organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl (Z)-3-({5-[(E)-(tert-butyl­amino)­methyl­­idene]-4-oxo-4,5-di­hydro-1,3-thia­zol-2-yl}sulfan­yl)prop-2-enoate

aDepartment of Chemistry, University of Mazandaran, 47415 Babolsar, Iran
*Correspondence e-mail: baharfar@umz.ac.ir

(Received 6 June 2010; accepted 2 August 2010; online 18 August 2010)

In the title compound, C12H16N2O3S2, the S-vinyl, and tert-butyl­enamine fragments make dihedral angles of 14.19 (2) and 0.85 (2)°, respectively, with the thia­zole ring. In the crystal, mol­ecules are linked into chains with graph-set motifs C(5) along [100] by C—H⋯O inter­actions. The mol­ecular conformation is stabilized by an intra­molecular N—H⋯O hydrogen bond.

Related literature

The thia­zole ring system can be found in natural compounds such as thia­mine (Baia, et al., 2008[Baia, M., Astilean, S. & Iliescu, T. (2008). Raman and SERS Investigations of Pharmaceuticals, pp. 125-142. Berlin, Heidelberg: Springer]) and scleritodermin A (Wu & Yang, 2007[Wu, Y. J. & Yang, B. V. (2007). Prog. Heterocycl. Chem. 18, 247-275.]). Thia­zole derivatives exhibit varied pharmaceutical properties including anti­cancer (Lesyk et al., 2006[Lesyk, R., Zimenkovsky, B., Atamanyuk, D., Jensen, F., Kiec-Kononowicz, K. & Gzella, A. (2006). Bioorg. Med. Chem. 14, 5230-5240.], 2007[Lesyk, R., Vladzimirska, O., Holota, S., Zaprutko, L. & Gzella, A. (2007). Eur. J. Med. Chem. 42, 641-648.]), anti­convulsant (Siddiqui & Ahsan, 2010[Siddiqui, N. & Ahsan, W. (2010). Eur. J. Med. Chem. 45, 1536-1543.]), anti­psychotic (Satoh et al., 2009[Satoh, A., Nagatomi, Y., Hirata, Y., Ito, S., Suzuki, G., Kimura, T., Maehara, S., Hikichi, H., Satow, A., Hata, M., Ohta, H. & Kawamoto, H. (2009). Bioorg. Med. Chem. Lett. 19, 5464-5468.]), anti­bacterial and anti­fungal (Abdel-Wahab et al., 2009[Abdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmad, E. M. (2009). Eur. J. Med. Chem. 44, 2632-2635.]; Vijaya Raj et al., 2007[Vijaya Raj, K. K., Narayana, B., Ashalatha, B. V., Suchetha Kumari, N. & Sarojini, B. K. (2007). Eur. J. Med. Chem. 42, 425-429.]), anti­tubercular (Shiradkar, Murahari et al., 2007[Shiradkar, M. R., Murahari, K. K., Gangadasu, H. R., Suresh, T., Kalyan, C. A., Kaur, D. P. R., Burange, P., Ghogare, J., Mokale, V. & Raut, M. (2007). Bioorg. Med. Chem. 15, 3997-4008.]), anti­microbial (Shiradkar, Kumar et al., 2007[Shiradkar, M., Kumar, G. V. S., Dasari, V., Tatikonda, S., Akula, K. C. & Shah, R. (2007). Eur. J. Med. Chem. 42, 807-816.]), analgesic and anti-inflammatory (Koz'minykh et al., 2004[Koz'minykh, V. O., Milyutin, A. V., Makhmudov, R. R., Belyaev, A. O. & Koz'minykh, E. N. (2004). Pharmaceutical Chem. J. 38, 665-669.]). For synthetic methods for thiazoles, see: Andrushko et al. (2001[Andrushko, A. P., Demchenko, A. M., Krasovskii, A. N., Rusanov, E. B., Chemega, A. N. & Lozinskii, M. O. (2001). Russ. J. Gen. Chem. 71, 1754-1758.]); Bourahla et al. (2007[Bourahla, K., Derdour, A., Rahmouni, M., Carreaux, F. & Bazureau, J. P. (2007). Tetrahedron Lett. 48, 5785-5789.]); Fakhari et al. (2008[Fakhari, A. R., Hosseiny Davarani, S. S., Ahmar, H. & Makarem, S. (2008). J. Appl. Electrochem. 38, 1743-1747.]); Potikha et al. (2008[Potikha, L. M., Turov, A. V. & Kovtunenko, V. A. (2008). Chem. Heterocycl. Comp. 44, 86-91.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573]).

[Scheme 1]

Experimental

Crystal data
  • C12H16N2O3S2

  • Mr = 300.39

  • Monoclinic, P 21 /c

  • a = 6.011 (2) Å

  • b = 19.333 (7) Å

  • c = 12.870 (5) Å

  • β = 96.502 (8)°

  • V = 1485.9 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 120 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.951, Tmax = 0.965

  • 15867 measured reflections

  • 3939 independent reflections

  • 3125 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.108

  • S = 1.00

  • 3939 reflections

  • 177 parameters

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O1 0.90 2.21 2.777 (2) 120
C8—H8A⋯O1i 0.95 2.18 3.117 (3) 171
Symmetry code: (i) x+1, y, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The thiazole ring system can be fined in natural compounds like thiamine (vitamin B1) (Baia, et al., 2008), bistratamide H, archazolid A & B, siomycin A, didmolamide A, scleritodermin A, etc. (Wu & Yang, 2007). Thiazole derivatives exhibit different pharmaceutical properties, among them are: anticancer (Lesyk et al., 2007; & Lesyk et al., 2006), anticonvulsant (Siddiqui & Ahsan, 2010), antipsychotic-like (Satoh et al., 2009), antibacterial, antifungal (Abdel-Wahab et al., 2009; & Vijaya Raj et al., 2007), antitubercular (Shiradkar, Murahari et al., 2007), antimicrobial (Shiradkar, Kumar et al., 2007), analgesic and anti-inflammatory (Koz'minykh et al., 2004) activities. These compounds have been synthesized using different methods (Andrushko et al., 2001; & Bourahla et al., 2007; & Fakhari et al., 2008; & Potikha et al., 2008). We have succeeded in synthesizing a thiazole derivative using a three step reaction. methods for theirWe report here the synthesis and crystal structure of the title compound (I). The molecular structure of (I) is illustrated in Fig 1. The fragments S-vinyl, and tert-butyl enamine makes angles of 14.19 (2) and 0.85 (2)° with the thiazole ring. In the crystal the molecules are linked into chains along [100] direction with graph-set notation C(5) motifs by a C—H···O interaction, (Bernstein, et al., 1995) Fig. 2. The molecular conformation is stabilized by two intramolecular N—H···O and C—H···O hydrogen bonds. Z-configuration was assigned to the geometry of S-vinyl system on the basis of torsion angle of -1.86 (4)° between atom S2 and methoxy carbonyl group.

Related literature top

The thiazole ring system can be found in natural compounds such as thiamine (Baia, et al., 2008) and scleritodermin A (Wu & Yang, 2007). Thiazole derivatives exhibit varied pharmaceutical properties including anticancer (Lesyk et al., 2006, 2007), anticonvulsant (Siddiqui & Ahsan, 2010); antipsychotic (Satoh et al., 2009), antibacterial and antifungal (Abdel-Wahab et al., 2009; Vijaya Raj et al., 2007), antitubercular (Shiradkar, Murahari et al., 2007), antimicrobial (Shiradkar, Kumar et al., 2007), analgesic and anti-inflammatory (Koz'minykh et al., 2004). For methods for their synthesis, see: Andrushko et al. (2001); Bourahla et al. (2007); Fakhari et al. (2008); Potikha et al. (2008). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

To a magnetically stirred solution of rhodanine (0.27 g, 2 mmol) and methyl acetylenecarboxylate (0.17 g, 2 mmol) in 10 ml CH~2~Cl~2~, was added dropwise over 10 min, tert-butyl isocyanide (0.45 g, 2 mmol) in 2 ml CH2Cl2 . The mixture was then refluxed for 24 h. The solvent was removed under pressure and the residue was purified by silica gel (Merck 230-400 mesh) column chromatography using n-hexane-diethyl ether (2:3) as eluent. Three products were isolated. The single crystals of the title compound were obtained from the n-hexane-ethyl acetate solution. Orange powder, yield 20%. 1H NMR (300 MHz, CDCl3): δ = 1.39 (9H, s, CMe3), 3.78 (3H, s, OMe), 6.12 (1H, d, 3JHH= 10.0 Hz, S—CH=CH), 7.52 (1H, d, 3JHH = 13.4 Hz, NH—CH=C), 8.41 (1H, d, 3JHH = 10.0 Hz, S—CH=CH), 10.12 (1H, d, 3JHH = 13.4 Hz, NH—CH=C). 13CNMR (75.5 MHz, CDCl3): δ= 29.94 (CMe3), 51.91 (OCH3), 53.98 (CMe3), 96.52 (NH— CH=C), 115.38 (CH=CH—C=O), 139.29 (CH=CH—C=O), 145.10 (NH—CH=C), 166.86 (C=N), 177.42 and 179.48 (2 C=O). IR (KBr) (ν/cm-1): 3313-3562 (NH), 1699 and 1643 (2 C=O), 1578 (C=N).

Refinement top

The hydrogen atom of NH group was found in difference Fourier synthesis. The H(C) atom positions were calculated. All hydrogen atoms were refined in isotropic approximation in riding model with with the Uiso(H) parameters equal to 1.2 Ueq(Ci), for methyl groups equal to 1.5 Ueq(Cii), where U(Ci) and U(Cii) are respectively the equivalent thermal parameters of the carbon atoms to which corresponding H atoms are bonded.

Structure description top

The thiazole ring system can be fined in natural compounds like thiamine (vitamin B1) (Baia, et al., 2008), bistratamide H, archazolid A & B, siomycin A, didmolamide A, scleritodermin A, etc. (Wu & Yang, 2007). Thiazole derivatives exhibit different pharmaceutical properties, among them are: anticancer (Lesyk et al., 2007; & Lesyk et al., 2006), anticonvulsant (Siddiqui & Ahsan, 2010), antipsychotic-like (Satoh et al., 2009), antibacterial, antifungal (Abdel-Wahab et al., 2009; & Vijaya Raj et al., 2007), antitubercular (Shiradkar, Murahari et al., 2007), antimicrobial (Shiradkar, Kumar et al., 2007), analgesic and anti-inflammatory (Koz'minykh et al., 2004) activities. These compounds have been synthesized using different methods (Andrushko et al., 2001; & Bourahla et al., 2007; & Fakhari et al., 2008; & Potikha et al., 2008). We have succeeded in synthesizing a thiazole derivative using a three step reaction. methods for theirWe report here the synthesis and crystal structure of the title compound (I). The molecular structure of (I) is illustrated in Fig 1. The fragments S-vinyl, and tert-butyl enamine makes angles of 14.19 (2) and 0.85 (2)° with the thiazole ring. In the crystal the molecules are linked into chains along [100] direction with graph-set notation C(5) motifs by a C—H···O interaction, (Bernstein, et al., 1995) Fig. 2. The molecular conformation is stabilized by two intramolecular N—H···O and C—H···O hydrogen bonds. Z-configuration was assigned to the geometry of S-vinyl system on the basis of torsion angle of -1.86 (4)° between atom S2 and methoxy carbonyl group.

The thiazole ring system can be found in natural compounds such as thiamine (Baia, et al., 2008) and scleritodermin A (Wu & Yang, 2007). Thiazole derivatives exhibit varied pharmaceutical properties including anticancer (Lesyk et al., 2006, 2007), anticonvulsant (Siddiqui & Ahsan, 2010); antipsychotic (Satoh et al., 2009), antibacterial and antifungal (Abdel-Wahab et al., 2009; Vijaya Raj et al., 2007), antitubercular (Shiradkar, Murahari et al., 2007), antimicrobial (Shiradkar, Kumar et al., 2007), analgesic and anti-inflammatory (Koz'minykh et al., 2004). For methods for their synthesis, see: Andrushko et al. (2001); Bourahla et al. (2007); Fakhari et al. (2008); Potikha et al. (2008). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. The dashed lines show N—H··· O intramolecular interaction.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the c-axis showing linking of molecules along the a-axis by the intermolecular C—H···O hydrogen bonds. The dashed lines show intermolecular interactions.
Methyl (Z)-3-({5-[(E)-(tert-butylamino)methylidene]- 4-oxo-4,5-dihydro-1,3-thiazol-2-yl}sulfanyl)prop-2-enoate top
Crystal data top
C12H16N2O3S2F(000) = 632
Mr = 300.39Dx = 1.343 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1769 reflections
a = 6.011 (2) Åθ = 2–25°
b = 19.333 (7) ŵ = 0.36 mm1
c = 12.870 (5) ÅT = 120 K
β = 96.502 (8)°Prism, orange
V = 1485.9 (10) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3939 independent reflections
Radiation source: fine-focus sealed tube3125 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
phi and ω scansθmax = 29.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 88
Tmin = 0.951, Tmax = 0.965k = 2626
15867 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.010P)2 + 1.980P]
where P = (Fo2 + 2Fc2)/3
3939 reflections(Δ/σ)max = 0.001
177 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C12H16N2O3S2V = 1485.9 (10) Å3
Mr = 300.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.011 (2) ŵ = 0.36 mm1
b = 19.333 (7) ÅT = 120 K
c = 12.870 (5) Å0.20 × 0.10 × 0.10 mm
β = 96.502 (8)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3939 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
3125 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.965Rint = 0.052
15867 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.00Δρmax = 0.66 e Å3
3939 reflectionsΔρmin = 0.28 e Å3
177 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.50629 (8)0.53451 (3)0.63467 (4)0.03196 (13)
S20.20485 (8)0.62005 (3)0.49185 (4)0.03050 (13)
O10.0477 (2)0.46226 (9)0.78666 (12)0.0376 (4)
O20.1152 (3)0.72490 (9)0.34743 (13)0.0459 (4)
O30.2299 (3)0.75225 (9)0.27204 (13)0.0438 (4)
N10.0743 (3)0.53679 (9)0.64593 (13)0.0282 (3)
N20.4543 (3)0.40971 (9)0.87697 (14)0.0318 (4)
H2N0.31010.40700.88920.038*
C10.2330 (3)0.56032 (10)0.59558 (15)0.0258 (4)
C20.4049 (3)0.48646 (10)0.73331 (15)0.0269 (4)
C30.1648 (3)0.49260 (10)0.72696 (15)0.0272 (4)
C40.0858 (3)0.62176 (10)0.46463 (15)0.0276 (4)
H4A0.17000.59040.50140.033*
C50.1981 (4)0.66419 (10)0.39564 (16)0.0305 (4)
H5A0.35670.66080.38400.037*
C60.0849 (4)0.71564 (11)0.33756 (16)0.0324 (4)
C70.1334 (6)0.80731 (14)0.2156 (2)0.0577 (7)
H7A0.24720.82590.16240.087*
H7B0.00760.78910.18170.087*
H7C0.08000.84420.26450.087*
C80.5374 (3)0.44672 (10)0.80461 (16)0.0294 (4)
H8A0.69450.44600.80140.035*
C90.5922 (4)0.36708 (12)0.95625 (17)0.0361 (5)
C100.4347 (5)0.3335 (2)1.0225 (3)0.0814 (12)
H10A0.33030.30380.97880.122*
H10B0.35050.36921.05550.122*
H10C0.51970.30551.07670.122*
C110.7586 (5)0.41439 (16)1.0220 (2)0.0563 (7)
H11A0.67610.45011.05580.084*
H11B0.85830.43640.97660.084*
H11C0.84750.38691.07560.084*
C120.7262 (5)0.31403 (14)0.9007 (2)0.0548 (7)
H12A0.62310.28440.85620.082*
H12B0.81570.28560.95290.082*
H12C0.82580.33820.85750.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0213 (2)0.0381 (3)0.0374 (3)0.00031 (19)0.00743 (19)0.0062 (2)
S20.0267 (2)0.0302 (2)0.0356 (3)0.00246 (19)0.00762 (19)0.0066 (2)
O10.0256 (7)0.0497 (9)0.0387 (8)0.0037 (6)0.0087 (6)0.0120 (7)
O20.0472 (10)0.0462 (10)0.0439 (9)0.0114 (8)0.0037 (7)0.0139 (8)
O30.0543 (10)0.0398 (9)0.0380 (9)0.0094 (8)0.0081 (7)0.0129 (7)
N10.0239 (8)0.0303 (8)0.0313 (8)0.0003 (6)0.0068 (6)0.0025 (7)
N20.0248 (8)0.0362 (9)0.0348 (9)0.0008 (7)0.0058 (7)0.0050 (7)
C10.0234 (9)0.0245 (9)0.0296 (9)0.0002 (7)0.0044 (7)0.0018 (7)
C20.0253 (9)0.0271 (9)0.0289 (10)0.0021 (7)0.0061 (7)0.0007 (7)
C30.0249 (9)0.0284 (9)0.0285 (9)0.0022 (7)0.0043 (7)0.0007 (8)
C40.0274 (9)0.0264 (9)0.0300 (10)0.0016 (7)0.0081 (7)0.0017 (7)
C50.0324 (10)0.0292 (10)0.0302 (10)0.0011 (8)0.0049 (8)0.0019 (8)
C60.0431 (12)0.0279 (10)0.0264 (10)0.0009 (9)0.0043 (8)0.0012 (8)
C70.080 (2)0.0452 (14)0.0496 (15)0.0083 (14)0.0150 (14)0.0224 (12)
C80.0236 (9)0.0312 (10)0.0339 (10)0.0012 (7)0.0049 (7)0.0029 (8)
C90.0378 (11)0.0367 (11)0.0332 (11)0.0052 (9)0.0018 (9)0.0067 (9)
C100.0503 (17)0.109 (3)0.087 (2)0.0109 (18)0.0177 (16)0.059 (2)
C110.0666 (18)0.0566 (17)0.0426 (14)0.0052 (14)0.0073 (13)0.0017 (12)
C120.0664 (18)0.0447 (14)0.0521 (16)0.0155 (13)0.0012 (13)0.0014 (12)
Geometric parameters (Å, º) top
S1—C11.736 (2)C5—H5A0.9500
S1—C21.738 (2)C7—H7A0.9800
S2—C41.743 (2)C7—H7B0.9800
S2—C11.759 (2)C7—H7C0.9800
O1—C31.246 (2)C8—H8A0.9500
O2—C61.209 (3)C9—C101.493 (4)
O3—C61.343 (3)C9—C121.530 (3)
O3—C71.447 (3)C9—C111.537 (4)
N1—C11.295 (2)C10—H10A0.9800
N1—C31.409 (3)C10—H10B0.9800
N2—C81.317 (3)C10—H10C0.9800
N2—C91.488 (3)C11—H11A0.9800
N2—H2N0.9000C11—H11B0.9800
C2—C81.379 (3)C11—H11C0.9800
C2—C31.441 (3)C12—H12A0.9800
C4—C51.335 (3)C12—H12B0.9800
C4—H4A0.9500C12—H12C0.9800
C5—C61.458 (3)
C1—S1—C288.09 (10)H7A—C7—H7C109.5
C4—S2—C199.97 (9)H7B—C7—H7C109.5
C6—O3—C7115.7 (2)N2—C8—C2122.48 (19)
C1—N1—C3109.79 (16)N2—C8—H8A118.8
C8—N2—C9124.02 (18)C2—C8—H8A118.8
C8—N2—H2N127.3N2—C9—C10107.0 (2)
C9—N2—H2N108.6N2—C9—C12109.43 (19)
N1—C1—S1118.72 (15)C10—C9—C12112.1 (3)
N1—C1—S2126.69 (15)N2—C9—C11108.98 (19)
S1—C1—S2114.53 (11)C10—C9—C11111.1 (2)
C8—C2—C3125.64 (18)C12—C9—C11108.2 (2)
C8—C2—S1124.06 (15)C9—C10—H10A109.5
C3—C2—S1110.26 (14)C9—C10—H10B109.5
O1—C3—N1122.95 (18)H10A—C10—H10B109.5
O1—C3—C2123.95 (18)C9—C10—H10C109.5
N1—C3—C2113.10 (16)H10A—C10—H10C109.5
C5—C4—S2124.43 (16)H10B—C10—H10C109.5
C5—C4—H4A117.8C9—C11—H11A109.5
S2—C4—H4A117.8C9—C11—H11B109.5
C4—C5—C6122.0 (2)H11A—C11—H11B109.5
C4—C5—H5A119.0C9—C11—H11C109.5
C6—C5—H5A119.0H11A—C11—H11C109.5
O2—C6—O3123.7 (2)H11B—C11—H11C109.5
O2—C6—C5124.3 (2)C9—C12—H12A109.5
O3—C6—C5111.96 (19)C9—C12—H12B109.5
O3—C7—H7A109.5H12A—C12—H12B109.5
O3—C7—H7B109.5C9—C12—H12C109.5
H7A—C7—H7B109.5H12A—C12—H12C109.5
O3—C7—H7C109.5H12B—C12—H12C109.5
C3—N1—C1—S10.2 (2)S1—C2—C3—N11.8 (2)
C3—N1—C1—S2177.08 (15)C1—S2—C4—C5174.49 (18)
C2—S1—C1—N11.00 (17)S2—C4—C5—C61.9 (3)
C2—S1—C1—S2176.56 (12)C7—O3—C6—O22.9 (3)
C4—S2—C1—N111.2 (2)C7—O3—C6—C5176.5 (2)
C4—S2—C1—S1171.44 (11)C4—C5—C6—O21.0 (3)
C1—S1—C2—C8179.57 (19)C4—C5—C6—O3179.54 (19)
C1—S1—C2—C31.47 (15)C9—N2—C8—C2179.01 (19)
C1—N1—C3—O1179.05 (19)C3—C2—C8—N20.7 (3)
C1—N1—C3—C21.0 (2)S1—C2—C8—N2178.46 (16)
C8—C2—C3—O10.3 (3)C8—N2—C9—C10179.7 (3)
S1—C2—C3—O1178.34 (17)C8—N2—C9—C1258.0 (3)
C8—C2—C3—N1179.81 (19)C8—N2—C9—C1160.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O10.902.212.777 (2)120
C4—H4A···N10.952.462.926 (3)110
C8—H8A···O1i0.952.183.117 (3)171
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC12H16N2O3S2
Mr300.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)6.011 (2), 19.333 (7), 12.870 (5)
β (°) 96.502 (8)
V3)1485.9 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.951, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
15867, 3939, 3125
Rint0.052
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.108, 1.00
No. of reflections3939
No. of parameters177
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.28

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O10.902.212.777 (2)120
C4—H4A···N10.952.462.926 (3)110
C8—H8A···O1i0.952.183.117 (3)171
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

We thank Dr H. Golchoubian for his help with the data collection.

References

First citationAbdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmad, E. M. (2009). Eur. J. Med. Chem. 44, 2632–2635.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAndrushko, A. P., Demchenko, A. M., Krasovskii, A. N., Rusanov, E. B., Chemega, A. N. & Lozinskii, M. O. (2001). Russ. J. Gen. Chem. 71, 1754–1758.  Web of Science CrossRef CAS Google Scholar
First citationBaia, M., Astilean, S. & Iliescu, T. (2008). Raman and SERS Investigations of Pharmaceuticals, pp. 125–142. Berlin, Heidelberg: Springer  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573  CrossRef CAS Web of Science Google Scholar
First citationBourahla, K., Derdour, A., Rahmouni, M., Carreaux, F. & Bazureau, J. P. (2007). Tetrahedron Lett. 48, 5785–5789.  Web of Science CrossRef CAS Google Scholar
First citationBruker (1998). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFakhari, A. R., Hosseiny Davarani, S. S., Ahmar, H. & Makarem, S. (2008). J. Appl. Electrochem. 38, 1743–1747.  Web of Science CrossRef CAS Google Scholar
First citationKoz'minykh, V. O., Milyutin, A. V., Makhmudov, R. R., Belyaev, A. O. & Koz'minykh, E. N. (2004). Pharmaceutical Chem. J. 38, 665–669.  CAS Google Scholar
First citationLesyk, R., Vladzimirska, O., Holota, S., Zaprutko, L. & Gzella, A. (2007). Eur. J. Med. Chem. 42, 641–648.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLesyk, R., Zimenkovsky, B., Atamanyuk, D., Jensen, F., Kiec-Kononowicz, K. & Gzella, A. (2006). Bioorg. Med. Chem. 14, 5230–5240.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPotikha, L. M., Turov, A. V. & Kovtunenko, V. A. (2008). Chem. Heterocycl. Comp. 44, 86–91.  Web of Science CrossRef CAS Google Scholar
First citationSatoh, A., Nagatomi, Y., Hirata, Y., Ito, S., Suzuki, G., Kimura, T., Maehara, S., Hikichi, H., Satow, A., Hata, M., Ohta, H. & Kawamoto, H. (2009). Bioorg. Med. Chem. Lett. 19, 5464–5468.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShiradkar, M., Kumar, G. V. S., Dasari, V., Tatikonda, S., Akula, K. C. & Shah, R. (2007). Eur. J. Med. Chem. 42, 807–816.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShiradkar, M. R., Murahari, K. K., Gangadasu, H. R., Suresh, T., Kalyan, C. A., Kaur, D. P. R., Burange, P., Ghogare, J., Mokale, V. & Raut, M. (2007). Bioorg. Med. Chem. 15, 3997–4008.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSiddiqui, N. & Ahsan, W. (2010). Eur. J. Med. Chem. 45, 1536–1543.  Web of Science CrossRef CAS PubMed Google Scholar
First citationVijaya Raj, K. K., Narayana, B., Ashalatha, B. V., Suchetha Kumari, N. & Sarojini, B. K. (2007). Eur. J. Med. Chem. 42, 425–429.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWu, Y. J. & Yang, B. V. (2007). Prog. Heterocycl. Chem. 18, 247–275.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds