organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-{[7-fluoro-4-oxo-3-(1H-1,2,4-triazol-1-yl)-4H-thio­chromen-2-yl]sulfan­yl}acetate

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: taoxiao@njut.edu.cn

(Received 3 July 2010; accepted 11 July 2010; online 21 July 2010)

In the title compound, C15H12FN3O3S2, the two six-membered rings are essentially coplanar, their mean plnes making a dihedral angle of 1.1 (2)°. The carbonyl C, the two attached non-fused C atoms and the S atom deviate from the plane of the benzene ring by −0.046 (5), −0.017 (5), 0.000 (6), 0.026 (4) Å, respectively. The angle between the mean planes of the triazole ring and the sulfur heterocycle is 53.3 (1)°. In the crystal, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules in a stacked arrangement along the a axis.

Related literature

For related compounds containing a 4H-thio­chromen-4-one fragment, see: Adams et al. (1991[Adams, H., Bailey, N. A., Giles, P. R. & Marson, C. M. (1991). Acta Cryst. C47, 1332-1334.]); Nakazumi et al. (1992[Nakazumi, H., Watanabe, S. & Kitao, T. (1992). J. Chem. Res. 212, 1616-1641.]); Weiss et al. (2008[Weiss, R., Bess, M., Huber, S. M. & Heinemann, F. W. (2008). J. Am. Chem. Soc. 130, 4610-4617.]); Li et al. (2010[Li, Y., Xiao, T., Liu, D. & Yu, G. (2010). Acta Cryst. E66, o694.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12FN3O3S2

  • Mr = 365.40

  • Monoclinic, P 21 /c

  • a = 9.3890 (19) Å

  • b = 8.2430 (16) Å

  • c = 20.861 (4) Å

  • β = 100.72 (3)°

  • V = 1586.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.898, Tmax = 0.964

  • 3053 measured reflections

  • 2867 independent reflections

  • 2186 reflections with I > 2σ(I)

  • Rint = 0.013

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.151

  • S = 1.00

  • 2867 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O2i 0.97 2.47 3.199 (4) 131
C11—H11A⋯O2ii 0.93 2.43 3.276 (4) 151
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+2, -z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The title compound, ethyl 2-((7-fluoro-4-oxo-3-(1H-1,2,4-triazol-1-yl)-4H-thiochromen-2-yl)thio) acetate (I), is a new molecule which has a potential use as antifungal. We herein report its crystal structure.

The molecular structure of (I) is shown in Fig. 1, and selected geometric parameters are given in Table 1. The bond lengths and angles (Table 1) are within normal ranges (Allen et al., 1987). The two-ring system is essentially planar [angle between the mean planes = 1.1 (2)°]. The atoms C7, C8, C15 and S2 deviate from the benzene ring by -0.046 (5), -0.017 (5), 0.000 (6), 0.026 (4) Å, respectively. The angle between the mean planes of the triazole ring and the sulfur heterocycle is 53.3 (1)°.

In the crystal packing, a weak intramolecular C4—H4B···S2 interaction is observed, and intermolecular C—H···O hydrogen bonds link the molecules in a stacked arrangement along the a axis.

Related literature top

For related compounds containing a 4H-thiochromen-4-one fragment, see: Adams et al. (1991); Nakazumi et al. (1992); Weiss et al. (2008); Li et al. (2010). For bond-length data, see: Allen et al. (1987).

Experimental top

CS2 (2.0 g, 26.3 mmol) was dropwise added to a solution of 1-(2,4- difluorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethanone (5 g, 22.4 mmol) in DMSO (20 ml) containing NaOH (1.8 g, 45 mmol). The yellow solution was stirred for about 2 h at room temperature. Then ethyl bromoacetate (3.8 g, 22.4 mmol) was dropwise added to the intermediate. After 3 h, the solution was poured into water (50 ml). The crystalline product was isolated by filtration, and washed with water (300 ml). The crystals were obtained by dissolving (I) in acetone (20 ml) and evaporating acetone slowly at room temperature for about 7 d.

Refinement top

H atoms were positioned geometrically with C—H = 0.93 Å for aromatic H atoms, C—H = 0.97 Å for methylene H atoms,and with C—H = 0.96 Å for methyl H atoms, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for aromatic and methylene H atoms and x = 1.5 for methyl H atoms.

Structure description top

The title compound, ethyl 2-((7-fluoro-4-oxo-3-(1H-1,2,4-triazol-1-yl)-4H-thiochromen-2-yl)thio) acetate (I), is a new molecule which has a potential use as antifungal. We herein report its crystal structure.

The molecular structure of (I) is shown in Fig. 1, and selected geometric parameters are given in Table 1. The bond lengths and angles (Table 1) are within normal ranges (Allen et al., 1987). The two-ring system is essentially planar [angle between the mean planes = 1.1 (2)°]. The atoms C7, C8, C15 and S2 deviate from the benzene ring by -0.046 (5), -0.017 (5), 0.000 (6), 0.026 (4) Å, respectively. The angle between the mean planes of the triazole ring and the sulfur heterocycle is 53.3 (1)°.

In the crystal packing, a weak intramolecular C4—H4B···S2 interaction is observed, and intermolecular C—H···O hydrogen bonds link the molecules in a stacked arrangement along the a axis.

For related compounds containing a 4H-thiochromen-4-one fragment, see: Adams et al. (1991); Nakazumi et al. (1992); Weiss et al. (2008); Li et al. (2010). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1985); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). Intra- and inter-molecular interactions are shown as dashed lines.
Ethyl 2-{[7-fluoro-4-oxo-3-(1H-1,2,4-triazol-1-yl)-4H- thiochromen-2-yl]sulfanyl}acetate top
Crystal data top
C15H12FN3O3S2F(000) = 752
Mr = 365.40Dx = 1.530 Mg m3
Monoclinic, P21/cMelting point: 397 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.3890 (19) ÅCell parameters from 25 reflections
b = 8.2430 (16) Åθ = 9–14°
c = 20.861 (4) ŵ = 0.37 mm1
β = 100.72 (3)°T = 293 K
V = 1586.3 (5) Å3Block, pink
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2186 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.013
Graphite monochromatorθmax = 25.3°, θmin = 2.0°
ω/2θ scansh = 011
Absorption correction: ψ scan
(North et al., 1968)
k = 09
Tmin = 0.898, Tmax = 0.964l = 2524
3053 measured reflections3 standard reflections every 200 reflections
2867 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1P)2 + 0.170P]
where P = (Fo2 + 2Fc2)/3
2867 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C15H12FN3O3S2V = 1586.3 (5) Å3
Mr = 365.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.3890 (19) ŵ = 0.37 mm1
b = 8.2430 (16) ÅT = 293 K
c = 20.861 (4) Å0.30 × 0.20 × 0.10 mm
β = 100.72 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2186 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.013
Tmin = 0.898, Tmax = 0.9643 standard reflections every 200 reflections
3053 measured reflections intensity decay: 1%
2867 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.00Δρmax = 0.22 e Å3
2867 reflectionsΔρmin = 0.32 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F0.2497 (3)0.9099 (3)0.12075 (10)0.0728 (7)
S10.10898 (8)0.52611 (10)0.15706 (4)0.0434 (3)
O10.3016 (2)0.6102 (3)0.23375 (11)0.0473 (6)
N10.5765 (3)0.6974 (5)0.09253 (17)0.0721 (10)
C10.5439 (4)0.6893 (6)0.2766 (2)0.0871 (15)
H1B0.60650.77810.29280.131*
H1C0.57380.64380.23880.131*
H1D0.54940.60770.30980.131*
S20.06614 (8)0.65095 (9)0.06388 (3)0.0375 (2)
O20.1081 (3)0.7704 (3)0.22875 (11)0.0554 (6)
N20.4048 (3)0.5142 (4)0.07917 (15)0.0562 (8)
C20.3947 (4)0.7475 (5)0.2588 (2)0.0614 (10)
H2B0.38840.83120.22570.074*
H2C0.36350.79350.29670.074*
N30.3597 (3)0.6709 (3)0.07017 (13)0.0472 (7)
O30.3528 (3)0.8531 (3)0.03655 (13)0.0646 (7)
C30.1619 (3)0.6420 (4)0.21998 (13)0.0372 (7)
C40.0790 (3)0.4931 (3)0.19245 (14)0.0382 (7)
H4A0.08400.41360.22710.046*
H4B0.12690.44680.15930.046*
C50.5331 (4)0.5401 (6)0.0927 (2)0.0673 (11)
H5A0.59170.45560.10200.081*
C60.4652 (4)0.7752 (5)0.07764 (19)0.0601 (10)
H6A0.46010.88710.07290.072*
C70.2261 (3)0.6990 (4)0.04953 (14)0.0378 (7)
C80.2363 (3)0.7960 (4)0.00981 (15)0.0428 (7)
C90.1040 (3)0.8222 (3)0.03656 (14)0.0386 (7)
C100.1155 (4)0.9141 (4)0.09443 (15)0.0473 (8)
H10A0.20520.95580.11380.057*
C110.0020 (4)0.9427 (4)0.12239 (16)0.0521 (9)
H11A0.00681.00320.16060.063*
C120.1336 (4)0.8808 (4)0.09318 (16)0.0490 (8)
C130.1538 (4)0.7913 (4)0.03709 (15)0.0432 (7)
H13A0.24450.75020.01880.052*
C140.0329 (3)0.7637 (3)0.00815 (13)0.0357 (7)
C150.1023 (3)0.6355 (3)0.08501 (14)0.0362 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F0.0870 (16)0.0758 (15)0.0678 (14)0.0063 (13)0.0462 (12)0.0109 (12)
S10.0411 (4)0.0490 (5)0.0400 (4)0.0036 (4)0.0071 (3)0.0107 (3)
O10.0433 (12)0.0353 (12)0.0611 (14)0.0009 (10)0.0037 (10)0.0065 (10)
N10.0419 (17)0.088 (3)0.088 (2)0.0022 (17)0.0173 (16)0.019 (2)
C10.052 (2)0.074 (3)0.128 (4)0.007 (2)0.003 (2)0.028 (3)
S20.0376 (4)0.0383 (4)0.0366 (4)0.0003 (3)0.0071 (3)0.0057 (3)
O20.0633 (15)0.0396 (13)0.0589 (15)0.0130 (11)0.0001 (11)0.0129 (11)
N20.0419 (16)0.0521 (18)0.072 (2)0.0130 (13)0.0024 (14)0.0184 (15)
C20.055 (2)0.045 (2)0.083 (3)0.0150 (17)0.0077 (19)0.0131 (18)
N30.0371 (14)0.0473 (16)0.0551 (16)0.0067 (12)0.0029 (12)0.0093 (13)
O30.0485 (14)0.0726 (18)0.0679 (16)0.0057 (13)0.0015 (12)0.0296 (14)
C30.0488 (18)0.0330 (16)0.0290 (14)0.0022 (14)0.0051 (12)0.0027 (12)
C40.0441 (16)0.0322 (16)0.0368 (15)0.0017 (13)0.0038 (13)0.0026 (13)
C50.044 (2)0.078 (3)0.076 (3)0.017 (2)0.0012 (18)0.025 (2)
C60.0440 (19)0.058 (2)0.081 (3)0.0040 (18)0.0176 (18)0.013 (2)
C70.0348 (15)0.0327 (16)0.0456 (16)0.0044 (13)0.0067 (12)0.0033 (13)
C80.0470 (18)0.0354 (16)0.0426 (16)0.0047 (14)0.0004 (14)0.0027 (14)
C90.0526 (18)0.0261 (15)0.0355 (15)0.0016 (13)0.0038 (13)0.0009 (12)
C100.063 (2)0.0363 (17)0.0384 (16)0.0023 (16)0.0007 (15)0.0038 (14)
C110.084 (3)0.0357 (18)0.0392 (17)0.0022 (18)0.0171 (17)0.0065 (14)
C120.069 (2)0.0382 (18)0.0451 (18)0.0060 (16)0.0244 (16)0.0024 (15)
C130.0524 (18)0.0377 (17)0.0427 (16)0.0012 (15)0.0168 (14)0.0017 (14)
C140.0496 (18)0.0242 (14)0.0333 (15)0.0043 (13)0.0074 (13)0.0022 (12)
C150.0419 (16)0.0294 (15)0.0373 (15)0.0054 (13)0.0077 (12)0.0009 (12)
Geometric parameters (Å, º) top
F—C121.345 (4)N3—C71.419 (4)
S1—C151.764 (3)O3—C81.226 (4)
S1—C41.802 (3)C3—C41.509 (4)
O1—C31.316 (4)C4—H4A0.9700
O1—C21.466 (4)C4—H4B0.9700
N1—C61.311 (4)C5—H5A0.9300
N1—C51.359 (5)C6—H6A0.9300
C1—C21.462 (5)C7—C151.361 (4)
C1—H1B0.9600C7—C81.461 (4)
C1—H1C0.9600C8—C91.469 (4)
C1—H1D0.9600C9—C141.397 (4)
S2—C151.723 (3)C9—C101.412 (4)
S2—C141.745 (3)C10—C111.361 (5)
O2—C31.201 (4)C10—H10A0.9300
N2—C51.305 (5)C11—C121.370 (5)
N2—N31.383 (4)C11—H11A0.9300
C2—H2B0.9700C12—C131.366 (5)
C2—H2C0.9700C13—C141.400 (4)
N3—C61.342 (4)C13—H13A0.9300
C15—S1—C4103.82 (14)N1—C5—H5A121.8
C3—O1—C2115.3 (3)N1—C6—N3110.6 (4)
C6—N1—C5102.4 (3)N1—C6—H6A124.7
C2—C1—H1B109.5N3—C6—H6A124.7
C2—C1—H1C109.5C15—C7—N3119.1 (3)
H1B—C1—H1C109.5C15—C7—C8125.8 (3)
C2—C1—H1D109.5N3—C7—C8115.1 (3)
H1B—C1—H1D109.5O3—C8—C7120.5 (3)
H1C—C1—H1D109.5O3—C8—C9121.1 (3)
C15—S2—C14103.51 (15)C7—C8—C9118.4 (3)
C5—N2—N3101.2 (3)C14—C9—C10117.7 (3)
C1—C2—O1108.4 (3)C14—C9—C8124.3 (3)
C1—C2—H2B110.0C10—C9—C8117.9 (3)
O1—C2—H2B110.0C11—C10—C9121.4 (3)
C1—C2—H2C110.0C11—C10—H10A119.3
O1—C2—H2C110.0C9—C10—H10A119.3
H2B—C2—H2C108.4C10—C11—C12118.7 (3)
C6—N3—N2109.3 (3)C10—C11—H11A120.7
C6—N3—C7130.1 (3)C12—C11—H11A120.7
N2—N3—C7120.3 (3)F—C12—C13117.9 (3)
O2—C3—O1124.9 (3)F—C12—C11118.6 (3)
O2—C3—C4125.0 (3)C13—C12—C11123.5 (3)
O1—C3—C4110.1 (2)C12—C13—C14117.6 (3)
C3—C4—S1115.4 (2)C12—C13—H13A121.2
C3—C4—H4A108.4C14—C13—H13A121.2
S1—C4—H4A108.4C9—C14—C13121.1 (3)
C3—C4—H4B108.4C9—C14—S2123.5 (2)
S1—C4—H4B108.4C13—C14—S2115.4 (2)
H4A—C4—H4B107.5C7—C15—S2124.3 (2)
N2—C5—N1116.4 (3)C7—C15—S1119.8 (2)
N2—C5—H5A121.8S2—C15—S1115.82 (17)
C3—O1—C2—C1175.4 (3)C7—C8—C9—C10179.1 (3)
C5—N2—N3—C61.3 (4)C14—C9—C10—C111.1 (4)
C5—N2—N3—C7175.4 (3)C8—C9—C10—C11179.6 (3)
C2—O1—C3—O22.9 (5)C9—C10—C11—C120.2 (5)
C2—O1—C3—C4177.9 (3)C10—C11—C12—F179.7 (3)
O2—C3—C4—S111.9 (4)C10—C11—C12—C130.1 (5)
O1—C3—C4—S1168.9 (2)F—C12—C13—C14179.0 (3)
C15—S1—C4—C370.5 (2)C11—C12—C13—C140.6 (5)
N3—N2—C5—N10.9 (5)C10—C9—C14—C131.8 (4)
C6—N1—C5—N20.1 (5)C8—C9—C14—C13178.9 (3)
C5—N1—C6—N30.8 (4)C10—C9—C14—S2179.0 (2)
N2—N3—C6—N11.4 (4)C8—C9—C14—S20.2 (4)
C7—N3—C6—N1174.8 (3)C12—C13—C14—C91.6 (4)
C6—N3—C7—C15131.6 (4)C12—C13—C14—S2179.2 (2)
N2—N3—C7—C1555.7 (4)C15—S2—C14—C90.6 (3)
C6—N3—C7—C848.6 (5)C15—S2—C14—C13178.6 (2)
N2—N3—C7—C8124.1 (3)N3—C7—C15—S2176.7 (2)
C15—C7—C8—O3177.0 (3)C8—C7—C15—S23.0 (5)
N3—C7—C8—O33.3 (4)N3—C7—C15—S12.2 (4)
C15—C7—C8—C93.4 (5)C8—C7—C15—S1178.1 (2)
N3—C7—C8—C9176.4 (3)C14—S2—C15—C70.9 (3)
O3—C8—C9—C14178.7 (3)C14—S2—C15—S1179.85 (16)
C7—C8—C9—C141.6 (4)C4—S1—C15—C7171.9 (2)
O3—C8—C9—C100.6 (5)C4—S1—C15—S29.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O2i0.972.473.199 (4)131
C4—H4B···S20.972.592.963 (3)103
C11—H11A···O2ii0.932.433.276 (4)151
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC15H12FN3O3S2
Mr365.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.3890 (19), 8.2430 (16), 20.861 (4)
β (°) 100.72 (3)
V3)1586.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.898, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
3053, 2867, 2186
Rint0.013
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.151, 1.00
No. of reflections2867
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.32

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O2i0.972.473.199 (4)131
C4—H4B···S20.972.592.963 (3)103
C11—H11A···O2ii0.932.433.276 (4)151
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+2, z.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAdams, H., Bailey, N. A., Giles, P. R. & Marson, C. M. (1991). Acta Cryst. C47, 1332–1334.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLi, Y., Xiao, T., Liu, D. & Yu, G. (2010). Acta Cryst. E66, o694.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakazumi, H., Watanabe, S. & Kitao, T. (1992). J. Chem. Res. 212, 1616–1641.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeiss, R., Bess, M., Huber, S. M. & Heinemann, F. W. (2008). J. Am. Chem. Soc. 130, 4610–4617.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds