organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Paraherqu­amide E

aDepartment of Chemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Pathumwan, Bangkok 10330, Thailand, bDepartment of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria, and cChulabhorn Research Institute and Chulabhorn Graduate Institute, Chemical Biology Program, Vibhavadi-Rangsit Highway, Bangkok 10210, Thailand
*Correspondence e-mail: thammarat.aree@gmail.com

(Received 30 July 2010; accepted 2 August 2010; online 11 August 2010)

In the title compound, C28H35N3O4, also known as 14-de­oxy­paraherquamide A,the two pyrrolidine rings adopt envelope conformations. The piperazine ring of the diaza­bicyclo­[2.2.2]octan-3-one unit adopts a boat conformation whereas the two piperidine rings are in distorted boat conformations. Intra­molecular C—H⋯O hydrogen bonds are observed. In the crystal, the mol­ecules are linked into chains along the b axis by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For the structure determination of paraherquamides, see: Liesch & Wichmann (1990[Liesch, M. & Wichmann, C. F. (1990). J. Antibiot. 43, 1380-1386.]). For the crystal structure of paraherquamide A, see: Yamazaki et al. (1981[Yamazaki, M., Okuyama, E., Kobayashi, M. & Inoue, H. (1981). Tetrahedron Lett. 22, 135-136.]). For the anti­nematodal and anti­parasitic activities of paraherquamides, see: Ondeyka et al. (1990[Ondeyka, J. G., Goegelman, R. T., Schaeffer, J. M., Kelemen, L. & Zitano, L. (1990). J. Antibiot. 43, 1375-1379.]). For their anthelmintic activity, see: Blanchflower et al. (1991[Blanchflower, S. E., Banks, R. M., Everett, J. R., Manger, B. R. & Reading, C. (1991). J. Antibiot. 44, 492-497.]) and for their insecticidal activity, see: Lopez-Gresa et al. (2006[Lopez-Gresa, M. P., González, M. C., Ciavatta, L., Ayala, I., Moya, P. & Primo, J. (2006). J. Agric. Food Chem. 54, 2921-2925.]). For reviews on the total synthesis and biosynthesis of paraherquamides, see: Williams (2002[Williams, R. M. (2002). Chem. Pharm. Bull. 50, 711-740.]); Williams & Cox (2003[Williams, R. M. & Cox, R. J. (2003). Acc. Chem. Res. 36, 127-139.]).

[Scheme 1]

Experimental

Crystal data
  • C28H35N3O4

  • Mr = 477.59

  • Orthorhombic, P 21 21 21

  • a = 6.5069 (2) Å

  • b = 16.0351 (8) Å

  • c = 23.9713 (11) Å

  • V = 2501.14 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.40 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.946, Tmax = 0.954

  • 8444 measured reflections

  • 2889 independent reflections

  • 1746 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.102

  • S = 0.98

  • 2889 reflections

  • 322 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.86 2.21 2.968 (4) 147
C17—H17A⋯O4 0.96 2.39 3.016 (5) 123
C20—H20⋯O1 0.98 2.44 3.126 (4) 126
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: Mercury (Macrae et al. 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, paraherquamide E (Fig. 1), was isolated from the marine-derived fungus Aspergillus aculeatus. In the family of the paraherquamides A–I, only the crystal structure of paraherquamide A has been reported thus far (Yamazaki et al., 1981). We report here the crystal structure of paraherquamide E.

The molecular structure of the title compound comprises one diazabicyclo[2.2.2]octan-3-one unit, one cyclopentane ring, one 1,4-dioxepine ring and two pyrrolidine rings one in the middle and the other in the left end of the molecule. The two pyrrolidine rings adopt envelope conformations with atoms C3 and C13 as flaps. The piperazine ring of the diazabicyclo[2.2.2]octan-3-one unit adopts a boat conformation whereas the two piperidine rings are in distorted boat conformations.

The molecular structures of paraherquamide A and E are very similar and can be superimposed with r.m.s. deviation of superposition 0.15 Å (all H-atoms are excluded from the calculation).

In the crystal, the molecules are linked into chains along the b-axis by intermolecular N1—H···O4 hydrogen bonds (Table 1 and Fig. 2).

Related literature top

For the structure determination of paraherquamides, see: Liesch & Wichmann (1990). For the crystal structure of paraherquamide A, see: Yamazaki et al. (1981). For the antinematodal and antiparasitic activities of paraherquamides, see: Ondeyka et al. (1990). For their anthelmintic activity, see: Blanchflower et al. (1991) and for their insecticidal activity, see: Lopez-Gresa et al. (2006). For reviews on the total synthesis and biosynthesis of paraherquamides, see: Williams (2002); Williams & Cox (2003).

Experimental top

The title compound was isolated from the marine-derived fungus Aspergillus aculeatus and the single crystals were obtained by slow evaporation of a methanol–hexane (9:1, v/v) solution at room temperature.

Refinement top

All H atoms were located in a difference Fourier map and then refined using a riding model: C–H = 0.98 Å (tertiary), 0.97 Å(secondary), 0.93 Å (aromatic), 0.96 Å (methyl), N–H = 0.86 Å (amide), and Uiso(H) = 1.2Ueq(C,N) and Uiso(H) = 1.5Ueq(methyl C). In the absence of significant anomalous scattering effects, Friedel pairs were averaged.

Structure description top

The title compound, paraherquamide E (Fig. 1), was isolated from the marine-derived fungus Aspergillus aculeatus. In the family of the paraherquamides A–I, only the crystal structure of paraherquamide A has been reported thus far (Yamazaki et al., 1981). We report here the crystal structure of paraherquamide E.

The molecular structure of the title compound comprises one diazabicyclo[2.2.2]octan-3-one unit, one cyclopentane ring, one 1,4-dioxepine ring and two pyrrolidine rings one in the middle and the other in the left end of the molecule. The two pyrrolidine rings adopt envelope conformations with atoms C3 and C13 as flaps. The piperazine ring of the diazabicyclo[2.2.2]octan-3-one unit adopts a boat conformation whereas the two piperidine rings are in distorted boat conformations.

The molecular structures of paraherquamide A and E are very similar and can be superimposed with r.m.s. deviation of superposition 0.15 Å (all H-atoms are excluded from the calculation).

In the crystal, the molecules are linked into chains along the b-axis by intermolecular N1—H···O4 hydrogen bonds (Table 1 and Fig. 2).

For the structure determination of paraherquamides, see: Liesch & Wichmann (1990). For the crystal structure of paraherquamide A, see: Yamazaki et al. (1981). For the antinematodal and antiparasitic activities of paraherquamides, see: Ondeyka et al. (1990). For their anthelmintic activity, see: Blanchflower et al. (1991) and for their insecticidal activity, see: Lopez-Gresa et al. (2006). For reviews on the total synthesis and biosynthesis of paraherquamides, see: Williams (2002); Williams & Cox (2003).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al. 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atomic numbering scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view of the N—H···O hydrogen-bonded (dotted lines) chains of paraherquamide molecules along the b axis.
Paraherquamide E top
Crystal data top
C28H35N3O4Dx = 1.268 Mg m3
Mr = 477.59Melting point: not measured K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1372 reflections
a = 6.5069 (2) Åθ = 2.5–19.7°
b = 16.0351 (8) ŵ = 0.09 mm1
c = 23.9713 (11) ÅT = 298 K
V = 2501.14 (19) Å3Needle, colourless
Z = 40.40 × 0.10 × 0.10 mm
F(000) = 1024
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2889 independent reflections
Radiation source: fine-focus sealed tube1746 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
φ and ω scansθmax = 28.2°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 58
Tmin = 0.946, Tmax = 0.954k = 2015
8444 measured reflectionsl = 3126
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0463P)2]
where P = (Fo2 + 2Fc2)/3
2889 reflections(Δ/σ)max = 0.001
322 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C28H35N3O4V = 2501.14 (19) Å3
Mr = 477.59Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.5069 (2) ŵ = 0.09 mm1
b = 16.0351 (8) ÅT = 298 K
c = 23.9713 (11) Å0.40 × 0.10 × 0.10 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2889 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1746 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.954Rint = 0.049
8444 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 0.98Δρmax = 0.16 e Å3
2889 reflectionsΔρmin = 0.20 e Å3
322 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0595 (4)0.84401 (16)0.16792 (11)0.0366 (7)
H10.05140.86990.17690.044*
N20.6009 (5)0.47354 (18)0.15605 (13)0.0452 (8)
N30.3520 (4)0.54738 (18)0.23432 (11)0.0353 (7)
O10.0133 (4)0.71770 (14)0.20826 (10)0.0510 (7)
O20.4573 (4)1.06380 (14)0.07563 (9)0.0421 (7)
O30.0828 (4)1.01425 (14)0.13216 (10)0.0468 (7)
O40.2499 (4)0.41513 (15)0.25453 (10)0.0543 (7)
C20.0988 (6)0.7623 (2)0.17997 (14)0.0364 (9)
C30.3025 (5)0.73668 (19)0.15236 (13)0.0293 (8)
C40.5582 (5)0.8436 (2)0.10529 (14)0.0387 (9)
H40.66450.80540.10070.046*
C50.5796 (5)0.9252 (2)0.08689 (14)0.0396 (9)
H50.70140.94140.06970.047*
C60.4235 (5)0.9831 (2)0.09359 (13)0.0336 (8)
C70.2432 (6)0.9606 (2)0.12015 (14)0.0327 (8)
C80.2239 (5)0.8798 (2)0.13901 (14)0.0314 (8)
C90.3764 (5)0.8200 (2)0.13052 (13)0.0321 (8)
C100.4413 (6)0.6932 (2)0.19609 (14)0.0393 (9)
H10A0.58280.71100.19160.047*
H10B0.39680.70740.23350.047*
C110.4239 (5)0.5991 (2)0.18678 (12)0.0308 (8)
C120.6319 (5)0.5608 (2)0.17134 (15)0.0434 (10)
H12A0.69180.59100.14030.052*
H12B0.72520.56460.20280.052*
C130.3851 (5)0.4474 (2)0.16074 (14)0.0353 (9)
C140.4053 (6)0.3551 (2)0.14645 (17)0.0553 (11)
H140.43570.35200.10650.066*
C150.6035 (8)0.3309 (3)0.1771 (2)0.0952 (18)
H15A0.57170.30470.21260.114*
H15B0.68390.29230.15490.114*
C160.7211 (7)0.4117 (3)0.1863 (2)0.0831 (16)
H16A0.72890.42540.22560.100*
H16B0.85930.40780.17130.100*
C170.2264 (8)0.2967 (2)0.15698 (19)0.0720 (14)
H17A0.19290.29700.19600.108*
H17B0.26340.24120.14580.108*
H17C0.10940.31490.13580.108*
C180.3167 (5)0.4666 (2)0.22117 (14)0.0377 (9)
C190.2626 (6)0.50045 (19)0.11950 (13)0.0371 (9)
H19A0.12440.47860.11560.045*
H19B0.32820.49980.08320.045*
C200.2558 (5)0.58959 (18)0.14247 (12)0.0282 (8)
H200.12590.59330.16300.034*
C210.2623 (5)0.66842 (19)0.10578 (13)0.0311 (8)
C220.4342 (6)0.6665 (2)0.06154 (14)0.0441 (10)
H22A0.56550.66420.07980.066*
H22B0.42660.71590.03900.066*
H22C0.41750.61820.03830.066*
C230.0595 (6)0.6830 (2)0.07491 (15)0.0463 (10)
H23A0.04370.64170.04620.069*
H23B0.06030.73750.05840.069*
H23C0.05270.67880.10080.069*
C240.0153 (6)1.0726 (2)0.09430 (16)0.0498 (10)
H240.11731.09230.10030.060*
C250.1105 (6)1.1046 (2)0.05100 (17)0.0523 (11)
H250.03181.14110.02980.063*
C260.3240 (6)1.0919 (2)0.03039 (14)0.0456 (10)
C270.4195 (8)1.1744 (2)0.0128 (2)0.0788 (15)
H27A0.42921.21070.04460.118*
H27B0.33511.20010.01520.118*
H27C0.55431.16460.00210.118*
C280.3285 (7)1.0286 (3)0.01689 (16)0.0696 (14)
H28A0.46821.01890.02800.104*
H28B0.25181.04970.04800.104*
H28C0.26850.97710.00440.104*
C290.3185 (8)0.5797 (3)0.28994 (15)0.0709 (14)
H29A0.28960.53440.31490.106*
H29B0.20420.61750.28950.106*
H29C0.43940.60860.30230.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0304 (16)0.0298 (18)0.0497 (17)0.0040 (13)0.0168 (14)0.0009 (14)
N20.0426 (19)0.0366 (19)0.056 (2)0.0087 (16)0.0165 (16)0.0203 (16)
N30.0423 (18)0.0410 (19)0.0227 (14)0.0021 (14)0.0018 (13)0.0055 (13)
O10.0489 (17)0.0379 (16)0.0663 (17)0.0022 (12)0.0272 (14)0.0053 (13)
O20.0468 (16)0.0336 (15)0.0457 (15)0.0107 (12)0.0008 (13)0.0057 (12)
O30.0510 (16)0.0383 (15)0.0513 (15)0.0103 (13)0.0191 (13)0.0106 (13)
O40.0655 (18)0.0513 (16)0.0460 (16)0.0100 (15)0.0173 (14)0.0181 (14)
C20.037 (2)0.032 (2)0.040 (2)0.0045 (18)0.0061 (18)0.0024 (17)
C30.0302 (19)0.0281 (19)0.0296 (18)0.0024 (15)0.0045 (16)0.0010 (15)
C40.027 (2)0.037 (2)0.052 (2)0.0009 (16)0.0052 (18)0.0025 (18)
C50.027 (2)0.042 (2)0.050 (2)0.0092 (19)0.0052 (18)0.0007 (18)
C60.037 (2)0.029 (2)0.0343 (19)0.0059 (18)0.0019 (18)0.0009 (16)
C70.036 (2)0.025 (2)0.0365 (19)0.0032 (17)0.0030 (17)0.0035 (15)
C80.0300 (19)0.031 (2)0.0329 (19)0.0055 (16)0.0043 (16)0.0063 (16)
C90.032 (2)0.032 (2)0.0316 (18)0.0039 (17)0.0001 (17)0.0014 (16)
C100.035 (2)0.043 (2)0.040 (2)0.0051 (17)0.0061 (17)0.0005 (17)
C110.0298 (19)0.035 (2)0.0275 (17)0.0047 (16)0.0012 (16)0.0076 (15)
C120.029 (2)0.051 (3)0.050 (2)0.0013 (17)0.0004 (18)0.0189 (19)
C130.039 (2)0.029 (2)0.038 (2)0.0025 (16)0.0131 (18)0.0098 (17)
C140.069 (3)0.034 (2)0.063 (3)0.010 (2)0.024 (2)0.011 (2)
C150.083 (4)0.055 (3)0.148 (5)0.026 (3)0.021 (4)0.048 (3)
C160.056 (3)0.065 (3)0.129 (4)0.022 (3)0.012 (3)0.046 (3)
C170.093 (4)0.040 (2)0.083 (3)0.002 (2)0.023 (3)0.002 (2)
C180.032 (2)0.042 (2)0.040 (2)0.0033 (17)0.0061 (17)0.0121 (19)
C190.052 (2)0.031 (2)0.0282 (18)0.0012 (18)0.0014 (18)0.0000 (16)
C200.0256 (17)0.0321 (19)0.0269 (18)0.0008 (15)0.0028 (15)0.0017 (15)
C210.0311 (19)0.035 (2)0.0272 (18)0.0002 (16)0.0017 (16)0.0050 (15)
C220.055 (3)0.041 (2)0.036 (2)0.005 (2)0.0101 (19)0.0052 (17)
C230.046 (2)0.043 (2)0.050 (2)0.000 (2)0.0187 (19)0.0070 (18)
C240.047 (2)0.038 (2)0.065 (3)0.0089 (19)0.015 (2)0.007 (2)
C250.053 (3)0.049 (3)0.055 (2)0.008 (2)0.005 (2)0.013 (2)
C260.051 (2)0.045 (2)0.040 (2)0.0019 (19)0.010 (2)0.0102 (19)
C270.084 (4)0.052 (3)0.100 (4)0.003 (3)0.019 (3)0.037 (3)
C280.081 (4)0.087 (3)0.041 (2)0.016 (3)0.003 (2)0.003 (2)
C290.120 (4)0.064 (3)0.029 (2)0.019 (3)0.012 (2)0.004 (2)
Geometric parameters (Å, º) top
N1—C21.366 (4)C14—C151.534 (6)
N1—C81.398 (4)C14—H140.98
N1—H10.86C15—C161.521 (7)
N2—C161.456 (5)C15—H15A0.97
N2—C121.460 (4)C15—H15B0.97
N2—C131.470 (5)C16—H16A0.97
N3—C181.353 (4)C16—H16B0.97
N3—C291.447 (4)C17—H17A0.96
N3—C111.485 (4)C17—H17B0.96
O1—C21.226 (4)C17—H17C0.96
O2—C61.382 (4)C19—C201.532 (4)
O2—C261.460 (4)C19—H19A0.97
O3—C241.376 (4)C19—H19B0.97
O3—C71.383 (4)C20—C211.541 (4)
O4—C181.228 (4)C20—H200.98
C2—C31.537 (5)C21—C231.531 (5)
C3—C91.513 (4)C21—C221.541 (5)
C3—C101.550 (4)C22—H22A0.96
C3—C211.585 (4)C22—H22B0.96
C4—C91.382 (5)C22—H22C0.96
C4—C51.388 (4)C23—H23A0.96
C4—H40.93C23—H23B0.96
C5—C61.385 (5)C23—H23C0.96
C5—H50.93C24—C251.313 (5)
C6—C71.382 (5)C24—H240.93
C7—C81.378 (4)C25—C261.489 (5)
C8—C91.395 (5)C25—H250.93
C10—C111.529 (5)C26—C281.522 (5)
C10—H10A0.97C26—C271.522 (5)
C10—H10B0.97C27—H27A0.96
C11—C121.532 (5)C27—H27B0.96
C11—C201.533 (4)C27—H27C0.96
C12—H12A0.97C28—H28A0.96
C12—H12B0.97C28—H28B0.96
C13—C141.525 (5)C28—H28C0.96
C13—C191.528 (5)C29—H29A0.96
C13—C181.546 (5)C29—H29B0.96
C14—C171.516 (6)C29—H29C0.96
C2—N1—C8110.8 (3)N2—C16—H16A111.0
C2—N1—H1124.6C15—C16—H16A111.0
C8—N1—H1124.6N2—C16—H16B111.0
C16—N2—C12117.0 (3)C15—C16—H16B111.0
C16—N2—C13106.3 (3)H16A—C16—H16B109.0
C12—N2—C13112.7 (3)C14—C17—H17A109.5
C18—N3—C29122.1 (3)C14—C17—H17B109.5
C18—N3—C11114.2 (3)H17A—C17—H17B109.5
C29—N3—C11123.7 (3)C14—C17—H17C109.5
C6—O2—C26115.2 (3)H17A—C17—H17C109.5
C24—O3—C7121.8 (3)H17B—C17—H17C109.5
O1—C2—N1124.4 (3)O4—C18—N3123.5 (3)
O1—C2—C3126.5 (3)O4—C18—C13125.3 (3)
N1—C2—C3109.1 (3)N3—C18—C13111.1 (3)
C9—C3—C2100.8 (3)C13—C19—C20107.6 (3)
C9—C3—C10116.5 (3)C13—C19—H19A110.2
C2—C3—C10109.4 (3)C20—C19—H19A110.2
C9—C3—C21114.7 (2)C13—C19—H19B110.2
C2—C3—C21110.2 (3)C20—C19—H19B110.2
C10—C3—C21105.2 (2)H19A—C19—H19B108.5
C9—C4—C5118.9 (3)C19—C20—C11108.8 (3)
C9—C4—H4120.6C19—C20—C21124.0 (3)
C5—C4—H4120.6C11—C20—C21107.1 (2)
C6—C5—C4121.4 (3)C19—C20—H20105.2
C6—C5—H5119.3C11—C20—H20105.2
C4—C5—H5119.3C21—C20—H20105.2
O2—C6—C7121.5 (3)C23—C21—C20112.2 (3)
O2—C6—C5118.3 (3)C23—C21—C22107.2 (3)
C7—C6—C5120.1 (3)C20—C21—C22113.4 (3)
C8—C7—C6118.3 (3)C23—C21—C3112.2 (3)
C8—C7—O3116.6 (3)C20—C21—C399.7 (2)
C6—C7—O3125.1 (3)C22—C21—C3112.3 (3)
C7—C8—C9122.3 (3)C21—C22—H22A109.5
C7—C8—N1128.2 (3)C21—C22—H22B109.5
C9—C8—N1109.5 (3)H22A—C22—H22B109.5
C4—C9—C8119.0 (3)C21—C22—H22C109.5
C4—C9—C3131.7 (3)H22A—C22—H22C109.5
C8—C9—C3109.3 (3)H22B—C22—H22C109.5
C11—C10—C3107.6 (3)C21—C23—H23A109.5
C11—C10—H10A110.2C21—C23—H23B109.5
C3—C10—H10A110.2H23A—C23—H23B109.5
C11—C10—H10B110.2C21—C23—H23C109.5
C3—C10—H10B110.2H23A—C23—H23C109.5
H10A—C10—H10B108.5H23B—C23—H23C109.5
N3—C11—C10117.5 (3)C25—C24—O3129.5 (4)
N3—C11—C12103.8 (3)C25—C24—H24115.2
C10—C11—C12111.5 (3)O3—C24—H24115.2
N3—C11—C20104.5 (2)C24—C25—C26130.5 (4)
C10—C11—C20104.6 (3)C24—C25—H25114.8
C12—C11—C20115.0 (3)C26—C25—H25114.8
N2—C12—C11108.9 (3)O2—C26—C25110.5 (3)
N2—C12—H12A109.9O2—C26—C28109.7 (3)
C11—C12—H12A109.9C25—C26—C28110.9 (3)
N2—C12—H12B109.9O2—C26—C27103.4 (3)
C11—C12—H12B109.9C25—C26—C27110.7 (3)
H12A—C12—H12B108.3C28—C26—C27111.5 (3)
N2—C13—C14100.2 (3)C26—C27—H27A109.5
N2—C13—C19106.9 (3)C26—C27—H27B109.5
C14—C13—C19116.1 (3)H27A—C27—H27B109.5
N2—C13—C18106.9 (3)C26—C27—H27C109.5
C14—C13—C18115.3 (3)H27A—C27—H27C109.5
C19—C13—C18110.2 (3)H27B—C27—H27C109.5
C17—C14—C13119.7 (3)C26—C28—H28A109.5
C17—C14—C15114.2 (3)C26—C28—H28B109.5
C13—C14—C15102.1 (4)H28A—C28—H28B109.5
C17—C14—H14106.7C26—C28—H28C109.5
C13—C14—H14106.7H28A—C28—H28C109.5
C15—C14—H14106.7H28B—C28—H28C109.5
C16—C15—C14106.0 (3)N3—C29—H29A109.5
C16—C15—H15A110.5N3—C29—H29B109.5
C14—C15—H15A110.5H29A—C29—H29B109.5
C16—C15—H15B110.5N3—C29—H29C109.5
C14—C15—H15B110.5H29A—C29—H29C109.5
H15A—C15—H15B108.7H29B—C29—H29C109.5
N2—C16—C15103.8 (4)
C8—N1—C2—O1174.9 (3)C16—N2—C13—C1873.7 (4)
C8—N1—C2—C35.3 (4)C12—N2—C13—C1855.7 (3)
O1—C2—C3—C9173.3 (3)N2—C13—C14—C17167.8 (4)
N1—C2—C3—C97.0 (3)C19—C13—C14—C1777.6 (5)
O1—C2—C3—C1050.0 (4)C18—C13—C14—C1753.5 (5)
N1—C2—C3—C10130.2 (3)N2—C13—C14—C1540.5 (4)
O1—C2—C3—C2165.1 (4)C19—C13—C14—C15155.1 (3)
N1—C2—C3—C21114.6 (3)C18—C13—C14—C1573.7 (4)
C9—C4—C5—C60.3 (5)C17—C14—C15—C16152.3 (4)
C26—O2—C6—C766.8 (4)C13—C14—C15—C1621.5 (5)
C26—O2—C6—C5116.4 (3)C12—N2—C16—C15160.1 (3)
C4—C5—C6—O2178.3 (3)C13—N2—C16—C1533.2 (4)
C4—C5—C6—C71.4 (5)C14—C15—C16—N26.0 (5)
O2—C6—C7—C8177.3 (3)C29—N3—C18—O41.6 (5)
C5—C6—C7—C80.5 (5)C11—N3—C18—O4177.4 (3)
O2—C6—C7—O30.9 (5)C29—N3—C18—C13174.5 (3)
C5—C6—C7—O3175.9 (3)C11—N3—C18—C136.5 (4)
C24—O3—C7—C8141.1 (3)N2—C13—C18—O4121.8 (4)
C24—O3—C7—C642.5 (5)C14—C13—C18—O411.4 (5)
C6—C7—C8—C92.2 (5)C19—C13—C18—O4122.4 (4)
O3—C7—C8—C9178.8 (3)N2—C13—C18—N354.3 (3)
C6—C7—C8—N1178.3 (3)C14—C13—C18—N3164.6 (3)
O3—C7—C8—N11.6 (5)C19—C13—C18—N361.5 (4)
C2—N1—C8—C7179.3 (3)N2—C13—C19—C2070.9 (3)
C2—N1—C8—C91.1 (4)C14—C13—C19—C20178.3 (3)
C5—C4—C9—C82.9 (5)C18—C13—C19—C2044.8 (4)
C5—C4—C9—C3176.9 (3)C13—C19—C20—C1117.3 (4)
C7—C8—C9—C43.9 (5)C13—C19—C20—C21144.4 (3)
N1—C8—C9—C4176.5 (3)N3—C11—C20—C1969.8 (3)
C7—C8—C9—C3175.9 (3)C10—C11—C20—C19166.1 (3)
N1—C8—C9—C33.7 (4)C12—C11—C20—C1943.4 (4)
C2—C3—C9—C4173.8 (3)N3—C11—C20—C21154.0 (3)
C10—C3—C9—C455.7 (5)C10—C11—C20—C2129.8 (3)
C21—C3—C9—C467.8 (5)C12—C11—C20—C2192.8 (3)
C2—C3—C9—C86.3 (3)C19—C20—C21—C2373.5 (4)
C10—C3—C9—C8124.5 (3)C11—C20—C21—C23158.6 (3)
C21—C3—C9—C8112.1 (3)C19—C20—C21—C2248.1 (4)
C9—C3—C10—C11146.2 (3)C11—C20—C21—C2279.8 (3)
C2—C3—C10—C11100.4 (3)C19—C20—C21—C3167.6 (3)
C21—C3—C10—C1118.0 (3)C11—C20—C21—C339.7 (3)
C18—N3—C11—C10172.4 (3)C9—C3—C21—C2377.2 (4)
C29—N3—C11—C106.6 (5)C2—C3—C21—C2335.6 (4)
C18—N3—C11—C1264.0 (3)C10—C3—C21—C23153.4 (3)
C29—N3—C11—C12117.0 (4)C9—C3—C21—C20163.9 (3)
C18—N3—C11—C2057.0 (3)C2—C3—C21—C2083.2 (3)
C29—N3—C11—C20122.0 (4)C10—C3—C21—C2034.5 (3)
C3—C10—C11—N3121.9 (3)C9—C3—C21—C2243.6 (4)
C3—C10—C11—C12118.4 (3)C2—C3—C21—C22156.5 (3)
C3—C10—C11—C206.5 (3)C10—C3—C21—C2285.8 (3)
C16—N2—C12—C11124.8 (3)C7—O3—C24—C2520.7 (6)
C13—N2—C12—C111.1 (4)O3—C24—C25—C263.5 (7)
N3—C11—C12—N259.7 (3)C6—O2—C26—C2571.2 (4)
C10—C11—C12—N2172.8 (3)C6—O2—C26—C2851.3 (4)
C20—C11—C12—N253.9 (4)C6—O2—C26—C27170.3 (3)
C16—N2—C13—C1446.9 (4)C24—C25—C26—O223.2 (6)
C12—N2—C13—C14176.3 (3)C24—C25—C26—C2898.6 (5)
C16—N2—C13—C19168.3 (3)C24—C25—C26—C27137.2 (5)
C12—N2—C13—C1962.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.862.212.968 (4)147
C17—H17A···O40.962.393.016 (5)123
C20—H20···O10.982.443.126 (4)126
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC28H35N3O4
Mr477.59
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)6.5069 (2), 16.0351 (8), 23.9713 (11)
V3)2501.14 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.946, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
8444, 2889, 1746
Rint0.049
(sin θ/λ)max1)0.664
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.102, 0.98
No. of reflections2889
No. of parameters322
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.20

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008), Mercury (Macrae et al. 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.862.212.968 (4)147
C17—H17A···O40.962.393.016 (5)123
C20—H20···O10.982.443.126 (4)126
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

This work wass supported by the Thai Government Stimulus Package 2 (TKK2555), under the Project for the Estab­lishment of a Comprehensive Center for Innovative Food, Health Products and Agriculture (PERFECTA), the Center for Petroleum, Petrochemicals and Advanced Mat­erials, Chulalongkorn University (to TA), the Thailand Research Fund (TRF) and the Center for Environmental Health, Toxicology and Management of Chemicals (ETM) (to PK).

References

First citationBlanchflower, S. E., Banks, R. M., Everett, J. R., Manger, B. R. & Reading, C. (1991). J. Antibiot. 44, 492–497.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiesch, M. & Wichmann, C. F. (1990). J. Antibiot. 43, 1380–1386.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLopez-Gresa, M. P., González, M. C., Ciavatta, L., Ayala, I., Moya, P. & Primo, J. (2006). J. Agric. Food Chem. 54, 2921–2925.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOndeyka, J. G., Goegelman, R. T., Schaeffer, J. M., Kelemen, L. & Zitano, L. (1990). J. Antibiot. 43, 1375–1379.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilliams, R. M. (2002). Chem. Pharm. Bull. 50, 711–740.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWilliams, R. M. & Cox, R. J. (2003). Acc. Chem. Res. 36, 127–139.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYamazaki, M., Okuyama, E., Kobayashi, M. & Inoue, H. (1981). Tetrahedron Lett. 22, 135–136.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds