organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(4-amino­pyridinium) sulfate monohydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bOrganic Chemistry Division, Department of Chemistry, National Institute of Technology–Karnataka, Surathkal, Mangalore 575 025, India, and cBiotechnology Division, Chemical Engineering Department, National Institute of Technology–Karnataka, Surathkal, Mangalore 575 025, India
*Correspondence e-mail: hkfun@usm.my

(Received 26 July 2010; accepted 3 August 2010; online 11 August 2010)

The asymmetric unit of the title compound, 2C5H7N2+·SO42−·H2O, contains two 4-amino­pyridinium cations (A and B), a sulfate dianion and a water mol­ecule. One of the 4-amino­pyridinium cations (B) is disordered over two orientations with refined site occupancies of 0.568 (4) and 0.432 (4). The non-H atoms of the 4-amino­pyridinium cations are essentially coplanar, with a maximum deviation of 0.055 (1) Å (in cation A), 0.022 (3) Å (for the major component in cation B) and 0.009 (3) Å (for the minor component in cation B). In the crystal, the sulfate O atoms link the 4-amino­pyridinium cations and water mol­ecules into a three-dimensional network via inter­molecular O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds. The crystal structure is further consolidated by N—H⋯O(water) and C—H⋯O(water) hydrogen bonds.

Related literature

For general background to and the applications of the title compound, see: Judge & Bever (2006[Judge, S. & Bever, C. (2006). Pharmacol. Ther. 111, 224-259.]); Schwid et al. (1997[Schwid, S. B., Petrie, M. D., McDermott, M. P., Tierney, D. S., Mason, D. H. & Goodman, A. D. (1997). Neurology, 48, 817-821.]); Strupp et al. (2004[Strupp, M., Kalla, R., Dichgans, M., Fraitinger, T., Glasauer, S. & Brandt, T. (2004). Neurology, 62, 1623-1625.]); Onoda et al. (2001[Onoda, A., Yamada, Y., Doi, M., Okamura, T. & Ueyama, N. (2001). Inorg. Chem. 40, 516-521.]); Zhang et al. (2004[Zhang, R., Suh, I., Zhao, J., Zhang, D., Fortner, E. C., Tie, X., Molina, L. T. & Molina, M. J. (2004). Science, 304, 1487-1490.]); Pflugrath & Quiocho, (1985[Pflugrath, J. W. & Quiocho, F. A. (1985). Nature (London), 314, 257-260.]); Jacobson & Quiocho (1988[Jacobson, B. L. & Quiocho, F. A. (1988). J. Mol. Biol. 204, 783-787.]). For related structures, see: Quah et al. (2008a[Quah, C. K., Jebas, S. R. & Fun, H.-K. (2008a). Acta Cryst. E64, o1878-o1879.],b[Quah, C. K., Jebas, S. R. & Fun, H.-K. (2008b). Acta Cryst. E64, o2230.], 2010[Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1933-o1934.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • 2C5H7N2+·SO42−·H2O

  • Mr = 304.33

  • Triclinic, [P \overline 1]

  • a = 6.4434 (1) Å

  • b = 8.4153 (1) Å

  • c = 12.4488 (2) Å

  • α = 96.365 (1)°

  • β = 97.534 (1)°

  • γ = 95.387 (1)°

  • V = 661.02 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 100 K

  • 0.33 × 0.25 × 0.07 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.916, Tmax = 0.981

  • 10717 measured reflections

  • 3839 independent reflections

  • 3279 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.106

  • S = 1.06

  • 3839 reflections

  • 259 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2NA⋯O1i 0.85 2.03 2.822 (3) 156
N2A—H1NA⋯O1Wii 0.79 2.07 2.812 (3) 159
N1A—H1AB⋯O1iii 0.86 2.20 2.938 (4) 144
O1W—H1W1⋯O2iv 0.91 (3) 1.88 (3) 2.7952 (19) 176 (3)
O1W—H2W1⋯O1v 0.83 (3) 2.00 (3) 2.8195 (18) 167 (2)
N1—H1N1⋯O4iv 0.88 (3) 1.85 (2) 2.7102 (17) 165 (2)
N2—H1N2⋯O4 0.86 (3) 2.01 (3) 2.8665 (17) 176 (2)
N2—H2N2⋯O3vi 0.862 (19) 1.96 (2) 2.8118 (17) 167.9 (16)
C1—H1A⋯O2vii 0.93 2.46 3.3688 (18) 167
C1A—H1AA⋯O1Wviii 0.93 2.58 3.318 (4) 137
C5A—H5AA⋯O2iii 0.93 2.44 3.228 (7) 143
C4A—H4AA⋯O3i 0.93 2.54 3.362 (6) 147
C5—H5A⋯O4i 0.93 2.52 3.3360 (18) 146
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y, z+1; (iii) -x+1, -y, -z+1; (iv) x, y+1, z; (v) x+1, y+1, z; (vi) x-1, y, z; (vii) x-1, y+1, z; (viii) x, y-1, z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

4-Aminopyridine (fampridine) is clinically used in the treatment of Lambert-Eaton myasthenic syndrome and multiple sclerosis. It prolongs action potentials by blocking potassium channels, thereby increases transmitter release at the neuromuscular junction (Judge & Bever, 2006; Schwid et al., 1997; Strupp et al., 2004). Hydrogen bonding patterns involving sulfate and sulfonate groups in biological systems and metal complexes are also of current interest (Onoda et al., 2001). Benzoic acid and sulfuric acid form a stable hydrogen-bonded complex that favors aerosol formation in the atmosphere (Zhang et al., 2004). In a sulfate-binding protein, the sulfate anion is mainly bonded by seven hydrogen bonds, five of which are from the main chain peptide NH groups (Pflugrath & Quiocho, 1985; Jacobson & Quiocho, 1988). The present study is aimed at understanding the hydrogen bonding network in the title compound (I).

The asymmetric unit of (I) contains two 4-aminopyridinium cations (A and B), a sulfate anion and a water molecule (Fig 1). The 4-aminopyridinium cation in molecule B is disordered over two positions with refined site-occupancies of 0.568 (4) and 0.432 (4). In the 4-aminopyridinium cations, the protonation of atoms N1 (molecule A), N1A (major component in molecule B) and N1B (minor component in molecule B) have lead to slight increase in C–N–C angles to 120.88 (13), 120.9 (4) and 119.7 (5)°, respectively. The non-H atoms of the 4-aminopyridinium cations are essentially co-planar, with a maximum deviation of 0.055 (1) Å for atom N2, 0.022 (3) Å for atom N2A and 0.009 (3) Å for atom N2B. The bond lengths (Allen et al., 1987) and angles are normal and comparable to the related structures (Quah et al., 2008a,b; 2010). The pyridine ring (N1/C1—C5) in molecule A makes dihedral angles of 68.46 (19) and 70.1 (2)°, respectively, with N1A/C1A—C5A and N1B/C1B—C5B rings.

In the crystal packing (Fig. 2), oxygen atoms (O1, O2, O3 and O4) in sulfate anions link the 4-aminopyridinium cations and water molecules into three-dimensional network via intermolecular O–H···O, N–H···O and C–H···O hydrogen bonds (Table 1). The crystal structure is further consolidated by N2A–H1NA···O1W and C1A–H1AA···O1W hydrogen bonds.

Related literature top

For general background to and the applications of the title compound, see: Judge & Bever (2006); Schwid et al. (1997); Strupp et al. (2004); Onoda et al. (2001); Zhang et al. (2004); Pflugrath & Quiocho, (1985); Jacobson & Quiocho (1988). For related structures, see: Quah et al. (2008a,b, 2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For bond-length data, see: Allen et al. (1987).

Experimental top

Few drops of concentrated sulfuric acid were added to a hot methanol solution of 4-aminopyridine (47 mg, Aldrich). The solution was warmed over a water bath for 1 h. The resulting solution was allowed to cool slowly to room temperature. Colourless crystals appeared from the mother liquor after a few days. Yield 60%.

Refinement top

Atoms H1NA, H2NA, H1NB, H2NB, H1AB and H1BA were located in a difference Fourier map and refined using a riding model with N–H = 0.7856 – 0.8900 Å. The remaining O– and N– bound H atoms were located in a difference Fourier map and allowed to refine freely. The rest of the hydrogen atoms were positioned geometrically and refined using a riding model with C–H = 0.93 Å and Uiso(H) = 1.2 Ueq(C). One of the 4-aminopyridinium cations is disordered over two positions with refined site-occupancies of 0.568 (4) and 0.432 (4). The same Uij parameters were used for atom pair C1A/C2A. The highest residual electron density peak is located at 0.72 Å from O1W and the deepest hole is located at 0.68 Å from O1W.

Structure description top

4-Aminopyridine (fampridine) is clinically used in the treatment of Lambert-Eaton myasthenic syndrome and multiple sclerosis. It prolongs action potentials by blocking potassium channels, thereby increases transmitter release at the neuromuscular junction (Judge & Bever, 2006; Schwid et al., 1997; Strupp et al., 2004). Hydrogen bonding patterns involving sulfate and sulfonate groups in biological systems and metal complexes are also of current interest (Onoda et al., 2001). Benzoic acid and sulfuric acid form a stable hydrogen-bonded complex that favors aerosol formation in the atmosphere (Zhang et al., 2004). In a sulfate-binding protein, the sulfate anion is mainly bonded by seven hydrogen bonds, five of which are from the main chain peptide NH groups (Pflugrath & Quiocho, 1985; Jacobson & Quiocho, 1988). The present study is aimed at understanding the hydrogen bonding network in the title compound (I).

The asymmetric unit of (I) contains two 4-aminopyridinium cations (A and B), a sulfate anion and a water molecule (Fig 1). The 4-aminopyridinium cation in molecule B is disordered over two positions with refined site-occupancies of 0.568 (4) and 0.432 (4). In the 4-aminopyridinium cations, the protonation of atoms N1 (molecule A), N1A (major component in molecule B) and N1B (minor component in molecule B) have lead to slight increase in C–N–C angles to 120.88 (13), 120.9 (4) and 119.7 (5)°, respectively. The non-H atoms of the 4-aminopyridinium cations are essentially co-planar, with a maximum deviation of 0.055 (1) Å for atom N2, 0.022 (3) Å for atom N2A and 0.009 (3) Å for atom N2B. The bond lengths (Allen et al., 1987) and angles are normal and comparable to the related structures (Quah et al., 2008a,b; 2010). The pyridine ring (N1/C1—C5) in molecule A makes dihedral angles of 68.46 (19) and 70.1 (2)°, respectively, with N1A/C1A—C5A and N1B/C1B—C5B rings.

In the crystal packing (Fig. 2), oxygen atoms (O1, O2, O3 and O4) in sulfate anions link the 4-aminopyridinium cations and water molecules into three-dimensional network via intermolecular O–H···O, N–H···O and C–H···O hydrogen bonds (Table 1). The crystal structure is further consolidated by N2A–H1NA···O1W and C1A–H1AA···O1W hydrogen bonds.

For general background to and the applications of the title compound, see: Judge & Bever (2006); Schwid et al. (1997); Strupp et al. (2004); Onoda et al. (2001); Zhang et al. (2004); Pflugrath & Quiocho, (1985); Jacobson & Quiocho (1988). For related structures, see: Quah et al. (2008a,b, 2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. Both disordered components are shown.
[Figure 2] Fig. 2. The crystal structure of the title compound viewed along the a axis. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity. Only major disorder component is shown.
Bis(4-aminopyridinium) sulfate monohydrate top
Crystal data top
2C5H7N2+·SO42·H2OZ = 2
Mr = 304.33F(000) = 320
Triclinic, P1Dx = 1.529 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.4434 (1) ÅCell parameters from 3597 reflections
b = 8.4153 (1) Åθ = 3.1–30.1°
c = 12.4488 (2) ŵ = 0.27 mm1
α = 96.365 (1)°T = 100 K
β = 97.534 (1)°Plate, colourless
γ = 95.387 (1)°0.33 × 0.25 × 0.07 mm
V = 661.02 (2) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3839 independent reflections
Radiation source: fine-focus sealed tube3279 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 30.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.916, Tmax = 0.981k = 1111
10717 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0441P)2 + 0.4122P]
where P = (Fo2 + 2Fc2)/3
3839 reflections(Δ/σ)max < 0.001
259 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
2C5H7N2+·SO42·H2Oγ = 95.387 (1)°
Mr = 304.33V = 661.02 (2) Å3
Triclinic, P1Z = 2
a = 6.4434 (1) ÅMo Kα radiation
b = 8.4153 (1) ŵ = 0.27 mm1
c = 12.4488 (2) ÅT = 100 K
α = 96.365 (1)°0.33 × 0.25 × 0.07 mm
β = 97.534 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3839 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3279 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 0.981Rint = 0.027
10717 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.59 e Å3
3839 reflectionsΔρmin = 0.55 e Å3
259 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.41695 (5)0.12500 (4)0.29301 (3)0.01520 (10)
O40.28974 (17)0.13054 (13)0.38487 (9)0.0210 (2)
O30.52927 (17)0.28476 (13)0.29263 (10)0.0217 (2)
O20.56565 (18)0.00390 (14)0.30613 (10)0.0256 (3)
O10.27120 (18)0.08095 (15)0.18901 (10)0.0277 (3)
N20.0310 (2)0.34101 (15)0.35023 (11)0.0172 (2)
C50.2971 (2)0.72142 (18)0.42897 (12)0.0182 (3)
H5A0.43730.76070.45270.022*
N10.1519 (2)0.82613 (16)0.41396 (11)0.0192 (3)
C30.0277 (2)0.49838 (17)0.37303 (11)0.0144 (3)
C20.1204 (2)0.61239 (18)0.36079 (12)0.0168 (3)
H2A0.26250.57750.33920.020*
O1W0.8386 (2)0.96841 (16)0.15025 (14)0.0355 (3)
C40.2413 (2)0.55943 (17)0.40997 (11)0.0160 (3)
H4A0.34280.48910.42120.019*
C10.0540 (2)0.77280 (18)0.38069 (12)0.0189 (3)
H1A0.15140.84670.37130.023*
C2A0.7722 (12)0.4735 (7)1.0588 (7)0.0238 (7)0.568 (4)
H2AA0.80190.53111.12820.029*0.568 (4)
C1A0.7613 (4)0.3094 (4)1.0482 (3)0.0238 (7)0.568 (4)
H1AA0.78540.25671.10970.029*0.568 (4)
C5A0.6790 (11)0.2982 (7)0.8591 (6)0.0237 (11)0.568 (4)
H5AA0.64610.23700.79100.028*0.568 (4)
C4A0.6891 (9)0.4594 (7)0.8661 (5)0.0175 (10)0.568 (4)
H4AA0.66240.50820.80300.021*0.568 (4)
N2A0.7527 (4)0.7162 (3)0.9771 (2)0.0185 (6)0.568 (4)
H2NA0.72860.75150.91600.028*0.568 (4)
H1NA0.77700.76721.03500.028*0.568 (4)
C3A0.7401 (4)0.5559 (4)0.9691 (2)0.0134 (6)0.568 (4)
N1A0.7155 (4)0.2243 (4)0.9482 (3)0.0263 (7)0.568 (4)
H1AB0.70390.12170.93500.032*0.568 (4)
N2B0.7174 (5)0.1525 (5)0.9860 (3)0.0219 (8)0.432 (4)
H1NB0.75420.11781.05000.033*0.432 (4)
H2NB0.71060.08550.93120.033*0.432 (4)
C1B0.7723 (6)0.5882 (5)1.0409 (4)0.0270 (10)0.432 (4)
H1BB0.78210.67601.08680.040*0.432 (4)
N1B0.7377 (5)0.6283 (6)0.9395 (4)0.0257 (9)0.432 (4)
H1BA0.74210.72790.92940.038*0.432 (4)
C3B0.7256 (5)0.3062 (6)0.9719 (3)0.0173 (8)0.432 (4)
C4B0.6880 (12)0.3543 (9)0.8640 (6)0.0168 (13)0.432 (4)
H4BA0.65840.27710.80300.020*0.432 (4)
C5B0.6959 (13)0.5103 (9)0.8524 (7)0.0208 (13)0.432 (4)
H5BA0.67210.54000.78240.025*0.432 (4)
C2B0.7688 (12)0.4344 (6)1.0631 (6)0.0153 (12)0.432 (4)
H2BA0.79320.41121.13470.018*0.432 (4)
H1W10.750 (5)0.985 (4)0.201 (3)0.067 (9)*
H2W10.963 (5)1.006 (3)0.172 (2)0.054 (8)*
H1N10.193 (3)0.929 (3)0.4163 (18)0.033 (6)*
H1N20.061 (4)0.275 (3)0.3623 (17)0.031 (6)*
H2N20.163 (3)0.309 (2)0.3310 (16)0.023 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01105 (16)0.01034 (16)0.02362 (18)0.00082 (11)0.00082 (12)0.00180 (12)
O40.0194 (5)0.0152 (5)0.0305 (6)0.0027 (4)0.0077 (4)0.0058 (4)
O30.0194 (5)0.0141 (5)0.0311 (6)0.0032 (4)0.0040 (4)0.0044 (4)
O20.0208 (6)0.0197 (5)0.0401 (7)0.0100 (4)0.0077 (5)0.0098 (5)
O10.0191 (5)0.0286 (6)0.0303 (6)0.0024 (5)0.0056 (5)0.0071 (5)
N20.0142 (6)0.0140 (6)0.0232 (6)0.0016 (5)0.0031 (5)0.0004 (5)
C50.0158 (6)0.0202 (7)0.0181 (6)0.0016 (5)0.0036 (5)0.0021 (5)
N10.0226 (6)0.0137 (6)0.0217 (6)0.0008 (5)0.0062 (5)0.0027 (5)
C30.0158 (6)0.0156 (6)0.0123 (6)0.0011 (5)0.0036 (5)0.0026 (5)
C20.0152 (6)0.0182 (7)0.0176 (6)0.0024 (5)0.0028 (5)0.0032 (5)
O1W0.0192 (6)0.0249 (6)0.0622 (10)0.0008 (5)0.0094 (6)0.0017 (6)
C40.0145 (6)0.0175 (7)0.0163 (6)0.0025 (5)0.0024 (5)0.0029 (5)
C10.0206 (7)0.0169 (7)0.0210 (7)0.0049 (5)0.0052 (5)0.0048 (5)
C2A0.0165 (11)0.0299 (17)0.0289 (14)0.0066 (10)0.0065 (9)0.0130 (11)
C1A0.0165 (11)0.0299 (17)0.0289 (14)0.0066 (10)0.0065 (9)0.0130 (11)
C5A0.0209 (17)0.016 (3)0.0340 (19)0.003 (2)0.0088 (13)0.005 (2)
C4A0.0193 (15)0.015 (3)0.0171 (19)0.001 (2)0.0023 (12)0.0004 (19)
N2A0.0209 (11)0.0122 (13)0.0214 (11)0.0026 (8)0.0036 (8)0.0034 (9)
C3A0.0089 (11)0.0152 (14)0.0161 (15)0.0024 (9)0.0029 (9)0.0000 (11)
N1A0.0228 (13)0.0104 (15)0.0475 (19)0.0020 (11)0.0117 (12)0.0029 (15)
N2B0.0266 (17)0.0202 (18)0.0188 (15)0.0024 (13)0.0015 (12)0.0037 (13)
C1B0.0173 (18)0.025 (2)0.036 (3)0.0006 (14)0.0071 (16)0.0072 (18)
N1B0.0165 (16)0.015 (2)0.047 (2)0.0037 (13)0.0092 (14)0.004 (2)
C3B0.0114 (15)0.020 (2)0.020 (2)0.0028 (14)0.0025 (12)0.0010 (16)
C4B0.019 (2)0.018 (4)0.016 (2)0.005 (3)0.0026 (15)0.007 (3)
C5B0.018 (2)0.017 (4)0.030 (3)0.007 (3)0.0061 (17)0.008 (2)
C2B0.0112 (16)0.029 (3)0.0062 (16)0.004 (2)0.0031 (12)0.002 (2)
Geometric parameters (Å, º) top
S1—O31.4666 (11)C5A—N1A1.335 (9)
S1—O21.4706 (11)C5A—C4A1.345 (5)
S1—O11.4849 (12)C5A—H5AA0.9300
S1—O41.4909 (12)C4A—C3A1.422 (6)
N2—C31.3311 (18)C4A—H4AA0.9300
N2—H1N20.86 (2)N2A—C3A1.335 (4)
N2—H2N20.86 (2)N2A—H2NA0.8477
C5—N11.354 (2)N2A—H1NA0.7856
C5—C41.363 (2)N1A—H1AB0.8555
C5—H5A0.9300N2B—C3B1.321 (6)
N1—C11.355 (2)N2B—H1NB0.8900
N1—H1N10.88 (2)N2B—H2NB0.8295
C3—C41.4208 (19)C1B—N1B1.339 (6)
C3—C21.421 (2)C1B—C2B1.352 (6)
C2—C11.362 (2)C1B—H1BB0.8750
C2—H2A0.9300N1B—C5B1.367 (11)
O1W—H1W10.91 (3)N1B—H2NA1.1125
O1W—H2W10.83 (3)N1B—H1BA0.8600
C4—H4A0.9300C3B—C4B1.443 (8)
C1—H1A0.9300C3B—C2B1.456 (8)
C2A—C1A1.366 (6)C4B—C5B1.334 (7)
C2A—C3A1.381 (8)C4B—H4BA0.9300
C2A—H2AA0.9300C5B—H5BA0.9300
C1A—N1A1.347 (5)C2B—H2BA0.9300
C1A—H1AA0.9300
O3—S1—O2110.89 (7)H1NA—N2A—H1BB46.1
O3—S1—O1109.12 (7)C3A—N2A—H1BA102.2
O2—S1—O1109.99 (7)H1NA—N2A—H1BA138.1
O3—S1—O4109.09 (7)H1BB—N2A—H1BA175.5
O2—S1—O4109.35 (7)N2A—C3A—C2A122.9 (4)
O1—S1—O4108.35 (7)N2A—C3A—C4A121.2 (4)
C3—N2—H1N2119.4 (15)C2A—C3A—C4A115.9 (4)
C3—N2—H2N2118.3 (13)C2A—C3A—H1BA145.0
H1N2—N2—H2N2121.9 (19)C4A—C3A—H1BA99.1
N1—C5—C4121.14 (13)C5A—N1A—C1A120.9 (4)
N1—C5—H5A119.4C5A—N1A—H1AB113.9
C4—C5—H5A119.4C1A—N1A—H1AB125.2
C5—N1—C1120.88 (13)C5A—N1A—H2NB114.7
C5—N1—H1N1119.8 (15)C1A—N1A—H2NB124.4
C1—N1—H1N1118.7 (14)C3B—N2B—H1AB98.6
N2—C3—C4121.37 (13)C3B—N2B—H1NB123.7
N2—C3—C2121.41 (13)H1AB—N2B—H1NB136.0
C4—C3—C2117.21 (13)C3B—N2B—H2NB117.9
C1—C2—H2A120.0H1NB—N2B—H2NB116.1
C3—C2—H2A120.0N1B—C1B—C2B123.4 (5)
H1W1—O1W—H2W1114 (3)N1B—C1B—H1NA65.4
C5—C4—C3119.81 (13)C2B—C1B—H1NA171.1
C5—C4—H4A120.1N1B—C1B—H1BB108.0
C3—C4—H4A120.1C2B—C1B—H1BB128.3
N1—C1—C2120.94 (14)C1B—N1B—C5B119.7 (5)
N1—C1—H1A119.5C1B—N1B—H2NA126.9
C2—C1—H1A119.5C5B—N1B—H2NA113.3
C1A—C2A—C3A121.7 (7)C1B—N1B—H1BA120.0
C1A—C2A—H2AA119.1C5B—N1B—H1BA120.3
C3A—C2A—H2AA119.1N2B—C3B—C4B120.9 (5)
N1A—C1A—C2A119.7 (5)N2B—C3B—C2B122.3 (4)
N1A—C1A—H1AA120.1C4B—C3B—C2B116.8 (5)
C2A—C1A—H1AA120.1C4B—C3B—H1AB96.6
N1A—C5A—C4A121.2 (6)C2B—C3B—H1AB146.6
N1A—C5A—H5AA119.4C5B—C4B—C3B119.5 (6)
C4A—C5A—H5AA119.4C5B—C4B—H4BA120.2
C5A—C4A—C3A120.6 (5)C3B—C4B—H4BA120.2
C5A—C4A—H4AA119.7C4B—C5B—N1B122.4 (7)
C3A—C4A—H4AA119.7C4B—C5B—H5BA118.8
C3A—N2A—H2NA113.5N1B—C5B—H5BA118.8
C3A—N2A—H1NA119.5C1B—C2B—C3B118.2 (5)
H2NA—N2A—H1NA127.0C1B—C2B—H2BA120.9
C3A—N2A—H1BB73.5C3B—C2B—H2BA120.9
H2NA—N2A—H1BB172.0
C4—C5—N1—C10.7 (2)C5A—C4A—C3A—N2A179.3 (4)
N2—C3—C2—C1177.42 (14)C5A—C4A—C3A—C2A1.6 (7)
C4—C3—C2—C12.2 (2)C4A—C5A—N1A—C1A0.7 (7)
N1—C5—C4—C30.4 (2)C2A—C1A—N1A—C5A0.5 (7)
N2—C3—C4—C5177.75 (13)C2B—C1B—N1B—C5B0.1 (8)
C2—C3—C4—C51.9 (2)N2B—C3B—C4B—C5B179.5 (5)
C5—N1—C1—C20.4 (2)C2B—C3B—C4B—C5B0.6 (8)
C3—C2—C1—N11.1 (2)C3B—C4B—C5B—N1B0.3 (10)
C3A—C2A—C1A—N1A0.9 (8)C1B—N1B—C5B—C4B0.0 (9)
N1A—C5A—C4A—C3A0.3 (8)N1B—C1B—C2B—C3B0.2 (8)
C1A—C2A—C3A—N2A179.1 (4)N2B—C3B—C2B—C1B179.4 (5)
C1A—C2A—C3A—C4A1.8 (8)C4B—C3B—C2B—C1B0.5 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2NA···O1i0.852.032.822 (3)156
N2A—H1NA···O1Wii0.792.072.812 (3)159
N1A—H1AB···O1iii0.862.202.938 (4)144
O1W—H1W1···O2iv0.91 (3)1.88 (3)2.7952 (19)176 (3)
O1W—H2W1···O1v0.83 (3)2.00 (3)2.8195 (18)167 (2)
N1—H1N1···O4iv0.88 (3)1.85 (2)2.7102 (17)165 (2)
N2—H1N2···O40.86 (3)2.01 (3)2.8665 (17)176 (2)
N2—H2N2···O3vi0.862 (19)1.96 (2)2.8118 (17)167.9 (16)
C1—H1A···O2vii0.932.463.3688 (18)167
C1A—H1AA···O1Wviii0.932.583.318 (4)137
C5A—H5AA···O2iii0.932.443.228 (7)143
C4A—H4AA···O3i0.932.543.362 (6)147
C5—H5A···O4i0.932.523.3360 (18)146
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x+1, y, z+1; (iv) x, y+1, z; (v) x+1, y+1, z; (vi) x1, y, z; (vii) x1, y+1, z; (viii) x, y1, z+1.

Experimental details

Crystal data
Chemical formula2C5H7N2+·SO42·H2O
Mr304.33
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.4434 (1), 8.4153 (1), 12.4488 (2)
α, β, γ (°)96.365 (1), 97.534 (1), 95.387 (1)
V3)661.02 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.33 × 0.25 × 0.07
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.916, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
10717, 3839, 3279
Rint0.027
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.106, 1.06
No. of reflections3839
No. of parameters259
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.59, 0.55

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2NA···O1i0.85002.03002.822 (3)156.00
N2A—H1NA···O1Wii0.79002.07002.812 (3)159.00
N1A—H1AB···O1iii0.86002.20002.938 (4)144.00
O1W—H1W1···O2iv0.91 (3)1.88 (3)2.7952 (19)176 (3)
O1W—H2W1···O1v0.83 (3)2.00 (3)2.8195 (18)167 (2)
N1—H1N1···O4iv0.88 (3)1.85 (2)2.7102 (17)165 (2)
N2—H1N2···O40.86 (3)2.01 (3)2.8665 (17)176 (2)
N2—H2N2···O3vi0.862 (19)1.96 (2)2.8118 (17)167.9 (16)
C1—H1A···O2vii0.93002.46003.3688 (18)167.00
C1A—H1AA···O1Wviii0.93002.58003.318 (4)137.00
C5A—H5AA···O2iii0.93002.44003.228 (7)143.00
C4A—H4AA···O3i0.93002.54003.362 (6)147.00
C5—H5A···O4i0.93002.52003.3360 (18)146.00
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x+1, y, z+1; (iv) x, y+1, z; (v) x+1, y+1, z; (vi) x1, y, z; (vii) x1, y+1, z; (viii) x, y1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-5525-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). CKQ also thanks USM for the award of USM fellowship. AMI thanks the Head of the Department of Chemistry Department and the Director of the National Institute of Technology–Karnataka for their encouragement. AMI also thanks Universiti Sains Malaysia for the partial sponsorship of a visit to the X-ray Crystallography Unit.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJacobson, B. L. & Quiocho, F. A. (1988). J. Mol. Biol. 204, 783–787.  CrossRef CAS PubMed Web of Science Google Scholar
First citationJudge, S. & Bever, C. (2006). Pharmacol. Ther. 111, 224–259.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOnoda, A., Yamada, Y., Doi, M., Okamura, T. & Ueyama, N. (2001). Inorg. Chem. 40, 516–521.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPflugrath, J. W. & Quiocho, F. A. (1985). Nature (London), 314, 257–260.  CrossRef CAS PubMed Web of Science Google Scholar
First citationQuah, C. K., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1933–o1934.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQuah, C. K., Jebas, S. R. & Fun, H.-K. (2008a). Acta Cryst. E64, o1878–o1879.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQuah, C. K., Jebas, S. R. & Fun, H.-K. (2008b). Acta Cryst. E64, o2230.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchwid, S. B., Petrie, M. D., McDermott, M. P., Tierney, D. S., Mason, D. H. & Goodman, A. D. (1997). Neurology, 48, 817–821.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStrupp, M., Kalla, R., Dichgans, M., Fraitinger, T., Glasauer, S. & Brandt, T. (2004). Neurology, 62, 1623–1625.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, R., Suh, I., Zhao, J., Zhang, D., Fortner, E. C., Tie, X., Molina, L. T. & Molina, M. J. (2004). Science, 304, 1487–1490.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds