organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[(Z)-4-Meth­­oxy­benzyl­­idene](meth­­oxy­carbon­yl)methanamine oxide

aDepartment of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, and bDepartment of Chemistry, Çankırı Karatekin University, TR-18100 Çankırı, Turkey
*Correspondence e-mail: orhanb@omu.edu.tr

(Received 5 August 2010; accepted 11 August 2010; online 18 August 2010)

The title compound, C11H13NO4, contains a nitrone group, C=N—O—R, the geometry of which shows a Z configuration with near planarity (r.m.s. deviation = 0.0787 Å) around the C=N double bond. An intra­molecular C—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal packing, mol­ecules are linked into R22(12) dimers and R22(14) rings via C—H⋯O inter­molecular hydrogen bonds.

Related literature

For the application and synthesis of nitro­nes, see: Merino (2004[Merino, P. (2004). Science of Synthesis, edited by G. A. Padwa, Vol. 27, ch. 13, pp. 511—580. Stuttgart: Thieme Verlag.]); Mocours et al. (1995[Mocours, P., Braekman, J. C. & Daloze, D. (1995). Tetrahedron, 51, 1415-1428.]); Frederickson (1997[Frederickson, M. (1997). Tetrahedron, 53, 403-425.]); Gothelf & Jorgensen (2000[Gothelf, K. V. & Jorgensen, K. A. (2000). Chem. Commun. pp. 1449-1458.]); Merino et al. (1998[Merino, P., Franco, S., Garces, N., Merchan, F. L. & Tejero, T. (1998). Chem. Commun. pp. 493-494.]); McCaig et al. (1998[McCaig, A. E., Meldrum, K. P. & Wightman, R. H. (1998). Tetrahedron, 54, 9429-9446.]); Desvergnes et al. (2005[Desvergnes, S., Py, S. & Valle, Y. (2005). J. Org. Chem. 70, 1459-1462.]); Hanselmann et al. (2003[Hanselmann, R., Zhou, J., Ma, P. & Confalone, P. N. (2003). J. Org. Chem. 68, 8739-8741.]); Pillard et al. (2007[Pillard, C., Desvergnes, V. & Py, S. (2007). Tetrahedron Lett. 48, 6209-6213.]); Merino et al. (2008[Merino, P., Mannucci, V. & Tejero, T. (2008). Eur. J. Org. Chem. pp. 3943-3959.]); Kobayashi et al. (2000[Kobayashi, K., Matoba, T., Irisawa, S., Takanohashi, A., Tanmatsu, M., Morikawa, O. & Konishi, H. (2000). Bull. Chem. Soc. Jpn, 73, 2805-2809.]). For the synthesis of the title compound, see: Diez-Martinez et al. (2010[Diez-Martinez, A., Gultekin, Z., Delso, I., Tejero, T. & Merino, P. (2010). Synthesis, pp. 0678-0688.]). For related structures, see: Bedford et al. (1991[Bedford, R. B., Chaloner, P. A. & Hitchcock, P. B. (1991). Acta Cryst. C47, 2484-2485.]); Kliegel et al. (1998[Kliegel, W., Metge, J., Rettig, S. J. & Trotter, J. (1998). Can. J. Chem. 76, 389-399.]); Greci & Sgarabotto (1984[Greci, L. & Sgarabotto, P. (1984). J. Chem. Soc. Perkin Trans. 2, pp. 1281-1284.]); Christensen et al. (1990[Christensen, D., Jorgensen, K. A. & Hazell, R. G. (1990). J. Chem. Soc. Perkin Trans. 1, pp. 2391-2397.]); Merino et al. (1996[Merino, P., Merchan, F. L., Tejero, T. & Lanaspa, A. (1996). Acta Cryst. C52, 218-219.]); Olszewski & Stadnicka (1995[Olszewski, P. K. & Stadnicka, K. (1995). Acta Cryst. C51, 98-103.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C11H13NO4

  • Mr = 223.22

  • Orthorhombic, P 21 21 21

  • a = 4.3808 (3) Å

  • b = 9.8207 (7) Å

  • c = 25.7780 (17) Å

  • V = 1109.03 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.77 × 0.46 × 0.25 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.953, Tmax = 0.981

  • 5112 measured reflections

  • 1391 independent reflections

  • 1053 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.082

  • S = 0.96

  • 1391 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.09 e Å−3

  • Δρmin = −0.09 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2 0.93 2.30 2.900 (3) 122
C8—H8⋯O3i 0.93 2.35 3.275 (3) 175
C9—H9B⋯O2ii 0.97 2.52 3.353 (3) 144
C11—H11C⋯O2iii 0.96 2.43 3.379 (3) 172
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) x+1, y, z; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Nitrones are important and versatile intermediates in organic synthesis since they undergo 1,3-dipolar cycloaddition reactions with a wide range of alkynes and alkenes to afford Δ2-isoxazolines (Mocours et al., 1995) and isoxazolidines (Gothelf & Jorgensen, 2000; Frederickson, 1997), respectively. Various cyclic or acyclic nitrones have been reported and found to be highly reactive intermediates as 1,3-dipoles (Merino, 2004). The cycloadducts have found numerous application in the synthesis of nucleosides (Merino et al., 1998), amino sugars (McCaig et al., 1998), pyrrollizideines (Desvergnes et al., 2005) and amino acids (Hanselmann et al., 2003). Nitrones are also useful intermediates for nucleophilic additions leading to the corresponding N,N-disubstituted hydroxylamines. Several types of nucleophile were used such as alkynes (Pillard et al., 2007), alkyl Grignard reagent (Merino et al., 2008) and enolates (Kobayashi et al., 2000).

The geometry of the nitrone molecule, which shows a Z configuration with near planarity around the CN double bond [C8—N1 = 1.303 (2) Å], is typical for aldonitrones (Bedford et al., 1991; Kliegel et al., 1998; Olszewski & Stadnicka, 1995; Greci & Sgarabotto, 1984; Christensen et al., 1990). The torsion angles of O2—N1C8—H8 and O2—N1C8—C1 are 176.7 (3)° and -3.3 (3)°, respectively. These results are in good agreement with the literature (Merino et al., 1996; Olszewski & Stadnicka, 1995). An intramolecular C6—H6···O2 hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995) (Fig. 1). In the crystal packing, molecules are linked into R22(12) dimers and R22(14) rings via C8—H8···O3 and C11—H11C···O2 intermolecular hydrogen bonds at (-1/2 + x, 1/2 - y, -z) and (-1/2 + x, -1/2 - y, -z), respectively (Table 1, Fig. 2). The benzene ring A (C1–C6) and S(6) rings are planar with the maximum r.m.s. deviation from the mean plane as -0.0234 (11) Å for N1 and these rings are coplanar with a dihedral angle of only 1.86 (10)°.

Related literature top

For the application and synhesis of nitrones, see: Merino (2004); Mocours et al. (1995); Frederickson (1997); Gothelf & Jorgensen (2000); Merino et al. (1998); McCaig et al. (1998); Desvergnes et al. (2005); Hanselmann et al. (2003); Pillard et al. (2007); Merino et al. (2008); Kobayashi et al. (2000). For the synthesis of the title compound, see: Diez-Martinez et al. (2010). For related strucures, see: Bedford et al. (1991); Kliegel et al. (1998); Greci & Sgarabotto (1984); Christensen et al. (1990); Merino et al. (1996); Olszewski & Stadnicka (1995). For hydrogen-bond motifs, see: Bernstein et al. (1995). [Please check all references have been added correctly]

Experimental top

The title compound was synthesized by the literature method (Diez-Martinez et al., 2010). To a solution of methyl glycine ester hydrochloride salt (4.0 g, 31.8 mmol) in CH2Cl2 (70 ml) was added Et3N (4.4 ml, 31.8 mmol) and MgSO4 (2 g) under an argon atmosphere at room temperature. The resulting mixture was stirred for 2 h, then anisaldehyde (3.9 ml, 31.8 mmol) was added. The reaction mixture was stirred at room temperature for an additional 24 h. The resulting precipitate was filtered through a pad of Celite and the fitrate washed with water (50 ml) and brine (50 ml), then dried over MgSO4. Solvent was removed under reduced pressure. The title compound imine (1) was obtained as a white solid in 77% yield. The crude imine (1) (4.0 g, 19.3 mmol) was dissolved in MeOH (50 ml) and MgSO4 (2 g) was added as a drying agent. To this mixture UHP (urea-hydrogen peroxide) (5.5 g, 57.9 mmol) and MeReO3 (methyltrioxorhenium) (96 mg, 0.38 mmol) were added under argon atmosphere at room temperature. The reaction mixture was stirred at room temperature for 7 h. After 7 h the solvent was removed in vacuo, the residue was washed with more CH2Cl2 (3 × 50 ml) then filtered. The filtrate removed under vacuo and the residue subjected to column chromatography eluting with EtOAc/Hexane (1:1). The title compound was obtained as a pale yellow solid in 47% yield. m.p. 65–66°C.

Refinement top

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.97 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom). 915 Friedel pairs were averaged before the final refinement as the absolute structure could not be determined unambiguously.

Structure description top

Nitrones are important and versatile intermediates in organic synthesis since they undergo 1,3-dipolar cycloaddition reactions with a wide range of alkynes and alkenes to afford Δ2-isoxazolines (Mocours et al., 1995) and isoxazolidines (Gothelf & Jorgensen, 2000; Frederickson, 1997), respectively. Various cyclic or acyclic nitrones have been reported and found to be highly reactive intermediates as 1,3-dipoles (Merino, 2004). The cycloadducts have found numerous application in the synthesis of nucleosides (Merino et al., 1998), amino sugars (McCaig et al., 1998), pyrrollizideines (Desvergnes et al., 2005) and amino acids (Hanselmann et al., 2003). Nitrones are also useful intermediates for nucleophilic additions leading to the corresponding N,N-disubstituted hydroxylamines. Several types of nucleophile were used such as alkynes (Pillard et al., 2007), alkyl Grignard reagent (Merino et al., 2008) and enolates (Kobayashi et al., 2000).

The geometry of the nitrone molecule, which shows a Z configuration with near planarity around the CN double bond [C8—N1 = 1.303 (2) Å], is typical for aldonitrones (Bedford et al., 1991; Kliegel et al., 1998; Olszewski & Stadnicka, 1995; Greci & Sgarabotto, 1984; Christensen et al., 1990). The torsion angles of O2—N1C8—H8 and O2—N1C8—C1 are 176.7 (3)° and -3.3 (3)°, respectively. These results are in good agreement with the literature (Merino et al., 1996; Olszewski & Stadnicka, 1995). An intramolecular C6—H6···O2 hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995) (Fig. 1). In the crystal packing, molecules are linked into R22(12) dimers and R22(14) rings via C8—H8···O3 and C11—H11C···O2 intermolecular hydrogen bonds at (-1/2 + x, 1/2 - y, -z) and (-1/2 + x, -1/2 - y, -z), respectively (Table 1, Fig. 2). The benzene ring A (C1–C6) and S(6) rings are planar with the maximum r.m.s. deviation from the mean plane as -0.0234 (11) Å for N1 and these rings are coplanar with a dihedral angle of only 1.86 (10)°.

For the application and synhesis of nitrones, see: Merino (2004); Mocours et al. (1995); Frederickson (1997); Gothelf & Jorgensen (2000); Merino et al. (1998); McCaig et al. (1998); Desvergnes et al. (2005); Hanselmann et al. (2003); Pillard et al. (2007); Merino et al. (2008); Kobayashi et al. (2000). For the synthesis of the title compound, see: Diez-Martinez et al. (2010). For related strucures, see: Bedford et al. (1991); Kliegel et al. (1998); Greci & Sgarabotto (1984); Christensen et al. (1990); Merino et al. (1996); Olszewski & Stadnicka (1995). For hydrogen-bond motifs, see: Bernstein et al. (1995). [Please check all references have been added correctly]

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP view of (I), with the atom-numbering scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A packing diagram for (I), showing the C—H···O intermolecular hydrogen bonds, forming the R22(12) dimers and R22(14) rings. [Symmetry codes: (i) -1/2 + x, 1/2 - y, -z; (ii) -1/2 + x, -1/2 - y, -z]. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
N-[(Z)-4-methoxybenzylidene](methoxycarbonyl)methanamine oxide top
Crystal data top
C11H13NO4F(000) = 472
Mr = 223.22Dx = 1.337 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5112 reflections
a = 4.3808 (3) Åθ = 2.1–27.1°
b = 9.8207 (7) ŵ = 0.10 mm1
c = 25.7780 (17) ÅT = 296 K
V = 1109.03 (13) Å3Prism, colourless
Z = 40.77 × 0.46 × 0.25 mm
Data collection top
Stoe IPDS II
diffractometer
1391 independent reflections
Radiation source: fine-focus sealed tube1053 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
rotation method scansθmax = 26.5°, θmin = 2.2°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 55
Tmin = 0.953, Tmax = 0.981k = 1211
5112 measured reflectionsl = 2332
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0465P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max < 0.001
1391 reflectionsΔρmax = 0.09 e Å3
146 parametersΔρmin = 0.09 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.030 (4)
Crystal data top
C11H13NO4V = 1109.03 (13) Å3
Mr = 223.22Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.3808 (3) ŵ = 0.10 mm1
b = 9.8207 (7) ÅT = 296 K
c = 25.7780 (17) Å0.77 × 0.46 × 0.25 mm
Data collection top
Stoe IPDS II
diffractometer
1391 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1053 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.981Rint = 0.051
5112 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 0.96Δρmax = 0.09 e Å3
1391 reflectionsΔρmin = 0.09 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6012 (4)0.7397 (2)0.36104 (8)0.0608 (5)
C20.5996 (5)0.8775 (2)0.34738 (10)0.0734 (6)
H20.70920.93920.36740.088*
C30.4417 (6)0.9235 (2)0.30549 (11)0.0808 (7)
H30.44491.01570.29730.097*
C40.2769 (5)0.8343 (2)0.27506 (10)0.0700 (6)
C50.2692 (5)0.6979 (2)0.28817 (9)0.0669 (6)
H50.15500.63730.26840.080*
C60.4307 (5)0.6515 (2)0.33055 (9)0.0642 (5)
H60.42510.55940.33890.077*
C70.0090 (7)0.8031 (3)0.19685 (11)0.0960 (8)
H7A0.16600.75160.21390.115*
H7B0.13940.74210.18240.115*
H7C0.09770.85680.16960.115*
C80.7873 (4)0.7021 (2)0.40462 (9)0.0663 (6)
H80.89110.77260.42100.080*
C91.0392 (4)0.5582 (3)0.46700 (10)0.0735 (6)
H9A1.13580.64330.47670.088*
H9B1.19720.49440.45680.088*
C100.8628 (4)0.5022 (2)0.51187 (9)0.0651 (6)
C110.8063 (7)0.3210 (2)0.57071 (12)0.0936 (8)
H11A0.59730.30640.56100.112*
H11B0.81450.37980.60040.112*
H11C0.89990.23540.57900.112*
N10.8278 (3)0.58064 (18)0.42386 (7)0.0635 (5)
O10.1341 (5)0.88972 (18)0.23310 (7)0.0935 (5)
O20.6925 (3)0.47139 (14)0.40781 (7)0.0756 (4)
O30.6482 (4)0.55930 (17)0.53126 (7)0.0837 (5)
O40.9683 (3)0.38384 (16)0.52795 (7)0.0818 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0565 (10)0.0555 (12)0.0703 (14)0.0055 (9)0.0131 (10)0.0071 (10)
C20.0762 (13)0.0549 (13)0.0892 (17)0.0113 (11)0.0137 (13)0.0082 (12)
C30.0940 (15)0.0523 (13)0.0962 (18)0.0079 (12)0.0194 (15)0.0010 (13)
C40.0741 (12)0.0629 (14)0.0728 (15)0.0046 (11)0.0182 (11)0.0054 (11)
C50.0696 (12)0.0591 (12)0.0720 (16)0.0034 (10)0.0081 (11)0.0023 (10)
C60.0685 (11)0.0501 (11)0.0741 (14)0.0057 (9)0.0072 (11)0.0025 (10)
C70.1023 (18)0.098 (2)0.0877 (18)0.0114 (18)0.0029 (17)0.0066 (15)
C80.0579 (10)0.0614 (12)0.0794 (15)0.0110 (10)0.0088 (11)0.0134 (11)
C90.0527 (9)0.0765 (15)0.0913 (16)0.0053 (10)0.0047 (12)0.0109 (12)
C100.0557 (9)0.0672 (13)0.0725 (14)0.0086 (10)0.0106 (10)0.0172 (11)
C110.1051 (17)0.0735 (16)0.102 (2)0.0058 (15)0.0075 (17)0.0015 (14)
N10.0534 (7)0.0632 (11)0.0740 (12)0.0055 (8)0.0053 (8)0.0128 (9)
O10.1121 (12)0.0784 (11)0.0898 (12)0.0083 (11)0.0037 (11)0.0148 (10)
O20.0860 (9)0.0599 (9)0.0809 (10)0.0109 (8)0.0067 (9)0.0087 (7)
O30.0827 (9)0.0877 (11)0.0806 (11)0.0308 (9)0.0081 (9)0.0077 (9)
O40.0730 (8)0.0676 (10)0.1048 (12)0.0181 (8)0.0022 (9)0.0034 (9)
Geometric parameters (Å, º) top
C1—C61.388 (3)C7—H7C0.9600
C1—C21.399 (3)C8—N11.304 (3)
C1—C81.436 (3)C8—H80.9300
C2—C31.359 (4)C9—N11.464 (3)
C2—H20.9300C9—C101.496 (3)
C3—C41.380 (3)C9—H9A0.9700
C3—H30.9300C9—H9B0.9700
C4—O11.363 (3)C10—O31.203 (2)
C4—C51.382 (3)C10—O41.318 (3)
C5—C61.379 (3)C11—O41.449 (3)
C5—H50.9300C11—H11A0.9600
C6—H60.9300C11—H11B0.9600
C7—O11.410 (3)C11—H11C0.9600
C7—H7A0.9600N1—O21.294 (2)
C7—H7B0.9600
C6—C1—C2117.3 (2)N1—C8—C1127.57 (19)
C6—C1—C8126.0 (2)N1—C8—H8116.2
C2—C1—C8116.64 (19)C1—C8—H8116.2
C3—C2—C1121.6 (2)N1—C9—C10108.42 (15)
C3—C2—H2119.2N1—C9—H9A110.0
C1—C2—H2119.2C10—C9—H9A110.0
C2—C3—C4120.5 (2)N1—C9—H9B110.0
C2—C3—H3119.8C10—C9—H9B110.0
C4—C3—H3119.8H9A—C9—H9B108.4
O1—C4—C5124.8 (2)O3—C10—O4123.7 (2)
O1—C4—C3116.0 (2)O3—C10—C9123.6 (2)
C5—C4—C3119.3 (2)O4—C10—C9112.71 (18)
C4—C5—C6120.1 (2)O4—C11—H11A109.5
C4—C5—H5120.0O4—C11—H11B109.5
C6—C5—H5120.0H11A—C11—H11B109.5
C5—C6—C1121.3 (2)O4—C11—H11C109.5
C5—C6—H6119.4H11A—C11—H11C109.5
C1—C6—H6119.4H11B—C11—H11C109.5
O1—C7—H7A109.5O2—N1—C8125.08 (18)
O1—C7—H7B109.5O2—N1—C9114.05 (17)
H7A—C7—H7B109.5C8—N1—C9120.86 (17)
O1—C7—H7C109.5C4—O1—C7119.3 (2)
H7A—C7—H7C109.5C10—O4—C11116.31 (17)
H7B—C7—H7C109.5
C6—C1—C2—C31.0 (3)C2—C1—C8—N1179.0 (2)
C8—C1—C2—C3177.2 (2)N1—C9—C10—O357.6 (3)
C1—C2—C3—C40.1 (3)N1—C9—C10—O4122.64 (18)
C2—C3—C4—O1178.1 (2)C1—C8—N1—O23.3 (3)
C2—C3—C4—C51.2 (3)C1—C8—N1—C9176.68 (18)
O1—C4—C5—C6177.8 (2)C10—C9—N1—O260.8 (2)
C3—C4—C5—C61.5 (3)C10—C9—N1—C8119.2 (2)
C4—C5—C6—C10.5 (3)C5—C4—O1—C76.6 (3)
C2—C1—C6—C50.7 (3)C3—C4—O1—C7172.7 (2)
C8—C1—C6—C5177.30 (19)O3—C10—O4—C111.4 (3)
C6—C1—C8—N10.9 (3)C9—C10—O4—C11178.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O20.932.302.900 (3)122
C8—H8···O3i0.932.353.275 (3)175
C9—H9B···O2ii0.972.523.353 (3)144
C11—H11C···O2iii0.962.433.379 (3)172
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1, y, z; (iii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC11H13NO4
Mr223.22
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)4.3808 (3), 9.8207 (7), 25.7780 (17)
V3)1109.03 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.77 × 0.46 × 0.25
Data collection
DiffractometerStoe IPDS II
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.953, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
5112, 1391, 1053
Rint0.051
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.082, 0.96
No. of reflections1391
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.09, 0.09

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O20.932.302.900 (3)122
C8—H8···O3i0.932.353.275 (3)175
C9—H9B···O2ii0.972.523.353 (3)144
C11—H11C···O2iii0.962.433.379 (3)172
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1, y, z; (iii) x+1/2, y+1/2, z+1.
 

Acknowledgements

The authors thank Professor Magnus Rueping of RWTH Aachen University, Germany, for helpful discussions. The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationBedford, R. B., Chaloner, P. A. & Hitchcock, P. B. (1991). Acta Cryst. C47, 2484–2485.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationChristensen, D., Jorgensen, K. A. & Hazell, R. G. (1990). J. Chem. Soc. Perkin Trans. 1, pp. 2391–2397.  CSD CrossRef Web of Science Google Scholar
First citationDesvergnes, S., Py, S. & Valle, Y. (2005). J. Org. Chem. 70, 1459–1462.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDiez-Martinez, A., Gultekin, Z., Delso, I., Tejero, T. & Merino, P. (2010). Synthesis, pp. 0678–0688.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFrederickson, M. (1997). Tetrahedron, 53, 403–425.  CrossRef CAS Web of Science Google Scholar
First citationGothelf, K. V. & Jorgensen, K. A. (2000). Chem. Commun. pp. 1449–1458.  Web of Science CrossRef Google Scholar
First citationGreci, L. & Sgarabotto, P. (1984). J. Chem. Soc. Perkin Trans. 2, pp. 1281–1284.  CrossRef Google Scholar
First citationHanselmann, R., Zhou, J., Ma, P. & Confalone, P. N. (2003). J. Org. Chem. 68, 8739–8741.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKliegel, W., Metge, J., Rettig, S. J. & Trotter, J. (1998). Can. J. Chem. 76, 389–399.  Web of Science CSD CrossRef CAS Google Scholar
First citationKobayashi, K., Matoba, T., Irisawa, S., Takanohashi, A., Tanmatsu, M., Morikawa, O. & Konishi, H. (2000). Bull. Chem. Soc. Jpn, 73, 2805–2809.  Web of Science CrossRef CAS Google Scholar
First citationMcCaig, A. E., Meldrum, K. P. & Wightman, R. H. (1998). Tetrahedron, 54, 9429–9446.  Web of Science CrossRef CAS Google Scholar
First citationMerino, P. (2004). Science of Synthesis, edited by G. A. Padwa, Vol. 27, ch. 13, pp. 511—580. Stuttgart: Thieme Verlag.  Google Scholar
First citationMerino, P., Franco, S., Garces, N., Merchan, F. L. & Tejero, T. (1998). Chem. Commun. pp. 493–494.  Web of Science CSD CrossRef Google Scholar
First citationMerino, P., Mannucci, V. & Tejero, T. (2008). Eur. J. Org. Chem. pp. 3943–3959.  Web of Science CSD CrossRef Google Scholar
First citationMerino, P., Merchan, F. L., Tejero, T. & Lanaspa, A. (1996). Acta Cryst. C52, 218–219.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMocours, P., Braekman, J. C. & Daloze, D. (1995). Tetrahedron, 51, 1415–1428.  Google Scholar
First citationOlszewski, P. K. & Stadnicka, K. (1995). Acta Cryst. C51, 98–103.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPillard, C., Desvergnes, V. & Py, S. (2007). Tetrahedron Lett. 48, 6209–6213.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds