organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-5-chloro­pyridinium 6-oxo-1,6-di­hydro­pyridine-2-carboxyl­ate 0.85-hydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 8 August 2010; accepted 11 August 2010; online 18 August 2010)

In the title salt, C5H6ClN2+·C6H4NO3·0.85H2O, the pyridin­ium ring is planar, with a maximum deviation of 0.010 (2) Å. In the crystal structure, the cations, anions and water mol­ecules are linked via N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For applications of inter­molecular inter­actions, see: Braga et al. (2002[Braga, D., Maini, L. & Grepioni, F. (2002). Chem. Eur. J. 8, 1804-1812.]); Lam & Mak (2000[Lam, C. K. & Mak, T. C. W. (2000). Tetrahedron, 56, 6657-6665.]). For related structures, see: Hemamalini & Fun (2010a[Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o557.],b[Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o578.],c[Hemamalini, M. & Fun, H.-K. (2010c). Acta Cryst. E66, o1416-o1417.],d[Hemamalini, M. & Fun, H.-K. (2010d). Acta Cryst. E66, o1418-o1419.],e[Hemamalini, M. & Fun, H.-K. (2010e). Acta Cryst. E66, o2008-o2009.],f[Hemamalini, M. & Fun, H.-K. (2010f). Acta Cryst. E66, o2246-o2247.]); Sawada & Ohashi (1998[Sawada, K. & Ohashi, Y. (1998). Acta Cryst. C54, 1491-1493.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C5H6ClN2+·C6H4NO3·0.85H2O

  • Mr = 282.98

  • Orthorhombic, P 21 21 21

  • a = 3.8096 (1) Å

  • b = 15.6046 (3) Å

  • c = 20.9370 (3) Å

  • V = 1244.65 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 296 K

  • 0.52 × 0.22 × 0.11 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.851, Tmax = 0.966

  • 15196 measured reflections

  • 3632 independent reflections

  • 3129 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.113

  • S = 1.10

  • 3632 reflections

  • 215 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1458 Fridel pairs

  • Flack parameter: −0.04 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O3i 0.85 1.85 2.696 (3) 174
O1W—H2W1⋯O1Wii 0.85 1.99 2.732 (5) 145
N1—H1N1⋯O3iii 0.98 (2) 1.67 (2) 2.637 (2) 170 (2)
N2—H1N2⋯O1iv 0.87 (2) 1.97 (2) 2.823 (2) 168 (2)
N2—H2N2⋯O2iii 0.84 (3) 2.04 (3) 2.882 (2) 179 (3)
C4—H4⋯O1v 0.93 (2) 2.39 (2) 3.296 (2) 166 (2)
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (iii) [-x+{\script{1\over 2}}, -y+2, z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (v) x, y, z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Intermolecular interaction analyses in crystalline systems are very important in supramolecular chemistry (Braga et al., 2002). These interactions are responsible for crystal packing, and through an understanding of such interactions we can comprehend collective properties and design new crystals with specific physical and chemical properties (Lam & Mak, 2000). We have been interested in hydrogen-bonded systems formed by 2-amino pyridines and carboxylic acids that generate molecular assemblies (Hemamalini & Fun, 2010a,b,c,d,e,f). In continuation of our studies of pyridinium derivatives, the crystal structure determination of the title compound has been undertaken.

The asymmetric unit, (Fig. 1), contains one 2-amino-5-chloropyridinium cation, one 6-oxo-1,6-dihydropyridine-2-carboxylate anion and one water molecule with a refined site occupany of 0.85. The pyridinium ring is essentially planar, with a maximum deviation of 0.010 (2) Å for atom C5. In the 2-amino-5-chloropyridinium cation, a wider than normal angle [C1—N1—C2 = 122.55 (14)°] is subtended at the protonated N1 atom. The anion exists in the keto–enol tautomerism of the -CONH moiety. Similar tautomerism is also observed in the crystal structure of 2-oxo-1,2-dihydropyridine-6-carboxylic acid (Sawada & Ohashi, 1998).

In the crystal packing (Fig. 2), the protonated N1 atom and the 2-amino group (N2) are hydrogen-bonded to the carboxylate oxygen atoms (O2 and O3) via a pair of intermolecular N1—H1N1···O3 and N2—H2N2···O2 hydrogen bonds, forming an R22(8) ring motif (Bernstein et al., 1995). The ion pairs are further connected via O1W—H1W1···O3, O1W—H2W1···O1W, N2—H1N2···O1 and C4—H4···O1 (Table 1) hydrogen bonds, forming a three-dimensional network. The crystal of title compound is isomorphous with that of 2-amino-5-bromopyridinium 6-oxo-1,6-dihydropyridine-2-carboxylate monohydrate (Hemamalini & Fun, 2010f).

Related literature top

For applications of intermolecular interactions, see: Braga et al. (2002); Lam & Mak (2000). For related structures, see: Hemamalini & Fun (2010a,b,c,d,e,f); Sawada & Ohashi (1998). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A hot methanol solution (20 ml) of 2-amino-5-chloropyridine (64 mg, Aldrich) and 6-hydroxypicolinic acid (69 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement top

The site occupancy of the water molecule was initially refined and then fixed at 0.85 in the final refinement. The H-atoms were located in a difference Fourier map and refined freely [ranges of C—H = 0.89 (2)–0.95 (2) Å and N—H = 0.82 (3)–0.97 (2) Å]. The water H atoms were allowed to ride on the parent O atom.

Structure description top

Intermolecular interaction analyses in crystalline systems are very important in supramolecular chemistry (Braga et al., 2002). These interactions are responsible for crystal packing, and through an understanding of such interactions we can comprehend collective properties and design new crystals with specific physical and chemical properties (Lam & Mak, 2000). We have been interested in hydrogen-bonded systems formed by 2-amino pyridines and carboxylic acids that generate molecular assemblies (Hemamalini & Fun, 2010a,b,c,d,e,f). In continuation of our studies of pyridinium derivatives, the crystal structure determination of the title compound has been undertaken.

The asymmetric unit, (Fig. 1), contains one 2-amino-5-chloropyridinium cation, one 6-oxo-1,6-dihydropyridine-2-carboxylate anion and one water molecule with a refined site occupany of 0.85. The pyridinium ring is essentially planar, with a maximum deviation of 0.010 (2) Å for atom C5. In the 2-amino-5-chloropyridinium cation, a wider than normal angle [C1—N1—C2 = 122.55 (14)°] is subtended at the protonated N1 atom. The anion exists in the keto–enol tautomerism of the -CONH moiety. Similar tautomerism is also observed in the crystal structure of 2-oxo-1,2-dihydropyridine-6-carboxylic acid (Sawada & Ohashi, 1998).

In the crystal packing (Fig. 2), the protonated N1 atom and the 2-amino group (N2) are hydrogen-bonded to the carboxylate oxygen atoms (O2 and O3) via a pair of intermolecular N1—H1N1···O3 and N2—H2N2···O2 hydrogen bonds, forming an R22(8) ring motif (Bernstein et al., 1995). The ion pairs are further connected via O1W—H1W1···O3, O1W—H2W1···O1W, N2—H1N2···O1 and C4—H4···O1 (Table 1) hydrogen bonds, forming a three-dimensional network. The crystal of title compound is isomorphous with that of 2-amino-5-bromopyridinium 6-oxo-1,6-dihydropyridine-2-carboxylate monohydrate (Hemamalini & Fun, 2010f).

For applications of intermolecular interactions, see: Braga et al. (2002); Lam & Mak (2000). For related structures, see: Hemamalini & Fun (2010a,b,c,d,e,f); Sawada & Ohashi (1998). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing part of a hydrogen-bonded network. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
2-Amino-5-chloropyridinium 6-oxo-1,6-dihydropyridine-2-carboxylate 0.85-hydrate top
Crystal data top
C5H6ClN2+·C6H4NO3·0.85H2OF(000) = 586
Mr = 282.98Dx = 1.510 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6806 reflections
a = 3.8096 (1) Åθ = 2.3–29.0°
b = 15.6046 (3) ŵ = 0.32 mm1
c = 20.9370 (3) ÅT = 296 K
V = 1244.65 (4) Å3Needle, green
Z = 40.52 × 0.22 × 0.11 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3632 independent reflections
Radiation source: fine-focus sealed tube3129 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 30.1°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 45
Tmin = 0.851, Tmax = 0.966k = 2121
15196 measured reflectionsl = 2929
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0653P)2 + 0.0443P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
3632 reflectionsΔρmax = 0.20 e Å3
215 parametersΔρmin = 0.17 e Å3
0 restraintsAbsolute structure: Flack (1983), with 1458 Fridel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (6)
Crystal data top
C5H6ClN2+·C6H4NO3·0.85H2OV = 1244.65 (4) Å3
Mr = 282.98Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 3.8096 (1) ŵ = 0.32 mm1
b = 15.6046 (3) ÅT = 296 K
c = 20.9370 (3) Å0.52 × 0.22 × 0.11 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3632 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3129 reflections with I > 2σ(I)
Tmin = 0.851, Tmax = 0.966Rint = 0.026
15196 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113Δρmax = 0.20 e Å3
S = 1.10Δρmin = 0.17 e Å3
3632 reflectionsAbsolute structure: Flack (1983), with 1458 Fridel pairs
215 parametersAbsolute structure parameter: 0.04 (6)
0 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.29968 (15)0.97559 (3)1.16268 (2)0.04826 (15)
N10.0504 (4)0.98883 (9)0.97983 (7)0.0358 (3)
N20.1288 (6)0.90253 (11)0.89193 (7)0.0473 (4)
C10.0873 (5)1.00748 (10)1.04320 (8)0.0365 (4)
C20.1708 (5)0.91546 (9)0.95385 (8)0.0339 (3)
C30.3321 (6)0.85531 (10)0.99503 (8)0.0378 (4)
C40.3690 (5)0.87223 (11)1.05852 (9)0.0389 (4)
C50.2467 (5)0.95094 (10)1.08254 (7)0.0361 (4)
O10.8680 (5)0.75705 (8)0.15429 (5)0.0483 (4)
O20.6524 (5)0.96179 (8)0.31378 (6)0.0527 (4)
O30.8337 (5)0.90935 (8)0.40756 (6)0.0516 (4)
N30.8628 (4)0.82238 (9)0.25126 (6)0.0332 (3)
C60.9424 (5)0.75403 (10)0.21242 (8)0.0363 (4)
C71.1066 (5)0.68363 (11)0.24435 (9)0.0397 (4)
C81.1756 (6)0.68705 (11)0.30786 (9)0.0414 (4)
C91.0842 (6)0.75963 (12)0.34448 (8)0.0398 (4)
C100.9247 (5)0.82601 (10)0.31526 (8)0.0321 (3)
C110.7932 (6)0.90675 (10)0.34770 (7)0.0386 (4)
O1W0.5775 (11)0.18936 (16)1.01198 (10)0.1069 (12)0.85
H1W10.58880.15760.97900.101 (14)*0.85
H2W10.44010.23031.02160.109 (17)*0.85
H10.012 (6)1.0566 (13)1.0558 (9)0.040 (5)*
H30.416 (6)0.8069 (14)0.9779 (9)0.044 (6)*
H40.474 (6)0.8348 (12)1.0870 (8)0.032 (5)*
H81.274 (6)0.6427 (13)0.3299 (9)0.049 (6)*
H91.141 (9)0.7623 (15)0.3865 (11)0.065 (7)*
H71.155 (7)0.6344 (12)0.2193 (9)0.042 (5)*
H1N10.068 (6)1.0297 (13)0.9520 (10)0.046 (6)*
H1N20.222 (7)0.8578 (14)0.8740 (10)0.048 (6)*
H2N20.050 (7)0.9426 (17)0.8691 (11)0.057 (7)*
H1N30.771 (6)0.8649 (13)0.2351 (9)0.043 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0578 (3)0.0516 (2)0.0353 (2)0.0024 (2)0.0049 (2)0.00042 (17)
N10.0431 (8)0.0311 (6)0.0331 (7)0.0030 (6)0.0011 (6)0.0030 (5)
N20.0696 (13)0.0352 (7)0.0370 (7)0.0118 (8)0.0039 (8)0.0020 (6)
C10.0429 (9)0.0308 (7)0.0358 (8)0.0003 (7)0.0029 (7)0.0006 (6)
C20.0368 (8)0.0298 (7)0.0352 (7)0.0011 (7)0.0018 (8)0.0024 (6)
C30.0400 (9)0.0302 (7)0.0432 (8)0.0033 (7)0.0002 (8)0.0020 (6)
C40.0372 (9)0.0358 (8)0.0435 (9)0.0001 (8)0.0030 (8)0.0099 (7)
C50.0370 (9)0.0383 (8)0.0329 (7)0.0048 (7)0.0002 (7)0.0029 (6)
O10.0731 (10)0.0412 (6)0.0306 (5)0.0021 (7)0.0036 (7)0.0059 (5)
O20.0771 (11)0.0396 (6)0.0414 (6)0.0175 (7)0.0040 (8)0.0052 (5)
O30.0709 (10)0.0500 (7)0.0339 (6)0.0190 (8)0.0034 (8)0.0099 (5)
N30.0434 (8)0.0265 (6)0.0297 (6)0.0026 (6)0.0020 (6)0.0002 (5)
C60.0427 (9)0.0324 (7)0.0338 (7)0.0044 (7)0.0038 (8)0.0036 (6)
C70.0440 (10)0.0321 (7)0.0429 (9)0.0048 (8)0.0060 (8)0.0045 (7)
C80.0445 (10)0.0368 (8)0.0430 (9)0.0099 (8)0.0017 (9)0.0057 (7)
C90.0447 (10)0.0421 (8)0.0325 (8)0.0040 (8)0.0020 (8)0.0005 (7)
C100.0330 (8)0.0334 (7)0.0300 (7)0.0012 (7)0.0024 (7)0.0026 (6)
C110.0466 (10)0.0357 (7)0.0335 (7)0.0030 (8)0.0001 (8)0.0054 (6)
O1W0.187 (4)0.0767 (15)0.0574 (12)0.013 (2)0.0226 (18)0.0259 (11)
Geometric parameters (Å, º) top
Cl1—C51.7331 (16)O2—C111.237 (2)
N1—C21.348 (2)O3—C111.2633 (18)
N1—C11.365 (2)N3—C101.362 (2)
N1—H1N10.97 (2)N3—C61.375 (2)
N2—C21.322 (2)N3—H1N30.82 (2)
N2—H1N20.87 (2)C6—C71.430 (3)
N2—H2N20.84 (3)C7—C81.356 (3)
C1—C51.351 (2)C7—H70.95 (2)
C1—H10.90 (2)C8—C91.411 (3)
C2—C31.415 (2)C8—H80.91 (2)
C3—C41.363 (3)C9—C101.348 (2)
C3—H30.89 (2)C9—H90.91 (2)
C4—C51.407 (2)C10—C111.516 (2)
C4—H40.925 (19)O1W—H1W10.85
O1—C61.2506 (19)O1W—H2W10.85
C2—N1—C1122.55 (14)C10—N3—H1N3116.4 (14)
C2—N1—H1N1118.2 (12)C6—N3—H1N3118.4 (14)
C1—N1—H1N1119.3 (12)O1—C6—N3119.75 (16)
C2—N2—H1N2119.8 (15)O1—C6—C7125.67 (15)
C2—N2—H2N2119.1 (16)N3—C6—C7114.58 (15)
H1N2—N2—H2N2120 (2)C8—C7—C6120.84 (16)
C5—C1—N1119.97 (16)C8—C7—H7122.4 (12)
C5—C1—H1124.8 (12)C6—C7—H7116.7 (12)
N1—C1—H1115.1 (12)C7—C8—C9121.09 (17)
N2—C2—N1118.97 (15)C7—C8—H8123.0 (13)
N2—C2—C3123.30 (16)C9—C8—H8115.8 (13)
N1—C2—C3117.72 (15)C10—C9—C8118.78 (15)
C4—C3—C2120.72 (16)C10—C9—H9120.8 (16)
C4—C3—H3121.2 (13)C8—C9—H9120.4 (17)
C2—C3—H3118.0 (13)C9—C10—N3119.51 (15)
C3—C4—C5118.93 (16)C9—C10—C11125.75 (15)
C3—C4—H4123.4 (11)N3—C10—C11114.73 (14)
C5—C4—H4117.6 (11)O2—C11—O3126.89 (15)
C1—C5—C4120.07 (16)O2—C11—C10117.57 (14)
C1—C5—Cl1119.85 (13)O3—C11—C10115.51 (15)
C4—C5—Cl1120.09 (13)H1W1—O1W—H2W1131.4
C10—N3—C6125.17 (15)
C2—N1—C1—C50.7 (3)O1—C6—C7—C8180.0 (2)
C1—N1—C2—N2179.18 (19)N3—C6—C7—C80.4 (3)
C1—N1—C2—C31.8 (3)C6—C7—C8—C90.7 (3)
N2—C2—C3—C4179.8 (2)C7—C8—C9—C100.3 (3)
N1—C2—C3—C41.2 (3)C8—C9—C10—N31.5 (3)
C2—C3—C4—C50.5 (3)C8—C9—C10—C11176.86 (19)
N1—C1—C5—C41.1 (3)C6—N3—C10—C91.8 (3)
N1—C1—C5—Cl1178.92 (14)C6—N3—C10—C11176.69 (18)
C3—C4—C5—C11.7 (3)C9—C10—C11—O2179.9 (2)
C3—C4—C5—Cl1178.37 (16)N3—C10—C11—O21.7 (3)
C10—N3—C6—O1178.73 (18)C9—C10—C11—O31.6 (3)
C10—N3—C6—C70.8 (3)N3—C10—C11—O3176.80 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O3i0.851.852.696 (3)174
O1W—H2W1···O1Wii0.851.992.732 (5)145
N1—H1N1···O3iii0.98 (2)1.67 (2)2.637 (2)170 (2)
N2—H1N2···O1iv0.87 (2)1.97 (2)2.823 (2)168 (2)
N2—H2N2···O2iii0.84 (3)2.04 (3)2.882 (2)179 (3)
C4—H4···O1v0.93 (2)2.39 (2)3.296 (2)166 (2)
Symmetry codes: (i) x+3/2, y+1, z+1/2; (ii) x1/2, y+1/2, z+2; (iii) x+1/2, y+2, z+1/2; (iv) x1/2, y+3/2, z+1; (v) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC5H6ClN2+·C6H4NO3·0.85H2O
Mr282.98
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)3.8096 (1), 15.6046 (3), 20.9370 (3)
V3)1244.65 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.52 × 0.22 × 0.11
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.851, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
15196, 3632, 3129
Rint0.026
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.113, 1.10
No. of reflections3632
No. of parameters215
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.17
Absolute structureFlack (1983), with 1458 Fridel pairs
Absolute structure parameter0.04 (6)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O3i0.851.852.696 (3)174
O1W—H2W1···O1Wii0.851.992.732 (5)145
N1—H1N1···O3iii0.98 (2)1.67 (2)2.637 (2)170 (2)
N2—H1N2···O1iv0.87 (2)1.97 (2)2.823 (2)168 (2)
N2—H2N2···O2iii0.84 (3)2.04 (3)2.882 (2)179 (3)
C4—H4···O1v0.93 (2)2.39 (2)3.296 (2)166 (2)
Symmetry codes: (i) x+3/2, y+1, z+1/2; (ii) x1/2, y+1/2, z+2; (iii) x+1/2, y+2, z+1/2; (iv) x1/2, y+3/2, z+1; (v) x, y, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia for Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBraga, D., Maini, L. & Grepioni, F. (2002). Chem. Eur. J. 8, 1804–1812.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o557.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o578.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010c). Acta Cryst. E66, o1416–o1417.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010d). Acta Cryst. E66, o1418–o1419.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010e). Acta Cryst. E66, o2008–o2009.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010f). Acta Cryst. E66, o2246–o2247.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLam, C. K. & Mak, T. C. W. (2000). Tetrahedron, 56, 6657–6665.  Web of Science CSD CrossRef CAS Google Scholar
First citationSawada, K. & Ohashi, Y. (1998). Acta Cryst. C54, 1491–1493.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds