metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3-Di­methyl-1,1-(propane-1,3-di­yl)diimidazol-1-ium tetra­bromido­cadmate(II)

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and bDepartment of Light Chemical Engineering, College of Food Science and Light Industry, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: kingwell2004@sina.com.cn

(Received 14 July 2010; accepted 4 August 2010; online 11 August 2010)

The title compound, (C11H18N4)[CdBr4], was prepared by an anion exchange. The dihedral angle between the two planar imidazolium rings in the cation is 74.4 (4)°. The crystal packing is stabilized by weak inter­molecular C—H⋯Br hydrogen bonds between the cation and the tetrahedral anion, building up a three-dimensionnal network.

Related literature

For the properties and applications of ionic liquids, see: Welton (1999[Welton, T. (1999). Chem. Rev. 99, 2071-2083.]); Nicholas et al. (2004[Nicholas, G., Garcia, M. T. & Scammells, P. J. (2004). Green Chem. 6, 166-175.]); Yu et al. (2007[Yu, G. Q., Yan, S. Q., Zhou, F., Liu, X. Q., Liu, W. M. & Liang, Y. M. (2007). Tribol. Lett. 25, 197-205]). For dicationic ionic liquids, see: Jared et al. (2005[Jared, L. A., Ding, R. F., Ellern, A. & Armstrong, D. W. (2005). J. Am. Chem. Soc. 127, 593-604.]); Liang et al. (2008[Liang, J., Dong, S., Cang, H. & Wang, J. (2008). Acta Cryst. E64, o2480.]); Song et al. (2009[Song, L. C., Luo, X., Wang, Y. Z., Gai, B. & Hu, Q. M. (2009). J. Organomet. Chem. 694, 103-112.]); Geng et al. (2010[Geng, H., Zhuang, L., Zhang, J., Wang, G. & Yuan, A. (2010). Acta Cryst. E66, o1267.]). For related structures, see: Jared et al. (2005[Jared, L. A., Ding, R. F., Ellern, A. & Armstrong, D. W. (2005). J. Am. Chem. Soc. 127, 593-604.]); Liang et al. (2008[Liang, J., Dong, S., Cang, H. & Wang, J. (2008). Acta Cryst. E64, o2480.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • (C11H18N4)[CdBr4]

  • Mr = 638.33

  • Monoclinic, P 21 /c

  • a = 8.5050 (17) Å

  • b = 15.876 (3) Å

  • c = 13.836 (3) Å

  • β = 96.07 (3)°

  • V = 1857.7 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 9.78 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.245, Tmax = 0.442

  • 3383 measured reflections

  • 3383 independent reflections

  • 1874 reflections with I > 2σ(I)

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.144

  • S = 0.95

  • 3383 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.77 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯Br2 0.97 2.67 3.515 (15) 145
C1—H1C⋯Br3i 0.96 2.93 3.819 (13) 155
C4—H4A⋯Br3ii 0.93 2.70 3.606 (11) 164
C5—H5B⋯Br3iii 0.97 2.84 3.765 (11) 161
C8—H8A⋯Br4iv 0.93 2.86 3.699 (12) 151
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x-1, y, z; (iii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Ionic liquids (ILs) are generally formed by an organic cation and a weakly coordinating anion. They have enjoyed considerable research interests in recent years because of their unique properties such as high thermal stability, non-volatility, non-flammability, high ionic conductivity, wide electrochemical window and miscibility with organic compounds (Welton, 1999; Nicholas et al., 2004; Yu et al., 2007). Geminal dicationic ionic liquids have been shown to possess superior physical properties in terms of thermal stability and volatility compared to traditional ionic liquids (ILs) (Jared et al., 2005; Liang et al., 2008; Song et al., 2009). As part of our ongoing studies on new Geminal dicationic ionic liquids (Geng et al., 2010), we report here the crystal structure of the title compound (I).

In (I) (Fig. 1), the bond lengths and angles are within normal ranges (Allen et al., 1987). The two imidazolium rings are of course planar but make a dihedral angle of 74.4 (4)° which is much larger than the values reported for related compound as C11H18N4.Br2, 21.5° (Jared et al., 2005) or C11H18N4.2PF6 ,6.1 (2)°(Liang et al., 2008). The dication of the title structure has a highly twisted conformation with the two imidazolium rings almost perpendicular to the C3 plane (angles of C5C6C7-N2C4N1C2C3 and C5C6C7-C8C9N4C10N3 are 79.4 (8)° and 86.1 (6)°, respectively), which are significantly lower than those observed in C11H18N4.Br2 (106.8 (7)° and 92.6 (6)°, respectively) (Jared et al., 2005).

Weak intermolecular C—H···Br hydrogen bonds between tetrabromide cadmium anions and imidazolium cations build up a three dimensionnal network. (Table 1, Fig.2).

Related literature top

For the properties and applications of ionic liquids, see: Welton (1999); Nicholas et al. (2004); Yu et al. (2007). For dicationic ionic liquids, see: Jared et al. (2005); Liang et al. (2008); Song et al. (2009); Geng et al. (2010). For related structures, see: Jared et al. (2005); Liang et al. (2008). For bond-length data, see: Allen et al. (1987).

Experimental top

A solution of 1,3-dibromide propane(10.1 g, 0.05 mol) in methanol(30 ml) was slowly added to a solution of 1-methylimidazole(9.4 g, 0.11 mol) in methanol(30 ml) at room temperature. The reaction mixture was then refluxed for 6 h. After evaporation of the solvent, the residue was washed with diethyl ether and dichloromethane, then dried in vacuum to obtain ionic liquid 3,3-dimethyl-1,1-(propane-1,3-diyl)- diimidazol-1-ium dibromide (a white solid ionic liquid).

A solution of above mentioned dibromide ionic liquid (3.66 g, 0.01 mol) in methanol(20 ml) was slowly added to a methanol solution of cadmium dibromide (3.44 g, 0.02 mol). The reaction mixture was stirred at room temperature for 3 h. After evaporation of the solvent, the residue was washed with methanol, then dried in vacuum to obtain title compound (I), 3,3-dimethyl-1,1-(propane-1,3-diyl)- diimidazol-1-ium tetrabromide cadmium(II)(yield 84%). M.p. 452–454 K.

Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of methanol. 1H NMR (DMSO, δ, p.p.m.) 8.82 (s, 2 H), 7.49 (d, 4 H), 4.37 (t, 4 H), 3.93 (s,6 H), 2.57 (t, 4 H).

Refinement top

All H atoms attached to C atoms fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene) or 0.93 Å (aromatic) with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl).

Structure description top

Ionic liquids (ILs) are generally formed by an organic cation and a weakly coordinating anion. They have enjoyed considerable research interests in recent years because of their unique properties such as high thermal stability, non-volatility, non-flammability, high ionic conductivity, wide electrochemical window and miscibility with organic compounds (Welton, 1999; Nicholas et al., 2004; Yu et al., 2007). Geminal dicationic ionic liquids have been shown to possess superior physical properties in terms of thermal stability and volatility compared to traditional ionic liquids (ILs) (Jared et al., 2005; Liang et al., 2008; Song et al., 2009). As part of our ongoing studies on new Geminal dicationic ionic liquids (Geng et al., 2010), we report here the crystal structure of the title compound (I).

In (I) (Fig. 1), the bond lengths and angles are within normal ranges (Allen et al., 1987). The two imidazolium rings are of course planar but make a dihedral angle of 74.4 (4)° which is much larger than the values reported for related compound as C11H18N4.Br2, 21.5° (Jared et al., 2005) or C11H18N4.2PF6 ,6.1 (2)°(Liang et al., 2008). The dication of the title structure has a highly twisted conformation with the two imidazolium rings almost perpendicular to the C3 plane (angles of C5C6C7-N2C4N1C2C3 and C5C6C7-C8C9N4C10N3 are 79.4 (8)° and 86.1 (6)°, respectively), which are significantly lower than those observed in C11H18N4.Br2 (106.8 (7)° and 92.6 (6)°, respectively) (Jared et al., 2005).

Weak intermolecular C—H···Br hydrogen bonds between tetrabromide cadmium anions and imidazolium cations build up a three dimensionnal network. (Table 1, Fig.2).

For the properties and applications of ionic liquids, see: Welton (1999); Nicholas et al. (2004); Yu et al. (2007). For dicationic ionic liquids, see: Jared et al. (2005); Liang et al. (2008); Song et al. (2009); Geng et al. (2010). For related structures, see: Jared et al. (2005); Liang et al. (2008). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I) showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen are represented as small spheres of arbitrary radii. Hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. Partial packing view showing the C-H···Br Hydrogen bonding pattern. Hydrogen bonds are drawn as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes : (i) -x+1, -y, -z+1; (ii) -x+1, y+1/2, -z+3/2; (iii) x-1, -y+1/2, z-1/2.
3,3-Dimethyl-1,1-(propane-1,3-diyl)diimidazol-1-ium tetrabromidocadmate(II) top
Crystal data top
(C11H18N4)[CdBr4]F(000) = 1200
Mr = 638.33Dx = 2.282 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.5050 (17) Åθ = 9–13°
b = 15.876 (3) ŵ = 9.78 mm1
c = 13.836 (3) ÅT = 293 K
β = 96.07 (3)°Block, white
V = 1857.7 (6) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1874 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.3°, θmin = 2.0°
ω/2θ scansh = 1010
Absorption correction: ψ scan
(North et al., 1968)
k = 019
Tmin = 0.245, Tmax = 0.442l = 016
3383 measured reflections3 standard reflections every 200 reflections
3383 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.066P)2]
where P = (Fo2 + 2Fc2)/3
3383 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.77 e Å3
Crystal data top
(C11H18N4)[CdBr4]V = 1857.7 (6) Å3
Mr = 638.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.5050 (17) ŵ = 9.78 mm1
b = 15.876 (3) ÅT = 293 K
c = 13.836 (3) Å0.20 × 0.10 × 0.10 mm
β = 96.07 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1874 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.245, Tmax = 0.4423 standard reflections every 200 reflections
3383 measured reflections intensity decay: 1%
3383 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 0.95Δρmax = 0.72 e Å3
3383 reflectionsΔρmin = 0.77 e Å3
183 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2634 (10)0.0761 (6)0.4518 (6)0.045 (2)
N20.2576 (10)0.2095 (6)0.4221 (7)0.052 (2)
N30.5789 (10)0.3667 (6)0.6079 (7)0.060 (3)
N40.8099 (10)0.3936 (6)0.6694 (6)0.047 (2)
C10.2360 (16)0.0015 (9)0.4950 (10)0.095 (5)
H1A0.21160.00750.56040.142*
H1B0.32890.03600.49590.142*
H1C0.14880.02930.45840.142*
C20.3518 (14)0.0926 (9)0.3730 (9)0.066 (4)
H2A0.40380.05190.34000.079*
C30.3505 (13)0.1739 (8)0.3527 (9)0.064 (4)
H3A0.39890.20140.30450.076*
C40.2128 (11)0.1516 (8)0.4794 (8)0.050 (3)
H4A0.15450.16090.53150.060*
C50.2341 (14)0.3012 (8)0.4287 (9)0.068 (4)
H5A0.15150.31210.47040.081*
H5B0.19830.32280.36460.081*
C60.3818 (15)0.3485 (8)0.4682 (9)0.074 (4)
H6A0.46810.33490.43040.089*
H6B0.36300.40870.46370.089*
C70.4240 (18)0.3240 (9)0.5717 (11)0.096 (5)
H7A0.43520.26340.57700.115*
H7B0.34140.34160.61060.115*
C80.5739 (14)0.4410 (8)0.6537 (8)0.057 (3)
H8A0.48330.47290.65830.068*
C90.7154 (16)0.4612 (8)0.6906 (9)0.067 (4)
H9A0.74680.51030.72400.080*
C100.7192 (13)0.3354 (8)0.6172 (8)0.055 (3)
H10A0.75150.28420.59340.065*
C110.9894 (14)0.3870 (10)0.7007 (12)0.107 (6)
H11A1.02610.43840.73200.160*
H11B1.04420.37780.64440.160*
H11C1.00940.34080.74500.160*
Cd10.77770 (8)0.15445 (5)0.80145 (6)0.0423 (2)
Br10.79089 (15)0.29343 (8)0.89683 (10)0.0652 (4)
Br20.50899 (14)0.13451 (8)0.69780 (10)0.0643 (4)
Br31.00029 (15)0.14239 (11)0.69122 (10)0.0832 (5)
Br40.8109 (2)0.04053 (11)0.92709 (13)0.1013 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.048 (6)0.046 (6)0.043 (5)0.003 (5)0.011 (4)0.003 (4)
N20.040 (6)0.056 (6)0.061 (6)0.011 (5)0.004 (5)0.009 (5)
N30.046 (6)0.034 (6)0.092 (8)0.013 (4)0.031 (5)0.002 (5)
N40.044 (5)0.057 (6)0.042 (5)0.002 (5)0.010 (4)0.021 (5)
C10.097 (11)0.091 (11)0.094 (11)0.056 (9)0.004 (9)0.006 (10)
C20.062 (9)0.070 (9)0.070 (9)0.008 (7)0.029 (7)0.016 (7)
C30.054 (8)0.077 (10)0.063 (8)0.019 (7)0.020 (6)0.018 (7)
C40.031 (6)0.081 (9)0.037 (6)0.006 (6)0.005 (5)0.009 (7)
C50.064 (9)0.077 (10)0.055 (8)0.001 (7)0.027 (6)0.004 (7)
C60.094 (10)0.073 (9)0.056 (8)0.005 (8)0.009 (7)0.000 (8)
C70.122 (14)0.065 (10)0.099 (12)0.021 (9)0.005 (10)0.013 (8)
C80.054 (8)0.062 (9)0.052 (7)0.002 (6)0.001 (6)0.003 (6)
C90.103 (11)0.043 (7)0.052 (7)0.010 (8)0.004 (7)0.009 (6)
C100.045 (7)0.061 (8)0.057 (7)0.006 (6)0.001 (6)0.015 (6)
C110.053 (9)0.080 (11)0.183 (18)0.017 (8)0.009 (10)0.034 (11)
Cd10.0313 (4)0.0491 (5)0.0475 (5)0.0006 (4)0.0080 (3)0.0051 (4)
Br10.0724 (9)0.0536 (8)0.0706 (9)0.0055 (6)0.0119 (7)0.0081 (6)
Br20.0457 (7)0.0684 (9)0.0760 (9)0.0047 (6)0.0061 (6)0.0025 (7)
Br30.0583 (8)0.1260 (14)0.0684 (9)0.0112 (9)0.0214 (7)0.0020 (9)
Br40.1088 (13)0.0956 (12)0.1011 (12)0.0178 (10)0.0180 (10)0.0049 (10)
Geometric parameters (Å, º) top
N1—C41.342 (13)C5—C61.514 (16)
N1—C11.400 (15)C5—H5A0.9700
N1—C21.412 (13)C5—H5B0.9700
N2—C41.297 (13)C6—C71.490 (17)
N2—C31.423 (14)C6—H6A0.9700
N2—C51.475 (15)C6—H6B0.9700
N3—C101.286 (13)C7—H7A0.9700
N3—C81.341 (14)C7—H7B0.9700
N3—C71.519 (15)C8—C91.297 (15)
N4—C101.362 (13)C8—H8A0.9300
N4—C91.391 (13)C9—H9A0.9300
N4—C111.545 (14)C10—H10A0.9300
C1—H1A0.9600C11—H11A0.9600
C1—H1B0.9600C11—H11B0.9600
C1—H1C0.9600C11—H11C0.9600
C2—C31.321 (17)Cd1—Br42.5036 (19)
C2—H2A0.9300Cd1—Br32.5608 (16)
C3—H3A0.9300Cd1—Br12.5673 (15)
C4—H4A0.9300Cd1—Br22.5858 (16)
C4—N1—C1126.2 (10)C7—C6—C5108.9 (11)
C4—N1—C2105.5 (9)C7—C6—H6A109.9
C1—N1—C2128.3 (11)C5—C6—H6A109.9
C4—N2—C3110.5 (10)C7—C6—H6B109.9
C4—N2—C5127.7 (11)C5—C6—H6B109.9
C3—N2—C5121.5 (11)H6A—C6—H6B108.3
C10—N3—C8111.6 (9)C6—C7—N3108.2 (11)
C10—N3—C7128.6 (11)C6—C7—H7A110.0
C8—N3—C7118.6 (11)N3—C7—H7A110.0
C10—N4—C9109.1 (10)C6—C7—H7B110.0
C10—N4—C11126.2 (11)N3—C7—H7B110.0
C9—N4—C11124.7 (12)H7A—C7—H7B108.4
N1—C1—H1A109.5C9—C8—N3109.2 (11)
N1—C1—H1B109.5C9—C8—H8A125.4
H1A—C1—H1B109.5N3—C8—H8A125.4
N1—C1—H1C109.5C8—C9—N4105.0 (11)
H1A—C1—H1C109.5C8—C9—H9A127.5
H1B—C1—H1C109.5N4—C9—H9A127.5
C3—C2—N1110.6 (11)N3—C10—N4105.0 (10)
C3—C2—H2A124.7N3—C10—H10A127.5
N1—C2—H2A124.7N4—C10—H10A127.5
C2—C3—N2103.7 (11)N4—C11—H11A109.5
C2—C3—H3A128.1N4—C11—H11B109.5
N2—C3—H3A128.1H11A—C11—H11B109.5
N2—C4—N1109.6 (9)N4—C11—H11C109.5
N2—C4—H4A125.2H11A—C11—H11C109.5
N1—C4—H4A125.2H11B—C11—H11C109.5
N2—C5—C6113.6 (10)Br4—Cd1—Br3108.87 (6)
N2—C5—H5A108.9Br4—Cd1—Br1105.57 (6)
C6—C5—H5A108.9Br3—Cd1—Br1112.06 (6)
N2—C5—H5B108.9Br4—Cd1—Br2108.95 (6)
C6—C5—H5B108.9Br3—Cd1—Br2109.04 (6)
H5A—C5—H5B107.7Br1—Cd1—Br2112.23 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···Br20.972.673.515 (15)145
C1—H1C···Br3i0.962.933.819 (13)155
C4—H4A···Br3ii0.932.703.606 (11)164
C5—H5B···Br3iii0.972.843.765 (11)161
C8—H8A···Br4iv0.932.863.699 (12)151
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z; (iii) x1, y+1/2, z1/2; (iv) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula(C11H18N4)[CdBr4]
Mr638.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.5050 (17), 15.876 (3), 13.836 (3)
β (°) 96.07 (3)
V3)1857.7 (6)
Z4
Radiation typeMo Kα
µ (mm1)9.78
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.245, 0.442
No. of measured, independent and
observed [I > 2σ(I)] reflections
3383, 3383, 1874
Rint0.000
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.144, 0.95
No. of reflections3383
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 0.77

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···Br20.972.673.515 (15)145.2
C1—H1C···Br3i0.962.933.819 (13)155.2
C4—H4A···Br3ii0.932.703.606 (11)164.2
C5—H5B···Br3iii0.972.843.765 (11)160.7
C8—H8A···Br4iv0.932.863.699 (12)150.6
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z; (iii) x1, y+1/2, z1/2; (iv) x+1, y+1/2, z+3/2.
 

Acknowledgements

This work was supported by the Foundation for Young Teachers Scholarship of Nanjing University of Technology, Jiangsu, China (grant No. 39729005). The authors also thank the Centre of Testing and Analysis, Nanjing University, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGeng, H., Zhuang, L., Zhang, J., Wang, G. & Yuan, A. (2010). Acta Cryst. E66, o1267.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationJared, L. A., Ding, R. F., Ellern, A. & Armstrong, D. W. (2005). J. Am. Chem. Soc. 127, 593–604.  Web of Science PubMed Google Scholar
First citationLiang, J., Dong, S., Cang, H. & Wang, J. (2008). Acta Cryst. E64, o2480.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNicholas, G., Garcia, M. T. & Scammells, P. J. (2004). Green Chem. 6, 166–175.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, L. C., Luo, X., Wang, Y. Z., Gai, B. & Hu, Q. M. (2009). J. Organomet. Chem. 694, 103–112.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWelton, T. (1999). Chem. Rev. 99, 2071–2083.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYu, G. Q., Yan, S. Q., Zhou, F., Liu, X. Q., Liu, W. M. & Liang, Y. M. (2007). Tribol. Lett. 25, 197–205  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds