organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-Bromo-N-(2,3-dimeth­­oxy­benzyl­­idene)aniline

aInstitute of Physics of the ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic, bFaculty of Applied Sciences, University of West Bohemia, Husova 11, 30611 Pilsen, Czech Republic, and cDepartment of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran
*Correspondence e-mail: fejfarov@fzu.cz

(Received 22 July 2010; accepted 27 July 2010; online 4 August 2010)

The title Schiff base compound, C15H14BrNO2, was prepared by the condensation of 2,3-dimeth­oxy­benzaldehyde with 4-bromo­aniline. It adopts an E configuration with respect to the C=N bond. The dihedral angle between the two aromatic rings is 56.79 (8)°. Weak C—H⋯O and C—-H⋯π bonds can be found in the crystal structure.

Related literature

For applications of Schiff-base compounds, see: Yildiz et al. (2008[Yildiz, M., Unver, H., Dulger, B., Erdener, D., Ocak, N., Erdonmez, A. & Durlu, T. N. (2008). J. Mol. Struct. 738, 253-260.]); Hijji et al. (2009[Hijji, Y. M., Barare, B., Kennedy, A. P. & Butcher, R. (2009). Sens. Actuators B, 136, 297-302.]); Karakas et al. (2008[Karakas, A., Univer, H. & Elmali, A. (2008). J. Mol. Struct. 877, 152-157.]). For related structures, see: Khalaji et al. (2007[Khalaji, A. D., Slawin, A. M. Z. & Woollins, J. D. (2007). Acta Cryst. E63, o4257.], 2009[Khalaji, A. D., Weil, M., Gotoh, K. & Ishida, H. (2009). Acta Cryst. E65, o436.]); Khalaji & Harrison (2008[Khalaji, A. D. & Harrison, W. T. A. (2008). Anal. Sci. 24, x3-x4.]); Khalaji & Simpson (2009[Khalaji, A. D. & Simpson, J. (2009). Acta Cryst. E65, o553.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14BrNO2

  • Mr = 320.2

  • Orthorhombic, P b c a

  • a = 13.9978 (2) Å

  • b = 7.0557 (1) Å

  • c = 27.3758 (4) Å

  • V = 2703.75 (7) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 4.13 mm−1

  • T = 120 K

  • 0.55 × 0.33 × 0.23 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector

  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.365, Tmax = 0.698

  • 24799 measured reflections

  • 2365 independent reflections

  • 2178 reflections with I > 3σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.123

  • S = 1.82

  • 2365 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the dimeth­oxy-substituted aromatic ring C2–C7.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O2i 0.96 2.48 3.425 (3) 167
C7—H7⋯Cg1ii 0.96 2.84 3.680 (2) 147
C14—H14⋯Cg1iii 0.96 2.77 3.618 (2) 147
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

The condensation reactions of carbonyl compounds with amines have been extensively used for preparation of the Schiff-base compounds (Yildiz et al., 2008; Hijji et al., 2009; Karakas et al., 2008) which have an importance in diverse fields of chemistry due to their antimicrobial activity (Yildiz et al., 2008), anion sensor properties (Hijji et al., 2009) and applications in nonlinear optic (Karakas et al., 2008). As a continuation of our work on the synthesis and structural characterization of Schiff-base compounds (Khalaji et al., 2007; Khalaji & Harrison, 2008; Khalaji & Simpson, 2009; Khalaji et al., 2009), herein, we report the synthesis and crystal structure of (E)-4-bromo-N-(2,3-dimethoxybenzylidene)aniline (1).

An ORTEP plot, with the atomic numbering scheme is depicted in Fig. 1. Bond lengths in the title compound are in normal range (Allen et al., 1987). The C1—N1 and C10—N1 bond lengths of 1.279 (3), 1.416 (3) Å, respectively, conform to the value for a double and single bonds and they are comparable with the corresponding bond lengths in similar Schiff-base compounds (Khalaji et al., 2007; Khalaji & Harrison, 2008; Khalaji & Simpson, 2009; Khalaji et al., 2009).

The dihedral angle between the two aromatic rings is 56.79 (8)°, while the plane through the central C10—N1—C1—C2 system is inclined at 8.06 (18)° to the dimethoxyphenyl ring and 48.83 (18)° to the bromobenzene ring.

The methoxy group attached at C3 is twisted away from the C2—C7 benzene ring, with corresponding torsion angles C8—O1—C3—C2 113.2 (2)°, while the methoxy group attached at C4 is coplanar with the C2—C7 ring, as shown by the torsion angle C9—O2—C4—C5 of 0.5 (3)°.

In the crystal, molecules are connected by weak C—H···O and C—H···π interactions into layers stacked along c (Fig. 2). The layers are further stabilized by aromatic π-π stacking interactions with centroid-centroid distance of 3.8162 (13) Å.

Related literature top

For applications of Schiff-base compounds, see: Yildiz et al. (2008); Hijji et al. (2009); Karakas et al. (2008). For related structures, see: Khalaji et al. (2007, 2009); Khalaji & Harrison (2008); Khalaji & Simpson (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared in 88% yield from 2,3-dimethoxybenzaldehyde and 4-bromoaniline as reported elsewhere (Khalaji & Harrison, 2008) and recrystallized from chloroform. Anal. Calc. for C15H14BrNO2: C, 56.27; H, 4.41; N, 4.38%. Found: C, 56.45; H, 4.58; N, 4.62%. IR (KBr pellet, cm-1): 2910–2997 (m, C—H aromatic and aliphatic), 2836 (s, –CH=N–); 1605 (s, C=N), 1417–1578 (C=C aromatic).

Refinement top

All hydrogen atoms were discernible in difference Fourier maps and could be refined to reasonable geometry. According to common practice they were nevertheless kept in ideal positions with C–H distance 0.96 Å during the refinement. The methyl H atoms were allowed to rotate freely about the adjacent C—O bonds. The isotropic atomic displacement parameters of hydrogen atoms were set to 1.5×Ueq (methyl groups) and 1.2×Ueq of the parent atom.

Structure description top

The condensation reactions of carbonyl compounds with amines have been extensively used for preparation of the Schiff-base compounds (Yildiz et al., 2008; Hijji et al., 2009; Karakas et al., 2008) which have an importance in diverse fields of chemistry due to their antimicrobial activity (Yildiz et al., 2008), anion sensor properties (Hijji et al., 2009) and applications in nonlinear optic (Karakas et al., 2008). As a continuation of our work on the synthesis and structural characterization of Schiff-base compounds (Khalaji et al., 2007; Khalaji & Harrison, 2008; Khalaji & Simpson, 2009; Khalaji et al., 2009), herein, we report the synthesis and crystal structure of (E)-4-bromo-N-(2,3-dimethoxybenzylidene)aniline (1).

An ORTEP plot, with the atomic numbering scheme is depicted in Fig. 1. Bond lengths in the title compound are in normal range (Allen et al., 1987). The C1—N1 and C10—N1 bond lengths of 1.279 (3), 1.416 (3) Å, respectively, conform to the value for a double and single bonds and they are comparable with the corresponding bond lengths in similar Schiff-base compounds (Khalaji et al., 2007; Khalaji & Harrison, 2008; Khalaji & Simpson, 2009; Khalaji et al., 2009).

The dihedral angle between the two aromatic rings is 56.79 (8)°, while the plane through the central C10—N1—C1—C2 system is inclined at 8.06 (18)° to the dimethoxyphenyl ring and 48.83 (18)° to the bromobenzene ring.

The methoxy group attached at C3 is twisted away from the C2—C7 benzene ring, with corresponding torsion angles C8—O1—C3—C2 113.2 (2)°, while the methoxy group attached at C4 is coplanar with the C2—C7 ring, as shown by the torsion angle C9—O2—C4—C5 of 0.5 (3)°.

In the crystal, molecules are connected by weak C—H···O and C—H···π interactions into layers stacked along c (Fig. 2). The layers are further stabilized by aromatic π-π stacking interactions with centroid-centroid distance of 3.8162 (13) Å.

For applications of Schiff-base compounds, see: Yildiz et al. (2008); Hijji et al. (2009); Karakas et al. (2008). For related structures, see: Khalaji et al. (2007, 2009); Khalaji & Harrison (2008); Khalaji & Simpson (2009). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. The molecular structure of C15H14BrNO2 with atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of title coumpound viewed along the b axis. Hydrogen bonds are displayed as blue dashed lines, C—H···π interactions as red dashed lines.
(E)-4-Bromo-N-(2,3-dimethoxybenzylidene)aniline top
Crystal data top
C15H14BrNO2F(000) = 1296
Mr = 320.2Dx = 1.573 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ac 2abCell parameters from 17724 reflections
a = 13.9978 (2) Åθ = 3.2–66.7°
b = 7.0557 (1) ŵ = 4.13 mm1
c = 27.3758 (4) ÅT = 120 K
V = 2703.75 (7) Å3Prism, colourless
Z = 80.55 × 0.33 × 0.23 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
2365 independent reflections
Radiation source: X-ray tube2178 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.041
Detector resolution: 10.3784 pixels mm-1θmax = 66.8°, θmin = 4.5°
Rotation method data acquisition using ω scansh = 1616
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 88
Tmin = 0.365, Tmax = 0.698l = 3232
24799 measured reflections
Refinement top
Refinement on F256 constraints
R[F > 3σ(F)] = 0.030H-atom parameters constrained
wR(F) = 0.123Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0035999999I2]
S = 1.82(Δ/σ)max = 0.004
2365 reflectionsΔρmax = 0.28 e Å3
172 parametersΔρmin = 0.31 e Å3
0 restraints
Crystal data top
C15H14BrNO2V = 2703.75 (7) Å3
Mr = 320.2Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 13.9978 (2) ŵ = 4.13 mm1
b = 7.0557 (1) ÅT = 120 K
c = 27.3758 (4) Å0.55 × 0.33 × 0.23 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
2365 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
2178 reflections with I > 3σ(I)
Tmin = 0.365, Tmax = 0.698Rint = 0.041
24799 measured reflections
Refinement top
R[F > 3σ(F)] = 0.0300 restraints
wR(F) = 0.123H-atom parameters constrained
S = 1.82Δρmax = 0.28 e Å3
2365 reflectionsΔρmin = 0.31 e Å3
172 parameters
Special details top

Experimental. CrysAlisPro, Oxford Diffraction (2009), Analytical numeric absorption correction using a multifaceted crystal model.

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.301516 (18)0.35856 (4)0.297810 (9)0.03286 (15)
O10.46379 (10)0.9683 (2)0.56018 (5)0.0238 (5)
O20.48573 (11)1.0730 (2)0.65342 (6)0.0293 (5)
N10.30118 (11)0.5268 (3)0.51592 (7)0.0204 (6)
C10.35592 (14)0.6587 (3)0.53157 (8)0.0212 (6)
C20.36519 (14)0.7060 (3)0.58364 (8)0.0210 (6)
C30.41859 (14)0.8666 (3)0.59624 (8)0.0208 (6)
C40.42987 (14)0.9178 (3)0.64562 (8)0.0245 (7)
C50.38574 (16)0.8110 (4)0.68186 (8)0.0278 (7)
C60.33284 (18)0.6502 (3)0.66869 (9)0.0285 (7)
C70.32263 (16)0.5970 (3)0.62059 (9)0.0248 (7)
C80.42620 (16)1.1557 (3)0.55295 (9)0.0279 (7)
C90.5018 (3)1.1323 (5)0.70222 (9)0.0479 (11)
C100.30271 (13)0.4922 (3)0.46499 (9)0.0217 (7)
C110.21645 (16)0.4759 (3)0.43955 (8)0.0215 (7)
C120.21516 (16)0.4411 (3)0.38997 (9)0.0239 (7)
C130.30115 (14)0.4180 (4)0.36557 (9)0.0235 (7)
C140.38827 (15)0.4325 (3)0.38971 (8)0.0248 (7)
C150.38811 (15)0.4684 (3)0.43928 (8)0.0228 (7)
H10.3925410.7299230.508280.0255*
H50.3914540.8469170.7155550.0334*
H60.303090.5755720.6937540.0342*
H70.2865330.4858190.6123570.0298*
H8a0.4450191.2015210.5213560.0419*
H8b0.3577491.1521480.5549140.0419*
H8c0.4507231.2387760.5777350.0419*
H9a0.5532711.2220560.7029510.0718*
H9b0.4448711.1904390.7148120.0718*
H9c0.5180041.0244480.7219290.0718*
H110.1571970.4891410.4568740.0259*
H120.1556730.4330570.372640.0287*
H140.4473040.4178360.3722670.0298*
H150.4477820.4770420.456410.0273*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0370 (3)0.0382 (3)0.0233 (3)0.00213 (10)0.00027 (8)0.00306 (9)
O10.0186 (7)0.0251 (8)0.0277 (8)0.0003 (6)0.0057 (6)0.0002 (6)
O20.0230 (8)0.0386 (10)0.0263 (8)0.0067 (7)0.0009 (6)0.0076 (7)
N10.0158 (9)0.0199 (10)0.0256 (11)0.0023 (6)0.0014 (6)0.0015 (8)
C10.0139 (10)0.0246 (12)0.0252 (11)0.0035 (8)0.0010 (8)0.0020 (8)
C20.0135 (9)0.0233 (11)0.0261 (11)0.0043 (8)0.0008 (8)0.0001 (9)
C30.0135 (9)0.0245 (12)0.0243 (11)0.0041 (8)0.0011 (8)0.0004 (8)
C40.0165 (10)0.0283 (12)0.0289 (12)0.0034 (9)0.0012 (9)0.0024 (9)
C50.0233 (11)0.0359 (13)0.0242 (12)0.0024 (10)0.0008 (9)0.0027 (10)
C60.0251 (11)0.0347 (14)0.0259 (13)0.0005 (9)0.0025 (10)0.0057 (9)
C70.0187 (9)0.0256 (12)0.0302 (13)0.0007 (9)0.0009 (9)0.0017 (10)
C80.0245 (11)0.0276 (13)0.0316 (13)0.0026 (9)0.0002 (10)0.0026 (9)
C90.0532 (19)0.061 (2)0.0292 (16)0.0202 (15)0.0065 (11)0.0175 (11)
C100.0199 (11)0.0188 (12)0.0265 (13)0.0005 (8)0.0002 (7)0.0029 (9)
C110.0160 (10)0.0212 (12)0.0274 (13)0.0005 (8)0.0003 (8)0.0024 (9)
C120.0187 (10)0.0238 (13)0.0291 (13)0.0022 (9)0.0054 (9)0.0012 (9)
C130.0258 (12)0.0222 (12)0.0225 (12)0.0004 (8)0.0002 (8)0.0043 (9)
C140.0182 (11)0.0266 (13)0.0296 (12)0.0041 (9)0.0043 (9)0.0012 (9)
C150.0159 (10)0.0222 (12)0.0302 (12)0.0001 (8)0.0028 (8)0.0011 (9)
Geometric parameters (Å, º) top
Br1—C131.902 (2)C7—H70.96
O1—C31.375 (3)C8—H8a0.96
O1—C81.437 (3)C8—H8b0.96
O2—C41.362 (3)C8—H8c0.96
O2—C91.418 (3)C9—H9a0.96
N1—C11.279 (3)C9—H9b0.96
N1—C101.416 (3)C9—H9c0.96
C1—C21.470 (3)C10—C111.399 (3)
C1—H10.96C10—C151.397 (3)
C2—C31.401 (3)C11—C121.380 (3)
C2—C71.403 (3)C11—H110.96
C3—C41.408 (3)C12—C131.386 (3)
C4—C51.391 (3)C12—H120.96
C5—C61.402 (3)C13—C141.391 (3)
C5—H50.96C14—C151.380 (3)
C6—C71.377 (3)C14—H140.96
C6—H60.96C15—H150.96
C3—O1—C8114.26 (16)H8a—C8—H8b109.4709
C4—O2—C9118.40 (19)H8a—C8—H8c109.4712
C1—N1—C10116.48 (19)H8b—C8—H8c109.4719
N1—C1—C2122.9 (2)O2—C9—H9a109.4702
N1—C1—H1118.5696O2—C9—H9b109.4705
C2—C1—H1118.5683O2—C9—H9c109.4702
C1—C2—C3118.01 (19)H9a—C9—H9b109.4713
C1—C2—C7122.51 (19)H9a—C9—H9c109.472
C3—C2—C7119.5 (2)H9b—C9—H9c109.473
O1—C3—C2119.40 (19)N1—C10—C11119.44 (18)
O1—C3—C4120.25 (18)N1—C10—C15121.99 (18)
C2—C3—C4120.3 (2)C11—C10—C15118.5 (2)
O2—C4—C3114.91 (19)C10—C11—C12121.1 (2)
O2—C4—C5125.4 (2)C10—C11—H11119.4722
C3—C4—C5119.7 (2)C12—C11—H11119.4722
C4—C5—C6119.3 (2)C11—C12—C13118.9 (2)
C4—C5—H5120.337C11—C12—H12120.5379
C6—C5—H5120.3378C13—C12—H12120.5366
C5—C6—C7121.4 (2)Br1—C13—C12119.89 (16)
C5—C6—H6119.2822Br1—C13—C14118.51 (16)
C7—C6—H6119.2822C12—C13—C14121.6 (2)
C2—C7—C6119.7 (2)C13—C14—C15118.6 (2)
C2—C7—H7120.1302C13—C14—H14120.6854
C6—C7—H7120.13C15—C14—H14120.6846
O1—C8—H8a109.4703C10—C15—C14121.2 (2)
O1—C8—H8b109.4718C10—C15—H15119.378
O1—C8—H8c109.4712C14—C15—H15119.3768
C8—O1—C3—C2113.2 (2)C10—N1—C1—C2177.41 (18)
C8—O1—C3—C470.0 (2)C1—N1—C10—C11132.3 (2)
C9—O2—C4—C3179.1 (2)C1—N1—C10—C1549.5 (3)
C9—O2—C4—C50.5 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the dimethoxy-substituted aromatic ring.
D—H···AD—HH···AD···AD—H···A
C12—H12···O2i0.962.483.425 (3)167
C7—H7···Cg1ii0.962.843.680 (2)147
C14—H14···Cg1iii0.962.773.618 (2)147
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x, y1/2, z+1/2; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H14BrNO2
Mr320.2
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)120
a, b, c (Å)13.9978 (2), 7.0557 (1), 27.3758 (4)
V3)2703.75 (7)
Z8
Radiation typeCu Kα
µ (mm1)4.13
Crystal size (mm)0.55 × 0.33 × 0.23
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
Absorption correctionAnalytical
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.365, 0.698
No. of measured, independent and
observed [I > 3σ(I)] reflections
24799, 2365, 2178
Rint0.041
(sin θ/λ)max1)0.596
Refinement
R[F > 3σ(F)], wR(F), S 0.030, 0.123, 1.82
No. of reflections2365
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.31

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR2002 (Burla et al., 2003), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the dimethoxy-substituted aromatic ring.
D—H···AD—HH···AD···AD—H···A
C12—H12···O2i0.962.483.425 (3)167
C7—H7···Cg1ii0.962.843.680 (2)147
C14—H14···Cg1iii0.962.773.618 (2)147
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x, y1/2, z+1/2; (iii) x+1, y+1, z+1.
 

Acknowledgements

We acknowledge Golestan University (GU), the Institutional research plan No. AVOZ10100521 of the Institute of Physics and the Czech Ministry of Education, Youth and Sports, Project MSM 4977751303.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationHijji, Y. M., Barare, B., Kennedy, A. P. & Butcher, R. (2009). Sens. Actuators B, 136, 297–302.  Web of Science CrossRef CAS Google Scholar
First citationKarakas, A., Univer, H. & Elmali, A. (2008). J. Mol. Struct. 877, 152–157.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhalaji, A. D. & Harrison, W. T. A. (2008). Anal. Sci. 24, x3–x4.  CAS Google Scholar
First citationKhalaji, A. D. & Simpson, J. (2009). Acta Cryst. E65, o553.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhalaji, A. D., Slawin, A. M. Z. & Woollins, J. D. (2007). Acta Cryst. E63, o4257.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhalaji, A. D., Weil, M., Gotoh, K. & Ishida, H. (2009). Acta Cryst. E65, o436.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.  Google Scholar
First citationYildiz, M., Unver, H., Dulger, B., Erdener, D., Ocak, N., Erdonmez, A. & Durlu, T. N. (2008). J. Mol. Struct. 738, 253–260.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds