and 0.402 (2) Å respectively (r.m.s. of fitted atoms C4, C10, C5, C6, C7, C8, C9 and O5 = 0.027 °). Further molecular disorder is displayed by the phenyl ring twist away from the fused ring system plane, by 36.49 (5)°.

The molecular packing displays two types of soft intermolecular contacts, this between O2···H8 [2.682 (1) Å] forming a O2···H8—C8 angle of 152.5 (1)° and O1···H6 [2.459 (1) Å] forming a O1···H6—C6 angle of 125.9 (1)° (Fig.2).

Related literature top

7-Methoxyflavan was synthesized via hydrogenation from 7-methoxyflavanone, as described by Sato et al. (2006). For coordination of 7-methoxyflavan to chromium, see: Müller et al. (1999). The importance of flavonoids in biological investigations is described in Rice-Evans & Packer (2003). For Cr(CO)3 coordination to the phenylene ring of a flavanone compound, see: Dominique et al. (1999). For comparison bond distances, see: Allen et al. (1987). For related structures, see: van Tonder et al. (2009a,b). For the use of tricarbonyl(arene)chromium complexes in regioselective organic synthesis, see: Muschalek et al. (2007).

Experimental top

7-Methoxyflavan was synthesised via H2SO4 catalyzed hydrogenation (5 bar) over 10% Pd/C from 7-methoxyflavanone, as described by Sato et al. (2006). 7-Methoxyflavan-4-one (1.00 g; 3.9 mmol), 10 % Pd/C (0.10 g), 3 M H2SO4 (aq.) (1 ml), EtOH (30 ml). Purification by means of flash column-chromatography yielded 7-methoxyflavan (0.67 g; 70.6%) as a colourless oil.

Rf 0.65 (H:DCM:EtOAc; 50:50:1); 1H NMR (600 MHz, CDCl3) δ ppm 7.44 – 7.41 (2H, m, H-2' and H-6'), 7.40 – 7.37 (2H, m, H-3' and H-5'), 7.34 – 7.31 (1H, m, H-4'), 6.99 – 6.97 (1H, m, H-5), 6.50 – 6.47 (2H, m, H-6 and H-8), 5.05 (1H, dd, J = 2.37, 10.19 Hz, H-2), 3.77 (3H, s, -OCH3), 2.92 (1H, ddd, J = 6.02, 10.92, 16.08 Hz, H-4(a)), 2.74 (1H, ddd, J = 3.40, 5.12, 16.08 Hz, H-4(e)), 2.22 – 2.18 (1H, m, H-3), 2.11– 2.04 (1H, m, H-3); 13C NMR (600 MHz, CDCl3) δ ppm 24.47 (C-4), 30.19 (C-3), 55.38 (-OCH3), 77.98 (C-2), 101.71 (C-6/8), 107.54 (C-6/8), 114.01, 126.11, 127.93, 128.61, 130.05, 141.79, 155.91, 155.91, 159.23

Preparation of the title compound, tricarbonyl(A-η6-7-methoxyflavane)chromium(0), was based on a method described by Müller et al. (1999). A solution of 7-Methoxyflavane (0.27 g, 1.1 mmol) and Cr(CO)6 (0.25 g, 1.1 mmol: 1 eq.) in Bu2O:THF (9:1; 10 ml per 100 mg Cr(CO)6 was degassed with argon, using standard Schlenk techniques, and refluxed (48 h) under an oxygen free atmosphere. The reaction mixture was cooled to room temperature and the solvent evaporated in vacuo. Purification through flash column-chromatography yielded tricarbonyl(A-η6-7-methoxyflavane)chromium(0) (0.07 g; 16.6.0%) as a yellow solid. Recrystallization from diethyl ether yielded yellow cuboidal crystals.

Rf 0.23 (Hexane: Acetone; 8:2); Mp 148.4 °C; Note: A, B and C-ring labelling refers to the benzene, phenyl and dihydropyrane rings respectively. 1H NMR (600 MHz, CDCl3) δ ppm 7.49 (2H, d, J = 7.15 Hz, H-2' and H-6'), 7.41 (2H, dd, J = 7.15, 8.66 Hz, H-3' and H-5'), 7.39 – 7.35 (1H, m, H-4'), 5.65 (1H, d, J = 6.61 Hz, H-5), 5.15 (1H, s, H-8), 4.90 – 4.86 (2H, m, H-2 and H-6), 3.72 (3H, s, -OCH3), 2.93 (1H, ddd, J = 4.89, 12.43, 15.65 Hz, H-4(a)), 2.54 (1H, dd, J = 4.14, 15.65 Hz, H-4(e)), 2.31 (1H, ddd, J = 4.14, 12.43, 13.68 Hz, H-3(a)), 2.13 (1H, dd, J = 4.89, 13.68 Hz, H-3(e)); 13C NMR (600 MHz, CDCl3) δ ppm 25.52 (C-4), 29.52 (C-3), 55.86 (-OCH3), 68.31 (C-8), 74.42 (C-2/6), 80.56 (C-2/6), 89.11, 94.55 (C-5), 126.61, 128.83, 128.89, 139.62, 140.30, 143.33, 234.44 (-Cr(CO)3); MS m/z 376 (M+, 13.0), 344 (0.2), 320 (0.1), 292 (70.7), 277 (0.2), 256 (0.1), 240 (5.8), 225 (0.5), 209 (0.3), 188 (100.0), 173 (0.4), 146 (10.0), 137 (2.1), 121 (2.0), 104 (5.1).

Refinement top

The H atoms were positioned geometrically and refined using a riding model with fixed C—H distances of 0.93 Å (ArH) [Uiso(H) = 1.2Ueq], 1.00 Å (CH) [Uiso(H) = 1.2Ueq], 0.99 Å (CH2) [Uiso(H) = 1.2Ueq] and 0.96 Å (CH3) [Uiso(H) = 1.5Ueq]. Initial positions of methyl H-atoms were obtained from fourier difference and refined as a fixed rotor.

The highest density peak is 0.25 located 0.66 Å from C1' and the deepest hole is -0.40 located at 0.50 Å from Cr.

Structure description top

The title compound, (I), [Cr(C16H16O2)(CO)3], where (C16H16O2) = 7-methoxyflavan, has been examined due to the general biological activity of flavanoids (Rice-Evans & Packer, 2003) and the use of tricarbonyl(arene)chromium complexes in regioselective organic synthesis (Muschalek et al., 2007).

As with the tricarbonyl(η6-flavanone)chromium(0) complex reported by Dominique et al. (1999), the Cr(CO)3 unit of the title compound is coordinated by the phenylene ring of the flavanoid backbone (Fig.1). The chromium metal centre is displaced by 1.750 (1) Å from the A-η6-coordinated arene ring centre. The dihydropyran ring displays a distorted envelope configuration by displacement of atoms C2 and C3 from the fused ring system plane, with distances of 0.356 (2) and 0.402 (2) Å respectively (r.m.s. of fitted atoms C4, C10, C5, C6, C7, C8, C9 and O5 = 0.027 °). Further molecular disorder is displayed by the phenyl ring twist away from the fused ring system plane, by 36.49 (5)°.

The molecular packing displays two types of soft intermolecular contacts, this between O2···H8 [2.682 (1) Å] forming a O2···H8—C8 angle of 152.5 (1)° and O1···H6 [2.459 (1) Å] forming a O1···H6—C6 angle of 125.9 (1)° (Fig.2).

7-Methoxyflavan was synthesized via hydrogenation from 7-methoxyflavanone, as described by Sato et al. (2006). For coordination of 7-methoxyflavan to chromium, see: Müller et al. (1999). The importance of flavonoids in biological investigations is described in Rice-Evans & Packer (2003). For Cr(CO)3 coordination to the phenylene ring of a flavanone compound, see: Dominique et al. (1999). For comparison bond distances, see: Allen et al. (1987). For related structures, see: van Tonder et al. (2009a,b). For the use of tricarbonyl(arene)chromium complexes in regioselective organic synthesis, see: Muschalek et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I) showing the atom-numbering scheme with displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. Indication of molecular packing in the unit-cell. Symmetry operators 1) x; y; z. 2) 1 - x; 0.5 + y; 1.5 - z.
tricarbonyl(η6-7-methoxy-2-phenyl-3,4-dihydro-2H- 1-benzopyran)chromium(0) top
Crystal data top
[Cr(C16H16O2)(CO)3]F(000) = 776
Mr = 376.32Dx = 1.509 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5285 reflections
a = 9.8422 (2) Åθ = 2.2–28.3°
b = 12.3850 (3) ŵ = 0.72 mm1
c = 15.0146 (3) ÅT = 173 K
β = 115.171 (1)°Prism, yellow
V = 1656.42 (6) Å30.41 × 0.34 × 0.24 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3224 reflections with I > 2σ(I)
φ and ω scansRint = 0.030
Absorption correction: multi-scan
(Bruker, 2004)
θmax = 28°, θmin = 2.2°
Tmin = 0.757, Tmax = 0.847h = 1112
12982 measured reflectionsk = 1616
3985 independent reflectionsl = 1919
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0444P)2 + 0.0884P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.085(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.25 e Å3
3985 reflectionsΔρmin = 0.40 e Å3
227 parameters
Crystal data top
[Cr(C16H16O2)(CO)3]V = 1656.42 (6) Å3
Mr = 376.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.8422 (2) ŵ = 0.72 mm1
b = 12.3850 (3) ÅT = 173 K
c = 15.0146 (3) Å0.41 × 0.34 × 0.24 mm
β = 115.171 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3985 independent reflections
Absorption correction: multi-scan
(Bruker, 2004)
3224 reflections with I > 2σ(I)
Tmin = 0.757, Tmax = 0.847Rint = 0.030
12982 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.07Δρmax = 0.25 e Å3
3985 reflectionsΔρmin = 0.40 e Å3
227 parameters
Special details top

Experimental. The intensity data was collected on a Bruker Apex II CCD diffractometer using a frame width of 0.5° covering up to θ = 28° with 100 % completeness accomplished.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1'1.01976 (18)0.59116 (14)0.84890 (12)0.0260 (3)
C2'0.9566 (2)0.69062 (15)0.85055 (13)0.0325 (4)
H2'0.85060.69880.82130.039*
C20.92726 (18)0.49179 (14)0.80339 (12)0.0268 (4)
H20.97030.45530.76180.032*
C3'1.0487 (2)0.77884 (16)0.89526 (14)0.0385 (4)
H3'1.00520.84710.89580.046*
C30.92236 (18)0.41073 (13)0.87814 (12)0.0276 (4)
H3A0.87550.44430.91810.033*
H3B1.02570.38860.9230.033*
C40.83175 (18)0.31200 (14)0.82448 (12)0.0272 (4)
H4A0.89080.26870.7980.033*
H4B0.81070.26630.87130.033*
C4'1.2029 (2)0.76723 (16)0.93867 (13)0.0380 (4)
H4'1.26540.82720.96960.046*
C5'1.2657 (2)0.66846 (16)0.93694 (13)0.0360 (4)
H5'1.37170.66030.9670.043*
C50.56441 (18)0.27492 (13)0.69612 (12)0.0260 (4)
H50.57230.20370.72140.031*
C60.43161 (18)0.30503 (13)0.61485 (12)0.0263 (3)
H60.35320.25410.58420.032*
C6'1.17553 (18)0.58135 (15)0.89185 (12)0.0295 (4)
H6'1.22010.51380.890.035*
C70.41667 (18)0.41122 (13)0.57975 (11)0.0247 (3)
C80.53223 (18)0.48677 (13)0.62755 (12)0.0251 (3)
H80.51830.56060.60850.03*
C90.66817 (17)0.45213 (14)0.70352 (12)0.0242 (3)
C100.68615 (17)0.34612 (13)0.74146 (12)0.0237 (3)
C110.56076 (19)0.50205 (13)0.85013 (13)0.0269 (4)
C120.42375 (19)0.32289 (14)0.82151 (13)0.0295 (4)
C130.29284 (19)0.48252 (14)0.70530 (13)0.0298 (4)
C710.17072 (19)0.37892 (16)0.45371 (13)0.0335 (4)
H71A0.20290.31810.42550.05*
H71B0.08940.41790.4010.05*
H71C0.13490.35180.50130.05*
O10.61634 (16)0.55726 (10)0.91861 (10)0.0436 (4)
O20.39278 (16)0.26735 (12)0.87217 (10)0.0486 (4)
O30.17872 (15)0.52563 (12)0.67906 (11)0.0482 (4)
O50.77684 (12)0.52853 (9)0.73998 (9)0.0305 (3)
O70.29490 (12)0.45045 (10)0.50235 (8)0.0303 (3)
Cr0.47389 (3)0.413031 (19)0.743218 (18)0.01990 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1'0.0229 (8)0.0363 (9)0.0193 (8)0.0040 (7)0.0096 (7)0.0017 (7)
C2'0.0282 (9)0.0401 (10)0.0317 (10)0.0012 (8)0.0152 (8)0.0017 (8)
C20.0198 (8)0.0364 (9)0.0228 (8)0.0006 (7)0.0077 (7)0.0013 (7)
C3'0.0494 (11)0.0344 (10)0.0391 (11)0.0015 (9)0.0259 (10)0.0000 (8)
C30.0239 (8)0.0319 (9)0.0230 (8)0.0030 (7)0.0062 (7)0.0046 (7)
C40.0241 (8)0.0281 (8)0.0265 (9)0.0044 (7)0.0079 (7)0.0039 (7)
C4'0.0444 (11)0.0425 (11)0.0286 (10)0.0176 (9)0.0170 (9)0.0023 (8)
C5'0.0278 (9)0.0524 (12)0.0263 (9)0.0110 (9)0.0100 (8)0.0034 (8)
C50.0286 (8)0.0203 (8)0.0280 (9)0.0025 (7)0.0110 (7)0.0027 (6)
C60.0261 (8)0.0254 (8)0.0256 (8)0.0011 (7)0.0092 (7)0.0063 (7)
C6'0.0248 (8)0.0389 (10)0.0247 (9)0.0013 (7)0.0105 (7)0.0037 (7)
C70.0209 (8)0.0331 (9)0.0195 (8)0.0020 (7)0.0081 (6)0.0009 (7)
C80.0243 (8)0.0279 (8)0.0232 (8)0.0002 (7)0.0102 (7)0.0061 (7)
C90.0211 (8)0.0306 (8)0.0216 (8)0.0023 (7)0.0098 (7)0.0017 (7)
C100.0229 (8)0.0258 (8)0.0227 (8)0.0021 (6)0.0101 (7)0.0003 (6)
C110.0281 (9)0.0203 (8)0.0292 (9)0.0040 (7)0.0090 (7)0.0041 (7)
C120.0291 (9)0.0308 (9)0.0269 (9)0.0074 (7)0.0104 (7)0.0030 (7)
C130.0274 (9)0.0331 (9)0.0280 (9)0.0003 (7)0.0108 (7)0.0054 (7)
C710.0206 (8)0.0466 (11)0.0286 (9)0.0041 (8)0.0058 (7)0.0003 (8)
O10.0546 (9)0.0264 (6)0.0327 (7)0.0063 (6)0.0020 (7)0.0075 (6)
O20.0537 (9)0.0537 (9)0.0381 (8)0.0232 (7)0.0195 (7)0.0062 (7)
O30.0302 (7)0.0592 (9)0.0495 (9)0.0148 (7)0.0115 (7)0.0084 (7)
O50.0203 (6)0.0333 (7)0.0295 (6)0.0058 (5)0.0024 (5)0.0110 (5)
O70.0231 (6)0.0369 (7)0.0243 (6)0.0018 (5)0.0037 (5)0.0050 (5)
Cr0.02079 (14)0.01811 (14)0.02113 (14)0.00032 (10)0.00923 (11)0.00022 (10)
Geometric parameters (Å, º) top
C1'—C2'1.385 (3)C6—C71.401 (2)
C1'—C6'1.393 (2)C6—Cr2.2350 (16)
C1'—C21.510 (2)C6—H60.95
C2'—C3'1.396 (3)C6'—H6'0.95
C2'—H2'0.95C7—O71.3558 (19)
C2—O51.4513 (19)C7—C81.411 (2)
C2—C31.522 (2)C7—Cr2.2729 (16)
C2—H21C8—C91.406 (2)
C3'—C4'1.381 (3)C8—Cr2.2424 (16)
C3'—H3'0.95C8—H80.95
C3—C41.526 (2)C9—O51.3568 (19)
C3—H3A0.99C9—C101.412 (2)
C3—H3B0.99C9—Cr2.2838 (16)
C4—C101.505 (2)C10—Cr2.2580 (16)
C4—H4A0.99C11—O11.160 (2)
C4—H4B0.99C11—Cr1.8319 (17)
C4'—C5'1.375 (3)C12—O21.159 (2)
C4'—H4'0.95C12—Cr1.8344 (18)
C5'—C6'1.378 (2)C13—O31.151 (2)
C5'—H5'0.95C13—Cr1.8376 (18)
C5—C61.407 (2)C71—O71.433 (2)
C5—C101.408 (2)C71—H71A0.98
C5—Cr2.1808 (16)C71—H71B0.98
C5—H50.95C71—H71C0.98
C2'—C1'—C6'118.91 (16)O5—C9—C8115.42 (14)
C2'—C1'—C2122.96 (15)O5—C9—C10122.93 (14)
C6'—C1'—C2118.12 (15)C8—C9—C10121.58 (15)
C1'—C2'—C3'120.00 (16)O5—C9—Cr130.27 (11)
C1'—C2'—H2'120C8—C9—Cr70.31 (9)
C3'—C2'—H2'120C10—C9—Cr70.90 (9)
O5—C2—C1'106.96 (13)C5—C10—C9116.89 (14)
O5—C2—C3110.32 (13)C5—C10—C4122.62 (14)
C1'—C2—C3113.95 (14)C9—C10—C4120.46 (14)
O5—C2—H2108.5C5—C10—Cr68.55 (9)
C1'—C2—H2108.5C9—C10—Cr72.88 (9)
C3—C2—H2108.5C4—C10—Cr130.77 (11)
C4'—C3'—C2'120.27 (18)O1—C11—Cr179.12 (15)
C4'—C3'—H3'119.9O2—C12—Cr178.82 (16)
C2'—C3'—H3'119.9O3—C13—Cr178.24 (16)
C2—C3—C4109.51 (14)O7—C71—H71A109.5
C2—C3—H3A109.8O7—C71—H71B109.5
C4—C3—H3A109.8H71A—C71—H71B109.5
C2—C3—H3B109.8O7—C71—H71C109.5
C4—C3—H3B109.8H71A—C71—H71C109.5
H3A—C3—H3B108.2H71B—C71—H71C109.5
C10—C4—C3110.43 (13)C9—O5—C2117.07 (12)
C10—C4—H4A109.6C7—O7—C71117.83 (13)
C3—C4—H4A109.6C11—Cr—C1287.55 (7)
C10—C4—H4B109.6C11—Cr—C1391.11 (7)
C3—C4—H4B109.6C12—Cr—C1389.65 (8)
H4A—C4—H4B108.1C11—Cr—C5130.80 (7)
C5'—C4'—C3'119.72 (18)C12—Cr—C589.36 (7)
C5'—C4'—H4'120.1C13—Cr—C5137.98 (7)
C3'—C4'—H4'120.1C11—Cr—C6164.20 (7)
C4'—C5'—C6'120.35 (17)C12—Cr—C6100.73 (7)
C4'—C5'—H5'119.8C13—Cr—C6102.28 (7)
C6'—C5'—H5'119.8C5—Cr—C637.14 (6)
C6—C5—C10122.61 (15)C11—Cr—C8104.82 (7)
C6—C5—Cr73.52 (9)C12—Cr—C8166.28 (7)
C10—C5—Cr74.51 (9)C13—Cr—C895.93 (7)
C6—C5—H5118.7C5—Cr—C878.10 (6)
C10—C5—H5118.7C6—Cr—C865.85 (6)
Cr—C5—H5125C11—Cr—C1098.15 (7)
C7—C6—C5119.02 (15)C12—Cr—C10106.65 (7)
C7—C6—Cr73.38 (9)C13—Cr—C10161.49 (7)
C5—C6—Cr69.34 (9)C5—Cr—C1036.94 (6)
C7—C6—H6120.5C6—Cr—C1066.68 (6)
C5—C6—H6120.5C8—Cr—C1066.26 (6)
Cr—C6—H6129C11—Cr—C7139.56 (7)
C5'—C6'—C1'120.73 (17)C12—Cr—C7132.48 (7)
C5'—C6'—H6'119.6C13—Cr—C784.71 (7)
C1'—C6'—H6'119.6C5—Cr—C765.78 (6)
O7—C7—C6124.88 (15)C6—Cr—C736.20 (6)
O7—C7—C8115.21 (14)C8—Cr—C736.40 (6)
C6—C7—C8119.89 (14)C10—Cr—C777.84 (6)
O7—C7—Cr130.14 (11)C11—Cr—C988.31 (7)
C6—C7—Cr70.42 (9)C12—Cr—C9141.22 (7)
C8—C7—Cr70.62 (9)C13—Cr—C9128.98 (7)
C9—C8—C7119.56 (15)C5—Cr—C965.09 (6)
C9—C8—Cr73.51 (9)C6—Cr—C976.78 (6)
C7—C8—Cr72.98 (9)C8—Cr—C936.18 (6)
C9—C8—H8120.2C10—Cr—C936.22 (6)
C7—C8—H8120.2C7—Cr—C964.57 (6)
Cr—C8—H8124.9
C6'—C1'—C2'—C3'0.4 (3)C7—C6—Cr—C964.80 (10)
C2—C1'—C2'—C3'178.97 (16)C5—C6—Cr—C966.02 (10)
C2'—C1'—C2—O517.3 (2)C9—C8—Cr—C1165.59 (11)
C6'—C1'—C2—O5163.39 (14)C7—C8—Cr—C11165.45 (10)
C2'—C1'—C2—C3104.93 (18)C9—C8—Cr—C1288.2 (3)
C6'—C1'—C2—C374.42 (19)C7—C8—Cr—C1240.8 (3)
C1'—C2'—C3'—C4'0.5 (3)C9—C8—Cr—C13158.32 (10)
O5—C2—C3—C461.99 (17)C7—C8—Cr—C1372.72 (10)
C1'—C2—C3—C4177.69 (14)C9—C8—Cr—C563.83 (10)
C2—C3—C4—C1047.68 (18)C7—C8—Cr—C565.13 (10)
C2'—C3'—C4'—C5'0.6 (3)C9—C8—Cr—C6100.86 (11)
C3'—C4'—C5'—C6'0.3 (3)C7—C8—Cr—C628.10 (9)
C10—C5—C6—C72.7 (2)C9—C8—Cr—C1026.92 (10)
Cr—C5—C6—C756.02 (14)C7—C8—Cr—C10102.04 (10)
C10—C5—C6—Cr58.68 (14)C9—C8—Cr—C7128.96 (15)
C4'—C5'—C6'—C1'1.2 (3)C7—C8—Cr—C9128.96 (15)
C2'—C1'—C6'—C5'1.2 (3)C5—C10—Cr—C11155.21 (10)
C2—C1'—C6'—C5'178.16 (16)C9—C10—Cr—C1175.77 (10)
C5—C6—C7—O7179.96 (15)C4—C10—Cr—C1140.00 (16)
Cr—C6—C7—O7125.88 (16)C5—C10—Cr—C1265.34 (11)
C5—C6—C7—C81.7 (2)C9—C10—Cr—C12165.64 (10)
Cr—C6—C7—C852.36 (14)C4—C10—Cr—C1249.87 (16)
C5—C6—C7—Cr54.07 (13)C5—C10—Cr—C1385.5 (2)
O7—C7—C8—C9174.85 (14)C9—C10—Cr—C1343.5 (3)
C6—C7—C8—C96.7 (2)C4—C10—Cr—C13159.3 (2)
Cr—C7—C8—C959.01 (14)C9—C10—Cr—C5129.02 (14)
O7—C7—C8—Cr126.14 (13)C4—C10—Cr—C5115.21 (18)
C6—C7—C8—Cr52.27 (14)C5—C10—Cr—C629.40 (9)
C7—C8—C9—O5175.10 (14)C9—C10—Cr—C699.61 (10)
Cr—C8—C9—O5126.16 (14)C4—C10—Cr—C6144.62 (16)
C7—C8—C9—C107.7 (2)C5—C10—Cr—C8102.12 (10)
Cr—C8—C9—C1051.09 (14)C9—C10—Cr—C826.90 (9)
C7—C8—C9—Cr58.74 (14)C4—C10—Cr—C8142.67 (16)
C6—C5—C10—C91.9 (2)C5—C10—Cr—C765.70 (10)
Cr—C5—C10—C956.37 (13)C9—C10—Cr—C763.32 (10)
C6—C5—C10—C4176.23 (15)C4—C10—Cr—C7179.09 (16)
Cr—C5—C10—C4125.55 (15)C5—C10—Cr—C9129.02 (14)
C6—C5—C10—Cr58.22 (14)C4—C10—Cr—C9115.77 (18)
O5—C9—C10—C5179.62 (15)O7—C7—Cr—C1185.11 (17)
C8—C9—C10—C53.3 (2)C6—C7—Cr—C11155.29 (11)
Cr—C9—C10—C554.18 (13)C8—C7—Cr—C1121.99 (14)
O5—C9—C10—C41.5 (2)O7—C7—Cr—C1285.04 (17)
C8—C9—C10—C4178.53 (15)C6—C7—Cr—C1234.57 (13)
Cr—C9—C10—C4127.70 (15)C8—C7—Cr—C12167.87 (11)
O5—C9—C10—Cr126.20 (16)O7—C7—Cr—C130.38 (15)
C8—C9—C10—Cr50.83 (14)C6—C7—Cr—C13119.22 (11)
C3—C4—C10—C5163.05 (15)C8—C7—Cr—C13107.48 (11)
C3—C4—C10—C918.9 (2)O7—C7—Cr—C5149.67 (16)
C3—C4—C10—Cr74.28 (18)C6—C7—Cr—C530.06 (9)
C8—C9—O5—C2167.67 (14)C8—C7—Cr—C5103.24 (10)
C10—C9—O5—C215.1 (2)O7—C7—Cr—C6119.60 (19)
Cr—C9—O5—C2107.28 (16)C8—C7—Cr—C6133.30 (14)
C1'—C2—O5—C9169.74 (13)O7—C7—Cr—C8107.10 (18)
C3—C2—O5—C945.31 (19)C6—C7—Cr—C8133.30 (14)
C6—C7—O7—C711.2 (2)O7—C7—Cr—C10173.42 (16)
C8—C7—O7—C71177.07 (14)C6—C7—Cr—C1066.97 (10)
Cr—C7—O7—C7191.82 (17)C8—C7—Cr—C1066.33 (10)
C6—C5—Cr—C11164.93 (10)O7—C7—Cr—C9137.65 (16)
C10—C5—Cr—C1133.24 (13)C6—C7—Cr—C9102.75 (10)
C6—C5—Cr—C12108.86 (11)C8—C7—Cr—C930.55 (9)
C10—C5—Cr—C12119.45 (10)O5—C9—Cr—C1111.15 (14)
C6—C5—Cr—C1320.10 (15)C8—C9—Cr—C11118.27 (11)
C10—C5—Cr—C13151.78 (11)C10—C9—Cr—C11106.27 (10)
C10—C5—Cr—C6131.69 (15)O5—C9—Cr—C1295.13 (17)
C6—C5—Cr—C865.53 (10)C8—C9—Cr—C12157.75 (12)
C10—C5—Cr—C866.16 (10)C10—C9—Cr—C1222.30 (15)
C6—C5—Cr—C10131.69 (15)O5—C9—Cr—C1378.91 (16)
C6—C5—Cr—C729.35 (10)C8—C9—Cr—C1328.21 (13)
C10—C5—Cr—C7102.34 (10)C10—C9—Cr—C13163.67 (10)
C6—C5—Cr—C9101.28 (11)O5—C9—Cr—C5148.41 (16)
C10—C5—Cr—C930.41 (9)C8—C9—Cr—C5104.47 (11)
C7—C6—Cr—C1184.6 (3)C10—C9—Cr—C530.99 (9)
C5—C6—Cr—C1146.3 (3)O5—C9—Cr—C6174.13 (15)
C7—C6—Cr—C12154.79 (10)C8—C9—Cr—C667.01 (10)
C5—C6—Cr—C1274.38 (11)C10—C9—Cr—C668.45 (10)
C7—C6—Cr—C1362.79 (11)O5—C9—Cr—C8107.12 (18)
C5—C6—Cr—C13166.38 (11)C10—C9—Cr—C8135.45 (15)
C7—C6—Cr—C5130.82 (15)O5—C9—Cr—C10117.42 (18)
C7—C6—Cr—C828.25 (9)C8—C9—Cr—C10135.45 (15)
C5—C6—Cr—C8102.57 (11)O5—C9—Cr—C7137.85 (16)
C7—C6—Cr—C10101.56 (10)C8—C9—Cr—C730.73 (10)
C5—C6—Cr—C1029.26 (9)C10—C9—Cr—C7104.73 (10)
C5—C6—Cr—C7130.82 (15)

Experimental details

Crystal data
Chemical formula[Cr(C16H16O2)(CO)3]
Mr376.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)9.8422 (2), 12.3850 (3), 15.0146 (3)
β (°) 115.171 (1)
V3)1656.42 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.41 × 0.34 × 0.24
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(Bruker, 2004)
Tmin, Tmax0.757, 0.847
No. of measured, independent and
observed [I > 2σ(I)] reflections
12982, 3985, 3224
Rint0.030
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.085, 1.07
No. of reflections3985
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.40

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

 

Acknowledgements

Financial assistance from the University of the Free State and SASOL to JHvanT is gratefully acknowledged. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of SASOL. We would like to express our gratitude to the School of Chemistry at the University of the Witwatersrand for the use of the diffractometer. Special thanks are due to Dr M. A. Fernandes.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDominique, S., Lepoivre, A., Lemiere, G., Rapatopoulou, C. P. & Klouras, N. D. (1999). Monatsh. Chem. 130, 305–311.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMüller, T. J. J., Ansorge, M. & Polburn, K. (1999). J. Organomet. Chem. 578, 252–259.  Google Scholar
First citationMuschalek, B., Weidner, I. & Butenschön, H. (2007). J. Organomet. Chem. 692, 2415–2424.  Web of Science CrossRef CAS Google Scholar
First citationRice-Evans, C. A. & Packer, L. (2003). Flavonoids in Health and Disease, 2nd ed. New York: Marcel Dekker Inc.  Google Scholar
First citationSato, S., Hiroe, K., Kumazawa, T. & Jun-ichi, O. (2006). Carbohydr. Res. 341, 1091–1095.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTonder, J. H. van, Bezuidenhoudt, B. C. B. & Janse van Rensburg, J. M. (2009a). Acta Cryst. E65, m1343.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTonder, J. H. van, Bezuidenhoudt, B. C. B. & Janse van Rensburg, J. M. (2009b). Acta Cryst. E65, m1346.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds