organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

10-(2-Eth­­oxy-1,3-thia­zol-5-yl)-10-hy­dr­oxy­phenanthren-9(10H)-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bSchool of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: hkfun@usm.my

(Received 2 August 2010; accepted 3 August 2010; online 11 August 2010)

In the title compound, C19H15NO3S, the dihydro­phenanthrene unit is not planar, its central ring being distorted towards a sofa conformation. The essentially planar thia­zole ring [maximum deviation = 0.005 (1) Å] is inclined at a dihedral angle of 85.29 (5)° with respect to the mean plane formed through the dihydro­phenanthrene unit. In the crystal structure, pairs of inter­molecular C—H⋯O hydrogen bonds link adjacent mol­ecules into inversion dimers. Inter­molecular O—H⋯N hydrogen bonds further inter­connect these dimers into chains along the a axis. The crystal structure is further stabilized by weak inter­molecular C—H⋯π inter­actions involving the thia­zole ring.

Related literature

For general background to and applications of phenanthrenone derivatives, see: Schuetzle (1983[Schuetzle, D. (1983). Environ. Health Perspect. 47, 65-80.]); Cho et al. (2004[Cho, A. K., Di Stefano, E., Ying, Y., Rodriquez, C. E., Schmitz, D. A., Kumagai, Y., Miguel, A. H., Eiguren-Fernandez, A., Kobayashi, T., Avol, E. & Froines, J. R. (2004). Aerosol Sci. Technol. 38, 68-81.]); Lim et al. (1998[Lim, H. B., Ichinose, T., Miyabara, Y., Takano, H., Kumagai, Y., Shimojyo, N., Devalia, J. L. & Sagai, M. (1998). Free Radical Biol. Med. 25, 635-644.]); Sanbongi et al. (2003[Sanbongi, C., Takano, H., Osakabe, N., Sasa, N., Natsume, M., Yanagisawa, R., Inoue, K., Kato, Y., Osawa, T. & Yoshikawa, T. (2003). Free Radical Biol. Med. 34, 1060-1069.]); Shurygina et al. (2008[Shurygina, M. P., Kurskii, Y. A., Chesnokov, S. A. & Abakumov, G. A. (2008). Tetrahedron, 64, 1459-1466.]); Zhang et al. (2004[Zhang, Y., Wang, L., Zhang, M., Fun, H.-K. & Xu, J.-X. (2004). Org. Lett. 6, 4893-4895.]); Lichtenthaler et al. (2004[Lichtenthaler, F. W., Weimer, T. & Immel, S. (2004). Tetrahedron Asymmetry, 15, 2703-2709.]); Cutignano et al. (2001[Cutignano, A., Bruno, I., Bifulco, G., Casapullo, A., Debitus, C., Gomez-Paloma, L. & Riccio, R. (2001). Eur. J. Org. Chem. pp. 775-778.]); Williams et al. (2001[Williams, D. R., Patnaik, S. & Clark, M. P. (2001). J. Org. Chem. 66, 8463-8469.]); DeRoy & Charette (2003[DeRoy, P. L. & Charette, A. B. (2003). Org. Lett. 5, 4163-4165.]); Yoshimura et al. (1995[Yoshimura, S., Tsuruni, Y., Takase, S. & Okuhara, M. (1995). J. Antibiot. 48, 1073-1075.]); Tsuruni et al. (1995[Tsuruni, Y., Ueda, H., Hayashi, K., Takase, S., Nishikawa, M., Kiyoto, S. & Okuhara, M. (1995). J. Antibiot. 48, 1066-1072.]); Gao et al. (2010[Gao, X., Pan, Y.-M., Lin, M., Chen, L. & Zhan, Z.-P. (2010). Org. Biomol. Chem. 8, 3259-3266.]); Shi et al. (2010[Shi, B., Blake, A. J., Lewis, W., Campbell, I. B., Judkins, B. D. & Moody, C. J. (2010). J. Org. Chem. 75, 152-161.]); Kaleta et al. (2006[Kaleta, Z., Makowshi, B. T., So'os, T. & Dembinski, R. (2006). Org. Lett. 8, 1625-1628.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For a closely related phenanthrenone structure, see: Wang et al. (2003[Wang, L., Usman, A., Fun, H.-K., Zhang, Y. & Xu, J.-H. (2003). Acta Cryst. E59, o721-o722.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C19H15NO3S

  • Mr = 337.38

  • Triclinic, [P \overline 1]

  • a = 7.1386 (4) Å

  • b = 9.6206 (6) Å

  • c = 12.7743 (8) Å

  • α = 106.863 (2)°

  • β = 97.746 (2)°

  • γ = 104.667 (2)°

  • V = 791.41 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 100 K

  • 0.40 × 0.31 × 0.20 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.916, Tmax = 0.958

  • 16288 measured reflections

  • 4157 independent reflections

  • 3811 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.139

  • S = 1.12

  • 4157 reflections

  • 222 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.96 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the thia­zole ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯N1i 0.87 (3) 2.08 (3) 2.8643 (18) 149 (2)
C12—H12A⋯O3ii 0.93 2.52 3.4395 (18) 170
C4—H4ACg1iii 0.93 2.70 3.563 155
Symmetry codes: (i) x+1, y, z; (ii) -x, -y, -z; (iii) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Phenanthraquinone and its derivatives have shown diverse applications and biological activities (Schuetzle, 1983; Cho et al., 2004; Lim et al., 1998; Sanbongi et al., 2003). 9,10-Phenanthraquinone has been used as o-quinone in photoreactions with various species (Shurygina et al., 2008; Zhang et al., 2004; Lichtenthaler et al., 2004). Thiazole-containing compounds, such as the mycothiazole (Cutignano et al.,2001), cystothiazole A (Williams et al.,2001; DeRoy & Charette,2003) and WS75624 B (Yoshimura et al.,1995; Tsuruni et al.,1995) have attracted considerable interest due to their potential application as bio-active species. Synthesis of organic molecules containing thiazole moieties therefore has been of current research interest (Gao et al.,2010; Shi et al.,2010; Kaleta et al.,2006). The title compound which contains phenanthraquinone and thiazole ring may has a potential use in biochemical and pharmaceutical fields. Due to the importance of the phenanthraquinone derivaties, we report in this paper the crystal structure of the title compound.

In the title phenanthraquinone compound (Fig. 1), the 1,2-dihydrobenzene ring (C1/C2/C7/C8/C13/C14) of the 9,10-dihydrophenanthrene ring system (C1-C14) adopts a sofa conformation, with atoms C1 and C14 deviating from the mean plane through the remaning four atoms in opposite directions by 0.1244 (15) and -0.3597 (15) Å, respectively. The puckering parameters are Q = 0.3293 (16) Å, θ = 67.0 (3)° and φ = 317.5 (3)° (Cremer & Pople, 1975). The thiazole ring (C15/C16/N1/C17/S1) is essentially planar, with a maximum deviation of 0.005 (1) Å at atom C17. The mean plane formed through the 9,10-dihydrophenanthrene ring system is approximately perpendicular to the thiazole ring, as indicated by the dihedral angle formed between them being 85.29 (5)°. The geometric parameters are consistent with those observed in closely related 9,10-dihydrophenanthrenone structures (Wang et al., 2003).

In the crystal structure (Fig. 2), adjacent molecules are linked into dimers by pairs of intermolecular C12—H12A···O3 hydrogen bonds (Table 1). These dimers are interconnected by O2—H1O2···N1 hydrogen bonds (Table 1) into two-molecule-wide chains propagating along the a axis. Further stabilization of the crystal structure is provided by weak intermolecular C4—H4A···Cg1 interactions (Table 1) involving the centroid of the thiazole ring.

Related literature top

For general background to and applications of phenanthrenone derivatives, see: Schuetzle (1983); Cho et al. (2004); Lim et al. (1998); Sanbongi et al. (2003); Shurygina et al. (2008); Zhang et al. (2004); Lichtenthaler et al. (2004); Cutignano et al. (2001); Williams et al. (2001); DeRoy & Charette (2003); Yoshimura et al. (1995); Tsuruni et al. (1995); Gao et al. (2010); Shi et al. (2010); Kaleta et al. (2006). For ring conformations, see: Cremer & Pople (1975). For closely related phenanthrenone structures, see: Wang et al. (2003). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was one of the products from the photoreaction between phenanthraquinone and 2-ethoxylthiazole. The compound was purified by flash column chromatography with ethyl acetate/petroleum ether (1:4) as eluents. X-ray quality single crystals of the title compound were obtained from slow evaporation of an acetone and petroleum ether (1:5) solution. M.p. 410–412 K.

Refinement top

The H atom bonded to O was located from difference Fourier map and allowed to refine freely. The remaining hydrogen atoms were placed in their calculated positions, with C—H = 0.93–0.97 Å, and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). The rotating group model was applied to the methyl group.

Structure description top

Phenanthraquinone and its derivatives have shown diverse applications and biological activities (Schuetzle, 1983; Cho et al., 2004; Lim et al., 1998; Sanbongi et al., 2003). 9,10-Phenanthraquinone has been used as o-quinone in photoreactions with various species (Shurygina et al., 2008; Zhang et al., 2004; Lichtenthaler et al., 2004). Thiazole-containing compounds, such as the mycothiazole (Cutignano et al.,2001), cystothiazole A (Williams et al.,2001; DeRoy & Charette,2003) and WS75624 B (Yoshimura et al.,1995; Tsuruni et al.,1995) have attracted considerable interest due to their potential application as bio-active species. Synthesis of organic molecules containing thiazole moieties therefore has been of current research interest (Gao et al.,2010; Shi et al.,2010; Kaleta et al.,2006). The title compound which contains phenanthraquinone and thiazole ring may has a potential use in biochemical and pharmaceutical fields. Due to the importance of the phenanthraquinone derivaties, we report in this paper the crystal structure of the title compound.

In the title phenanthraquinone compound (Fig. 1), the 1,2-dihydrobenzene ring (C1/C2/C7/C8/C13/C14) of the 9,10-dihydrophenanthrene ring system (C1-C14) adopts a sofa conformation, with atoms C1 and C14 deviating from the mean plane through the remaning four atoms in opposite directions by 0.1244 (15) and -0.3597 (15) Å, respectively. The puckering parameters are Q = 0.3293 (16) Å, θ = 67.0 (3)° and φ = 317.5 (3)° (Cremer & Pople, 1975). The thiazole ring (C15/C16/N1/C17/S1) is essentially planar, with a maximum deviation of 0.005 (1) Å at atom C17. The mean plane formed through the 9,10-dihydrophenanthrene ring system is approximately perpendicular to the thiazole ring, as indicated by the dihedral angle formed between them being 85.29 (5)°. The geometric parameters are consistent with those observed in closely related 9,10-dihydrophenanthrenone structures (Wang et al., 2003).

In the crystal structure (Fig. 2), adjacent molecules are linked into dimers by pairs of intermolecular C12—H12A···O3 hydrogen bonds (Table 1). These dimers are interconnected by O2—H1O2···N1 hydrogen bonds (Table 1) into two-molecule-wide chains propagating along the a axis. Further stabilization of the crystal structure is provided by weak intermolecular C4—H4A···Cg1 interactions (Table 1) involving the centroid of the thiazole ring.

For general background to and applications of phenanthrenone derivatives, see: Schuetzle (1983); Cho et al. (2004); Lim et al. (1998); Sanbongi et al. (2003); Shurygina et al. (2008); Zhang et al. (2004); Lichtenthaler et al. (2004); Cutignano et al. (2001); Williams et al. (2001); DeRoy & Charette (2003); Yoshimura et al. (1995); Tsuruni et al. (1995); Gao et al. (2010); Shi et al. (2010); Kaleta et al. (2006). For ring conformations, see: Cremer & Pople (1975). For closely related phenanthrenone structures, see: Wang et al. (2003). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis, showing the molecules being linked into chains along the a axis.
10-(2-Ethoxy-1,3-thiazol-5-yl)-10-hydroxyphenanthren-9(10H)-one top
Crystal data top
C19H15NO3SZ = 2
Mr = 337.38F(000) = 352
Triclinic, P1Dx = 1.416 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1386 (4) ÅCell parameters from 9610 reflections
b = 9.6206 (6) Åθ = 3.0–35.0°
c = 12.7743 (8) ŵ = 0.22 mm1
α = 106.863 (2)°T = 100 K
β = 97.746 (2)°Block, colourless
γ = 104.667 (2)°0.40 × 0.31 × 0.20 mm
V = 791.41 (8) Å3
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4157 independent reflections
Radiation source: fine-focus sealed tube3811 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 29.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.916, Tmax = 0.958k = 1313
16288 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.086P)2 + 0.3384P]
where P = (Fo2 + 2Fc2)/3
4157 reflections(Δ/σ)max < 0.001
222 parametersΔρmax = 0.96 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C19H15NO3Sγ = 104.667 (2)°
Mr = 337.38V = 791.41 (8) Å3
Triclinic, P1Z = 2
a = 7.1386 (4) ÅMo Kα radiation
b = 9.6206 (6) ŵ = 0.22 mm1
c = 12.7743 (8) ÅT = 100 K
α = 106.863 (2)°0.40 × 0.31 × 0.20 mm
β = 97.746 (2)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4157 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3811 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 0.958Rint = 0.023
16288 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.96 e Å3
4157 reflectionsΔρmin = 0.51 e Å3
222 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.03580 (5)0.12894 (4)0.11117 (3)0.01623 (12)
O10.39811 (18)0.00646 (13)0.31190 (10)0.0235 (2)
O20.36598 (16)0.12494 (13)0.15415 (9)0.0185 (2)
O30.42108 (15)0.26001 (11)0.04040 (8)0.0161 (2)
N10.30774 (17)0.00285 (13)0.14259 (9)0.0143 (2)
C10.3195 (2)0.09376 (16)0.33170 (11)0.0154 (3)
C20.2699 (2)0.15724 (15)0.44016 (11)0.0145 (3)
C30.2670 (2)0.07575 (17)0.51513 (12)0.0181 (3)
H3A0.29850.01510.49630.022*
C40.2174 (2)0.12966 (18)0.61688 (12)0.0213 (3)
H4A0.21490.07540.66650.026*
C50.1715 (2)0.26594 (19)0.64427 (12)0.0234 (3)
H5A0.13400.30110.71160.028*
C60.1809 (2)0.35008 (17)0.57240 (12)0.0204 (3)
H6A0.15310.44240.59320.024*
C70.23147 (19)0.29845 (15)0.46916 (11)0.0143 (3)
C80.2552 (2)0.38983 (16)0.39351 (11)0.0153 (3)
C90.2628 (2)0.54351 (17)0.42843 (13)0.0202 (3)
H9A0.24930.58970.50060.024*
C100.2901 (2)0.62833 (17)0.35718 (14)0.0228 (3)
H10A0.29360.73010.38160.027*
C110.3123 (2)0.56129 (18)0.24976 (14)0.0230 (3)
H11A0.33210.61840.20240.028*
C120.3050 (2)0.40867 (17)0.21277 (13)0.0191 (3)
H12A0.31890.36370.14050.023*
C130.2769 (2)0.32302 (16)0.28379 (12)0.0151 (3)
C140.2567 (2)0.15402 (15)0.23775 (11)0.0140 (3)
C150.0382 (2)0.06559 (15)0.18794 (11)0.0139 (3)
C160.1246 (2)0.11260 (15)0.19485 (11)0.0151 (3)
H16A0.11420.21360.23280.018*
C170.2804 (2)0.12792 (15)0.09691 (11)0.0134 (2)
C180.6223 (2)0.24987 (16)0.01743 (12)0.0168 (3)
H18A0.62570.17340.01770.020*
H18B0.66780.22210.08660.020*
C190.7522 (2)0.40515 (19)0.06037 (15)0.0277 (3)
H19A0.88740.40470.07580.042*
H19B0.74380.48010.02560.042*
H19C0.70820.42960.12930.042*
H1O20.446 (4)0.075 (3)0.170 (2)0.046 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01308 (18)0.01435 (18)0.02028 (19)0.00675 (13)0.00430 (13)0.00202 (13)
O10.0287 (6)0.0282 (6)0.0238 (5)0.0196 (5)0.0105 (4)0.0121 (4)
O20.0193 (5)0.0265 (5)0.0193 (5)0.0148 (4)0.0105 (4)0.0122 (4)
O30.0133 (5)0.0149 (5)0.0187 (5)0.0051 (4)0.0016 (4)0.0042 (4)
N10.0137 (5)0.0156 (5)0.0150 (5)0.0066 (4)0.0038 (4)0.0052 (4)
C10.0134 (6)0.0174 (6)0.0160 (6)0.0051 (5)0.0032 (5)0.0060 (5)
C20.0120 (6)0.0160 (6)0.0143 (6)0.0041 (5)0.0023 (4)0.0038 (5)
C30.0163 (6)0.0181 (6)0.0192 (6)0.0046 (5)0.0019 (5)0.0070 (5)
C40.0214 (7)0.0250 (7)0.0165 (6)0.0034 (6)0.0025 (5)0.0096 (5)
C50.0257 (8)0.0275 (7)0.0146 (6)0.0056 (6)0.0068 (5)0.0050 (6)
C60.0230 (7)0.0202 (6)0.0176 (6)0.0086 (5)0.0066 (5)0.0032 (5)
C70.0118 (6)0.0164 (6)0.0139 (6)0.0046 (5)0.0019 (5)0.0041 (5)
C80.0110 (6)0.0172 (6)0.0175 (6)0.0051 (5)0.0013 (5)0.0060 (5)
C90.0191 (7)0.0174 (6)0.0216 (7)0.0065 (5)0.0010 (5)0.0037 (5)
C100.0201 (7)0.0160 (6)0.0304 (8)0.0057 (5)0.0004 (6)0.0071 (6)
C110.0221 (7)0.0211 (7)0.0272 (7)0.0053 (6)0.0028 (6)0.0127 (6)
C120.0181 (6)0.0206 (7)0.0204 (6)0.0065 (5)0.0038 (5)0.0094 (5)
C130.0116 (6)0.0170 (6)0.0181 (6)0.0059 (5)0.0031 (5)0.0072 (5)
C140.0133 (6)0.0166 (6)0.0142 (6)0.0069 (5)0.0042 (5)0.0061 (5)
C150.0142 (6)0.0137 (6)0.0141 (6)0.0053 (5)0.0042 (5)0.0038 (4)
C160.0148 (6)0.0147 (6)0.0169 (6)0.0068 (5)0.0039 (5)0.0050 (5)
C170.0132 (6)0.0162 (6)0.0126 (5)0.0062 (5)0.0034 (4)0.0056 (5)
C180.0127 (6)0.0193 (6)0.0195 (6)0.0060 (5)0.0028 (5)0.0077 (5)
C190.0177 (7)0.0236 (7)0.0327 (8)0.0031 (6)0.0008 (6)0.0020 (6)
Geometric parameters (Å, º) top
S1—C171.7335 (14)C7—C81.4821 (19)
S1—C151.7430 (14)C8—C91.3994 (19)
O1—C11.2161 (18)C8—C131.4100 (19)
O2—C141.4105 (16)C9—C101.389 (2)
O2—H1O20.87 (3)C9—H9A0.9300
O3—C171.3308 (16)C10—C111.386 (2)
O3—C181.4606 (17)C10—H10A0.9300
N1—C171.3003 (17)C11—C121.391 (2)
N1—C161.3880 (17)C11—H11A0.9300
C1—C21.4728 (19)C12—C131.3933 (19)
C1—C141.5388 (19)C12—H12A0.9300
C2—C31.4019 (19)C13—C141.5211 (19)
C2—C71.4079 (19)C14—C151.5189 (19)
C3—C41.382 (2)C15—C161.3543 (19)
C3—H3A0.9300C16—H16A0.9300
C4—C51.390 (2)C18—C191.506 (2)
C4—H4A0.9300C18—H18A0.9700
C5—C61.387 (2)C18—H18B0.9700
C5—H5A0.9300C19—H19A0.9600
C6—C71.3984 (19)C19—H19B0.9600
C6—H6A0.9300C19—H19C0.9600
C17—S1—C1588.43 (6)C10—C11—H11A120.0
C14—O2—H1O2110.0 (18)C12—C11—H11A120.0
C17—O3—C18115.16 (11)C11—C12—C13120.15 (14)
C17—N1—C16109.10 (11)C11—C12—H12A119.9
O1—C1—C2123.78 (13)C13—C12—H12A119.9
O1—C1—C14119.33 (12)C12—C13—C8120.47 (13)
C2—C1—C14116.81 (12)C12—C13—C14118.51 (12)
C3—C2—C7120.73 (13)C8—C13—C14120.90 (12)
C3—C2—C1118.45 (13)O2—C14—C15109.48 (11)
C7—C2—C1120.80 (12)O2—C14—C13111.05 (11)
C4—C3—C2120.36 (14)C15—C14—C13108.38 (11)
C4—C3—H3A119.8O2—C14—C1110.69 (11)
C2—C3—H3A119.8C15—C14—C1105.45 (11)
C3—C4—C5119.26 (13)C13—C14—C1111.60 (11)
C3—C4—H4A120.4C16—C15—C14130.07 (12)
C5—C4—H4A120.4C16—C15—S1109.29 (10)
C6—C5—C4120.78 (14)C14—C15—S1120.62 (10)
C6—C5—H5A119.6C15—C16—N1116.81 (12)
C4—C5—H5A119.6C15—C16—H16A121.6
C5—C6—C7121.10 (14)N1—C16—H16A121.6
C5—C6—H6A119.5N1—C17—O3126.45 (12)
C7—C6—H6A119.5N1—C17—S1116.37 (10)
C6—C7—C2117.69 (13)O3—C17—S1117.18 (10)
C6—C7—C8122.51 (13)O3—C18—C19106.62 (12)
C2—C7—C8119.73 (12)O3—C18—H18A110.4
C9—C8—C13118.16 (13)C19—C18—H18A110.4
C9—C8—C7122.03 (13)O3—C18—H18B110.4
C13—C8—C7119.79 (12)C19—C18—H18B110.4
C10—C9—C8121.18 (14)H18A—C18—H18B108.6
C10—C9—H9A119.4C18—C19—H19A109.5
C8—C9—H9A119.4C18—C19—H19B109.5
C11—C10—C9120.00 (14)H19A—C19—H19B109.5
C11—C10—H10A120.0C18—C19—H19C109.5
C9—C10—H10A120.0H19A—C19—H19C109.5
C10—C11—C12120.05 (14)H19B—C19—H19C109.5
O1—C1—C2—C316.1 (2)C12—C13—C14—O230.47 (17)
C14—C1—C2—C3160.58 (12)C8—C13—C14—O2153.54 (12)
O1—C1—C2—C7162.22 (14)C12—C13—C14—C1589.82 (15)
C14—C1—C2—C721.08 (18)C8—C13—C14—C1586.17 (15)
C7—C2—C3—C42.9 (2)C12—C13—C14—C1154.49 (12)
C1—C2—C3—C4178.75 (13)C8—C13—C14—C129.51 (17)
C2—C3—C4—C50.3 (2)O1—C1—C14—O222.47 (18)
C3—C4—C5—C62.0 (2)C2—C1—C14—O2160.67 (11)
C4—C5—C6—C71.8 (2)O1—C1—C14—C1595.84 (15)
C5—C6—C7—C20.8 (2)C2—C1—C14—C1581.02 (14)
C5—C6—C7—C8176.09 (13)O1—C1—C14—C13146.70 (13)
C3—C2—C7—C63.1 (2)C2—C1—C14—C1336.44 (16)
C1—C2—C7—C6178.58 (12)O2—C14—C15—C16131.81 (15)
C3—C2—C7—C8173.88 (12)C13—C14—C15—C1610.54 (19)
C1—C2—C7—C84.43 (19)C1—C14—C15—C16109.08 (16)
C6—C7—C8—C911.4 (2)O2—C14—C15—S150.22 (14)
C2—C7—C8—C9165.45 (13)C13—C14—C15—S1171.49 (9)
C6—C7—C8—C13170.55 (13)C1—C14—C15—S168.89 (13)
C2—C7—C8—C1312.60 (19)C17—S1—C15—C160.46 (10)
C13—C8—C9—C100.3 (2)C17—S1—C15—C14177.89 (11)
C7—C8—C9—C10178.36 (13)C14—C15—C16—N1178.05 (12)
C8—C9—C10—C110.6 (2)S1—C15—C16—N10.10 (15)
C9—C10—C11—C120.7 (2)C17—N1—C16—C150.48 (17)
C10—C11—C12—C130.5 (2)C16—N1—C17—O3179.32 (12)
C11—C12—C13—C80.2 (2)C16—N1—C17—S10.87 (14)
C11—C12—C13—C14176.17 (13)C18—O3—C17—N17.77 (19)
C9—C8—C13—C120.0 (2)C18—O3—C17—S1172.05 (9)
C7—C8—C13—C12178.18 (12)C15—S1—C17—N10.80 (11)
C9—C8—C13—C14175.96 (13)C15—S1—C17—O3179.37 (11)
C7—C8—C13—C145.91 (19)C17—O3—C18—C19171.99 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the thiazole ring.
D—H···AD—HH···AD···AD—H···A
O2—H1O2···N1i0.87 (3)2.08 (3)2.8643 (18)149 (2)
C12—H12A···O3ii0.932.523.4395 (18)170
C4—H4A···Cg1iii0.932.703.563155
Symmetry codes: (i) x+1, y, z; (ii) x, y, z; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC19H15NO3S
Mr337.38
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.1386 (4), 9.6206 (6), 12.7743 (8)
α, β, γ (°)106.863 (2), 97.746 (2), 104.667 (2)
V3)791.41 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.40 × 0.31 × 0.20
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.916, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
16288, 4157, 3811
Rint0.023
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.139, 1.12
No. of reflections4157
No. of parameters222
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.96, 0.51

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the thiazole ring.
D—H···AD—HH···AD···AD—H···A
O2—H1O2···N1i0.87 (3)2.08 (3)2.8643 (18)149 (2)
C12—H12A···O3ii0.93002.52003.4395 (18)170.00
C4—H4A···Cg1iii0.9302.6993.563155
Symmetry codes: (i) x+1, y, z; (ii) x, y, z; (iii) x, y, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7576-2009.

Acknowledgements

HKF and JHG thank Universiti Sains Malaysia (USM) for a Research University Golden Goose grant (No. 1001/PFIZIK/811012). Financial support from the Ministry of Science and Technology of China of the Austria–China Cooperation project (2007DFA41590) is acknowledged. JHG also thanks USM for the award of a USM fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCho, A. K., Di Stefano, E., Ying, Y., Rodriquez, C. E., Schmitz, D. A., Kumagai, Y., Miguel, A. H., Eiguren-Fernandez, A., Kobayashi, T., Avol, E. & Froines, J. R. (2004). Aerosol Sci. Technol. 38, 68–81.  CrossRef CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationCutignano, A., Bruno, I., Bifulco, G., Casapullo, A., Debitus, C., Gomez-Paloma, L. & Riccio, R. (2001). Eur. J. Org. Chem. pp. 775–778.  CrossRef Google Scholar
First citationDeRoy, P. L. & Charette, A. B. (2003). Org. Lett. 5, 4163–4165.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGao, X., Pan, Y.-M., Lin, M., Chen, L. & Zhan, Z.-P. (2010). Org. Biomol. Chem. 8, 3259–3266.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKaleta, Z., Makowshi, B. T., So'os, T. & Dembinski, R. (2006). Org. Lett. 8, 1625–1628.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLichtenthaler, F. W., Weimer, T. & Immel, S. (2004). Tetrahedron Asymmetry, 15, 2703–2709.  Web of Science CSD CrossRef CAS Google Scholar
First citationLim, H. B., Ichinose, T., Miyabara, Y., Takano, H., Kumagai, Y., Shimojyo, N., Devalia, J. L. & Sagai, M. (1998). Free Radical Biol. Med. 25, 635–644.  Web of Science CrossRef CAS Google Scholar
First citationSanbongi, C., Takano, H., Osakabe, N., Sasa, N., Natsume, M., Yanagisawa, R., Inoue, K., Kato, Y., Osawa, T. & Yoshikawa, T. (2003). Free Radical Biol. Med. 34, 1060–1069.  Web of Science CrossRef CAS Google Scholar
First citationSchuetzle, D. (1983). Environ. Health Perspect. 47, 65–80.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, B., Blake, A. J., Lewis, W., Campbell, I. B., Judkins, B. D. & Moody, C. J. (2010). J. Org. Chem. 75, 152–161.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationShurygina, M. P., Kurskii, Y. A., Chesnokov, S. A. & Abakumov, G. A. (2008). Tetrahedron, 64, 1459–1466.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsuruni, Y., Ueda, H., Hayashi, K., Takase, S., Nishikawa, M., Kiyoto, S. & Okuhara, M. (1995). J. Antibiot. 48, 1066–1072.  PubMed Web of Science Google Scholar
First citationWang, L., Usman, A., Fun, H.-K., Zhang, Y. & Xu, J.-H. (2003). Acta Cryst. E59, o721–o722.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWilliams, D. R., Patnaik, S. & Clark, M. P. (2001). J. Org. Chem. 66, 8463–8469.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYoshimura, S., Tsuruni, Y., Takase, S. & Okuhara, M. (1995). J. Antibiot. 48, 1073–1075.  CrossRef CAS PubMed Web of Science Google Scholar
First citationZhang, Y., Wang, L., Zhang, M., Fun, H.-K. & Xu, J.-X. (2004). Org. Lett. 6, 4893–4895.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds