organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(4-Chloro­benzyl)imino­methyl]phenol

aResearch Centre of Bioorganic Chemistry, Department of Chemistry, Faculty of, Science, Chulalongkorn University, Bangkok, 10330, Thailand
*Correspondence e-mail: nongnuj.j@chula.ac.th

(Received 21 July 2010; accepted 5 August 2010; online 18 August 2010)

The title Schiff base compound, C14H12ClNO, was prepared from 4-chloro­benzyl­amine and salicyl­aldehyde. The mol­ecule is V-shaped: the dihedral angle between the aromatic rings is 67.51 (5)°. The rings are located on the opposite side of the C=N bond, giving an E configuration. An intra­molecular N—H⋯O hydrogen bond generates a S(6) ring. In the crystal structure, only weak non-classical C—H⋯O contacts are observed.

Related literature

For background to Schiff base ligands and their biological activity, see: Adsule et al. (2006[Adsule, S., Barve, V., Chen, D., Ahmed, F., Dou, Q. P., Padhye, S. & Sarkar, F. H. (2006). J. Med. Chem. 49, 7242-7246.]); Karthikeyan et al. (2006[Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.]). For related structures, see: Tariq et al. (2010[Tariq, M. I., Ahmad, S., Tahir, M. N., Sarfaraz, M. & Hussain, I. (2010). Acta Cryst. E66, o1561.]); Khalaji & Simpson (2009[Khalaji, A. D. & Simpson, J. (2009). Acta Cryst. E65, o362.]). For the graph-set analysis of hydrogen-bond patterns, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the synthesis, see: Kannappan et al. (2005[Kannappan, R., Tanase, S., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2005). Inorg. Chim. Acta, 358, 383-388.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12ClNO

  • Mr = 245.7

  • Orthorhombic, P 21 21 21

  • a = 6.2876 (2) Å

  • b = 12.2267 (3) Å

  • c = 16.2664 (5) Å

  • V = 1250.51 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 296 K

  • 0.45 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker,2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.933, Tmax = 0.944

  • 10586 measured reflections

  • 1479 independent reflections

  • 1119 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.107

  • S = 1.04

  • 1479 reflections

  • 155 parameters

  • 143 restraints

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.82 1.86 2.587 (3) 147
C11—H11⋯O1i 0.93 2.53 3.369 (4) 150
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff base complexes have gained importance from physiological and pharmacological activities point of view (Adsule et al., 2006). As part of our research efforts in the area of transition metal complex-based anticancer agents, the title compound has been prepared as a ligand by Schiff base reaction between 4-chlorobenzylamine and salicylaldehyde. We report herein on the crystal structure of the title compound.

The molecule adopts a V-shape structure. The dihedral angle between the chlorobenzene ring and 2-methyliminophenol moiety is 67.51 (5)°. The 2-methyliminophenol (C1 to C8, N1 and O1) moiety is nearly planar (r.m.s. deviation = 0.002 Å). The chlorobenzene and 2-methyliminophenol groups are located on the opposite side of the C=N bond, showing an E configuration. Intramolecular N—H···O hydrogen bond generates a S(6) ring. In the crystal structure, only weak non-classical C—H···O contact is observed.

Related literature top

For background to Schiff base ligands and their biological activity, see: Adsule et al. (2006); Karthikeyan et al. (2006). For related structures, see: Tariq et al. (2010); Khalaji & Simpson (2009). For the graph-set analysis of hydrogen-bond patterns, see: Bernstein et al. (1995). For the preparation, see: Kannappan et al. (2005).

Experimental top

The title compound was prepared according to the method reported in the literature (Kannappan et al., 2005). 4-Chlorobenzylamine (2.80 ml. 2.88 g, 0.02 mol) was added to a stirred ethanol solution of salicylaldehyde (2.50 ml, 2.86 g, 0.02 mol). The reaction mixture was stirred at reflux for 1 h and then the mixture was allowed to stand at room temperature for 1 week to give yellow cystals suitable for X-ray diffraction analysis.

Refinement top

All other H-atoms were refined using a riding model with d(C—H) = 0.95 Å, Uiso= 1.2Ueq (C) for aromatic and 0.98 Å, Uiso = 1.5Ueq (C) for CH3 H atoms. The absolute structure could not be determined and therefore 1,031 Friedel opposites were merged.

Structure description top

Schiff base complexes have gained importance from physiological and pharmacological activities point of view (Adsule et al., 2006). As part of our research efforts in the area of transition metal complex-based anticancer agents, the title compound has been prepared as a ligand by Schiff base reaction between 4-chlorobenzylamine and salicylaldehyde. We report herein on the crystal structure of the title compound.

The molecule adopts a V-shape structure. The dihedral angle between the chlorobenzene ring and 2-methyliminophenol moiety is 67.51 (5)°. The 2-methyliminophenol (C1 to C8, N1 and O1) moiety is nearly planar (r.m.s. deviation = 0.002 Å). The chlorobenzene and 2-methyliminophenol groups are located on the opposite side of the C=N bond, showing an E configuration. Intramolecular N—H···O hydrogen bond generates a S(6) ring. In the crystal structure, only weak non-classical C—H···O contact is observed.

For background to Schiff base ligands and their biological activity, see: Adsule et al. (2006); Karthikeyan et al. (2006). For related structures, see: Tariq et al. (2010); Khalaji & Simpson (2009). For the graph-set analysis of hydrogen-bond patterns, see: Bernstein et al. (1995). For the preparation, see: Kannappan et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids for the non-hydrogen atoms drawn at the 30% probability level. Hydrogen bond is shown as dashed line.
2-[(4-Chlorobenzyl)iminomethyl]phenol top
Crystal data top
C14H12ClNOF(000) = 512
Mr = 245.7Dx = 1.305 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5069 reflections
a = 6.2876 (2) Åθ = 2.5–22.8°
b = 12.2267 (3) ŵ = 0.29 mm1
c = 16.2664 (5) ÅT = 296 K
V = 1250.51 (6) Å3Prism, yellow
Z = 40.45 × 0.20 × 0.20 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1479 independent reflections
Radiation source: Mo Kα1119 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 26.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker,2008)
h = 77
Tmin = 0.933, Tmax = 0.944k = 1515
10586 measured reflectionsl = 1720
Refinement top
Refinement on F2143 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0436P)2 + 0.2636P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.107(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.20 e Å3
1479 reflectionsΔρmin = 0.29 e Å3
155 parameters
Crystal data top
C14H12ClNOV = 1250.51 (6) Å3
Mr = 245.7Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.2876 (2) ŵ = 0.29 mm1
b = 12.2267 (3) ÅT = 296 K
c = 16.2664 (5) Å0.45 × 0.20 × 0.20 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1479 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker,2008)
1119 reflections with I > 2σ(I)
Tmin = 0.933, Tmax = 0.944Rint = 0.028
10586 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038143 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.04Δρmax = 0.20 e Å3
1479 reflectionsΔρmin = 0.29 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7530 (5)0.3508 (3)0.9530 (2)0.0818 (9)
H10.88870.32160.95860.098*
C20.7031 (8)0.4471 (3)0.9927 (2)0.1008 (12)
H20.80450.48271.02460.121*
C30.5038 (8)0.4895 (3)0.9849 (2)0.0974 (10)
H30.46970.55421.01190.117*
C40.3524 (6)0.4384 (2)0.93779 (19)0.0815 (8)
H40.21730.46870.93290.098*
C50.6053 (4)0.2970 (2)0.90492 (15)0.0587 (6)
C60.4010 (4)0.3415 (2)0.89741 (17)0.0616 (7)
C70.6613 (5)0.1965 (2)0.86325 (17)0.0711 (7)
H70.79860.16930.8690.085*
C80.5987 (7)0.0429 (3)0.7791 (3)0.1127 (13)
H8A0.59620.05240.71990.135*
H8B0.74330.02560.79540.135*
C90.4535 (6)0.0487 (2)0.80299 (19)0.0789 (9)
C100.2539 (7)0.0585 (3)0.76832 (19)0.0857 (9)
H100.21150.00830.72870.103*
C110.1157 (5)0.1408 (2)0.79093 (19)0.0802 (8)
H110.01810.14610.76690.096*
C120.1783 (5)0.2140 (2)0.84889 (19)0.0748 (8)
C130.3760 (5)0.2080 (3)0.8837 (2)0.0845 (9)
H130.41810.2590.92280.101*
C140.5117 (5)0.1255 (3)0.8600 (2)0.0877 (9)
H140.64660.12190.88330.105*
Cl10.00322 (17)0.31716 (7)0.87960 (8)0.1204 (4)
N10.5305 (4)0.14462 (19)0.81941 (15)0.0780 (7)
O10.2507 (3)0.29358 (18)0.85185 (14)0.0864 (6)
H1A0.29730.23640.83250.13*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0706 (17)0.0856 (19)0.089 (2)0.0140 (17)0.0191 (17)0.0254 (16)
C20.122 (3)0.093 (2)0.087 (2)0.033 (2)0.020 (2)0.001 (2)
C30.137 (3)0.0691 (18)0.086 (2)0.012 (2)0.014 (3)0.0082 (16)
C40.086 (2)0.0660 (16)0.092 (2)0.0105 (17)0.0111 (18)0.0036 (16)
C50.0583 (13)0.0605 (13)0.0573 (14)0.0023 (12)0.0008 (12)0.0156 (12)
C60.0605 (14)0.0610 (14)0.0632 (15)0.0004 (12)0.0037 (13)0.0079 (12)
C70.0608 (14)0.0639 (15)0.0888 (19)0.0073 (14)0.0169 (16)0.0173 (14)
C80.129 (3)0.0797 (19)0.130 (3)0.006 (2)0.059 (3)0.028 (2)
C90.091 (2)0.0639 (16)0.0820 (19)0.0101 (16)0.0210 (18)0.0202 (14)
C100.111 (2)0.0767 (19)0.0700 (18)0.0259 (19)0.0009 (19)0.0051 (16)
C110.0789 (18)0.0806 (18)0.0811 (19)0.0202 (17)0.0148 (17)0.0214 (16)
C120.0780 (17)0.0599 (14)0.0864 (19)0.0126 (15)0.0028 (16)0.0179 (14)
C130.090 (2)0.0751 (17)0.089 (2)0.0144 (17)0.0140 (19)0.0004 (16)
C140.0728 (18)0.088 (2)0.102 (2)0.0088 (19)0.007 (2)0.0208 (18)
Cl10.1050 (7)0.0765 (5)0.1799 (10)0.0032 (6)0.0167 (8)0.0086 (6)
N10.0850 (16)0.0658 (13)0.0831 (15)0.0002 (14)0.0188 (15)0.0061 (12)
O10.0654 (11)0.0876 (15)0.1063 (16)0.0097 (12)0.0213 (12)0.0083 (13)
Geometric parameters (Å, º) top
C1—C21.379 (5)C8—C91.497 (5)
C1—C51.380 (4)C8—H8A0.97
C1—H10.93C8—H8B0.97
C2—C31.362 (6)C9—C141.369 (4)
C2—H20.93C9—C101.381 (5)
C3—C41.372 (5)C10—C111.379 (5)
C3—H30.93C10—H100.93
C4—C61.389 (4)C11—C121.358 (4)
C4—H40.93C11—H110.93
C5—C61.401 (4)C12—C131.367 (4)
C5—C71.446 (4)C12—Cl11.747 (3)
C6—O11.336 (3)C13—C141.376 (5)
C7—N11.260 (3)C13—H130.93
C7—H70.93C14—H140.93
C8—N11.470 (4)O1—H1A0.82
C2—C1—C5121.3 (3)N1—C8—H8B109.7
C2—C1—H1119.3C9—C8—H8B109.7
C5—C1—H1119.3H8A—C8—H8B108.2
C3—C2—C1119.3 (3)C14—C9—C10117.4 (3)
C3—C2—H2120.3C14—C9—C8121.8 (3)
C1—C2—H2120.3C10—C9—C8120.9 (4)
C2—C3—C4121.1 (3)C11—C10—C9121.8 (3)
C2—C3—H3119.4C11—C10—H10119.1
C4—C3—H3119.4C9—C10—H10119.1
C3—C4—C6120.0 (3)C12—C11—C10118.9 (3)
C3—C4—H4120C12—C11—H11120.5
C6—C4—H4120C10—C11—H11120.5
C1—C5—C6118.7 (3)C11—C12—C13121.0 (3)
C1—C5—C7120.5 (3)C11—C12—Cl1119.4 (3)
C6—C5—C7120.8 (3)C13—C12—Cl1119.5 (3)
O1—C6—C4118.7 (3)C12—C13—C14119.1 (3)
O1—C6—C5121.8 (2)C12—C13—H13120.4
C4—C6—C5119.5 (3)C14—C13—H13120.4
N1—C7—C5122.3 (3)C9—C14—C13121.8 (3)
N1—C7—H7118.9C9—C14—H14119.1
C5—C7—H7118.9C13—C14—H14119.1
N1—C8—C9109.8 (3)C7—N1—C8119.2 (3)
N1—C8—H8A109.7C6—O1—H1A109.5
C9—C8—H8A109.7
C5—C1—C2—C30.4 (5)N1—C8—C9—C1076.8 (4)
C1—C2—C3—C40.3 (5)C14—C9—C10—C111.2 (4)
C2—C3—C4—C60.3 (5)C8—C9—C10—C11178.4 (3)
C2—C1—C5—C60.5 (4)C9—C10—C11—C120.0 (4)
C2—C1—C5—C7179.5 (3)C10—C11—C12—C131.1 (4)
C3—C4—C6—O1179.9 (3)C10—C11—C12—Cl1178.8 (2)
C3—C4—C6—C50.3 (4)C11—C12—C13—C140.8 (4)
C1—C5—C6—O1179.9 (2)Cl1—C12—C13—C14179.1 (2)
C7—C5—C6—O10.1 (4)C10—C9—C14—C131.5 (4)
C1—C5—C6—C40.4 (4)C8—C9—C14—C13178.1 (3)
C7—C5—C6—C4179.6 (2)C12—C13—C14—C90.6 (5)
C1—C5—C7—N1179.4 (3)C5—C7—N1—C8179.8 (3)
C6—C5—C7—N10.6 (4)C9—C8—N1—C7124.3 (3)
N1—C8—C9—C14102.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.862.587 (3)147
C11—H11···O1i0.932.533.369 (4)150
Symmetry code: (i) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H12ClNO
Mr245.7
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)6.2876 (2), 12.2267 (3), 16.2664 (5)
V3)1250.51 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.45 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker,2008)
Tmin, Tmax0.933, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
10586, 1479, 1119
Rint0.028
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.107, 1.04
No. of reflections1479
No. of parameters155
No. of restraints143
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.29

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.862.587 (3)147.1
C11—H11···O1i0.932.533.369 (4)149.7
Symmetry code: (i) x, y+1/2, z+3/2.
 

Acknowledgements

This work was supported by the Research Funds from the Faculty of Science (A1B1), the Thailand Research Fund (TRF) to NM, and the Thai Government Stimulus Package 2 (TKK2555) under the Project for Establishment of Comprehensive Center for Innovative Food, Health Products and Agrigulture and Center for Petroleum Petrochemicals and Advanced Materials.

References

First citationAdsule, S., Barve, V., Chen, D., Ahmed, F., Dou, Q. P., Padhye, S. & Sarkar, F. H. (2006). J. Med. Chem. 49, 7242–7246.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKannappan, R., Tanase, S., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2005). Inorg. Chim. Acta, 358, 383–388.  Web of Science CSD CrossRef CAS Google Scholar
First citationKarthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhalaji, A. D. & Simpson, J. (2009). Acta Cryst. E65, o362.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTariq, M. I., Ahmad, S., Tahir, M. N., Sarfaraz, M. & Hussain, I. (2010). Acta Cryst. E66, o1561.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds