organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(5-Bromo­pent­yl)-4-chloro-5-[2-(4-meth­­oxy­phen­yl)ethyl­amino]­pyridazin-3(2H)-one

aSchool of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China
*Correspondence e-mail: xbm08@yahoo.com.cn

(Received 21 April 2010; accepted 28 July 2010; online 4 August 2010)

The asymmetric unit of the title compound, C18H23BrClN3O2, consists of two mol­ecules which exhibit different conformations of the pentyl chains [C—C—C—C torsion angles of −60.4 (4) and 175.8 (3)°]. The crysal packing exhibits a chain structure, generated through the O atom of the pyridazinone forming a hydrogen bond with the N—H group of an adjacent mol­ecule.

Related literature

The title compound is an inter­mediate in the synthesis of Alpha1-AR antagonists. For the biological applications of Alpha1-AR antagonists, see: Guderman et al. (1995[Guderman, T., Nürnberg, B. & Schultz, G. (1995). J. Mol. Med. 73, 51-63.]); Cavalli et al. (1997[Cavalli, A., Lattion, A. L., Hummler, E., Pedrazzini, T., Aubert, J. F., Michel, M. C., Yang, M., Lembo, G., Vecchione, C., Mostardini, M., Schmidt, A., Beermann, F. & Cotecchia, S. (1997). Proc. Natl Acad. Sci. USA, 94, 11589-11594.]); Pallavicini et al. (2006[Pallavicini, M., Budriesi, R., Fumagalli, L., Ioan, P., Chiarini, A., Bolchi, C., Ugenti, M. P., Colleoni, S., Gobbi, M. & Valoti, E. (2006). J. Med. Chem. 49, 7140-7149.]). For similar phenyl­piperazinepyridazinone derivatives synthesized as potential Alpha1-AR antagonists, see: Xi et al. (2006[Xi, B. M., Jiang, Z. Z., Wang, T. & Ni, P. Z. (2006). Chin. J. Org. Chem. 26, 1576-1583.]).

[Scheme 1]

Experimental

Crystal data
  • C18H23BrClN3O2

  • Mr = 428.75

  • Triclinic, [P \overline 1]

  • a = 9.7728 (14) Å

  • b = 12.6178 (19) Å

  • c = 15.500 (2) Å

  • α = 94.803 (2)°

  • β = 96.380 (2)°

  • γ = 91.035 (2)°

  • V = 1892.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.33 mm−1

  • T = 110 K

  • 0.35 × 0.15 × 0.1 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.933, Tmax = 0.975

  • 15893 measured reflections

  • 8131 independent reflections

  • 6225 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.143

  • S = 0.99

  • 8131 reflections

  • 453 parameters

  • H-atom parameters constrained

  • Δρmax = 1.39 e Å−3

  • Δρmin = −0.88 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O3i 0.88 2.11 2.796 (3) 135
N6—H6⋯O1ii 0.88 2.06 2.815 (3) 143
Symmetry codes: (i) x-1, y+1, z-1; (ii) x+1, y, z+1.

Data collection: CrystalClear (Rigaku/MSC, 2001[Rigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC, (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Alpha1-adrenoceptors (Alpha1-AR) are members of the super family of seven transmembrane G protein coupled receptors (GPCR) (Guderman et al., 1995) and regulate several important physiological processes. In recent years, the search for new alpha1-AR antagonists has intensified due to their therapeutic potential in the treatment of hypertension (Cavalli et al., 1997) and benign prostatic hypertrophy (Pallavicini et al., 2006). In the course of our studies on phenylpiperazinepyridazinone derivatives as potential Alpha1-AR antagonists, we have synthesized a range of compounds (Xi et al., 2006) which show good blocking activities toward Alpha1-AR. Phenylpiperazinepyridazinone derivatives are a type of Alpha1-AR antagonist; the title compound is a key intermediate in the synthesis of phenylpiperazinepyridazinone derivatives.

The asymmetric unit of the title compound consists of two molecules which differ from one another crystallographically. The largest difference between the two molecules is in the conformations of the pentyl chains, indicated by the C2-C3-C4-C5 and C20-C21-C22-C23 torsion angles of -60.4 (4)° and 175.8 (3)°, respectively. The molecules contain pyridazinone and benzene rings, which are orientated at angles of 13.28 (17)° and 23.34 (14)° with respect to each other in the two molecules. The one dimensional chain structure found in the crystal packing is formed through intermolecular N—H···O hydrogen bonds.

Related literature top

The title compound is a key intermediate in the synthesis of Alpha1-AR antagonists. For the biological applications of Alpha1-AR antagonists, see: Guderman et al. (1995); Cavalli et al. (1997); Pallavicini et al. (2006). For similar phenylpiperazinepyridazinone derivatives synthesized as potential Alpha1-AR antagonists, see: Xi et al. (2006).

Experimental top

A mixture of 5-(4-methoxyphenethylamino)-4-chloropyridazin-3(2H)-one (0.3 g), K2CO3 (0.22 g), 1,5-dibromopentane(0.34 g), and acetone (16 ml) were heated to reflux of the solvent for 10 h. After cooling, the resulting precipitate was filtered off and filtrate was evaporated. The residue was chromatographed on silica gel with petroleum-ethyl acetate (3:2 with TEA) as eluent to give the title compound (0.169 g, 36.7%). Crystals suitable for X-ray analysis were obtained from the slow evaporation of a chloroform solution (m.p. 355–356 K).

Refinement top

The final difference Fourier map had a peak of 1.40 e Å-3 at about 0.876 Å from Br1, H atoms were positioned geometrically and refined using the riding-model approximation, with C—H = 0.93 or 0.96 Å, O—H= 0.82 Å, N—H = 0.86 Å, and Uiso(H) = 1.2Ueq(C,N) or Uiso(H) = 1.5Ueq (methyl C and O).

Structure description top

Alpha1-adrenoceptors (Alpha1-AR) are members of the super family of seven transmembrane G protein coupled receptors (GPCR) (Guderman et al., 1995) and regulate several important physiological processes. In recent years, the search for new alpha1-AR antagonists has intensified due to their therapeutic potential in the treatment of hypertension (Cavalli et al., 1997) and benign prostatic hypertrophy (Pallavicini et al., 2006). In the course of our studies on phenylpiperazinepyridazinone derivatives as potential Alpha1-AR antagonists, we have synthesized a range of compounds (Xi et al., 2006) which show good blocking activities toward Alpha1-AR. Phenylpiperazinepyridazinone derivatives are a type of Alpha1-AR antagonist; the title compound is a key intermediate in the synthesis of phenylpiperazinepyridazinone derivatives.

The asymmetric unit of the title compound consists of two molecules which differ from one another crystallographically. The largest difference between the two molecules is in the conformations of the pentyl chains, indicated by the C2-C3-C4-C5 and C20-C21-C22-C23 torsion angles of -60.4 (4)° and 175.8 (3)°, respectively. The molecules contain pyridazinone and benzene rings, which are orientated at angles of 13.28 (17)° and 23.34 (14)° with respect to each other in the two molecules. The one dimensional chain structure found in the crystal packing is formed through intermolecular N—H···O hydrogen bonds.

The title compound is a key intermediate in the synthesis of Alpha1-AR antagonists. For the biological applications of Alpha1-AR antagonists, see: Guderman et al. (1995); Cavalli et al. (1997); Pallavicini et al. (2006). For similar phenylpiperazinepyridazinone derivatives synthesized as potential Alpha1-AR antagonists, see: Xi et al. (2006).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear (Rigaku/MSC, 2001); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP-II (Johnson, 1976) plot of complex (I) at the 30% probability level. Hydrogen atoms are drawn as spheres of arbitrary radii.
[Figure 2] Fig. 2. One-dimensional chain structure along the b axis formed via H-bonding interactions i: x - 1, y,z - 1 ii: x - 1,y + 1, z - 1
2-(5-Bromopentyl)-4-chloro-5-[2-(4-methoxyphenyl)ethylamino]pyridazin- 3(2H)-one top
Crystal data top
C18H23BrClN3O2Z = 4
Mr = 428.75F(000) = 880
Triclinic, P1Dx = 1.505 Mg m3
Hall symbol: -p 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7728 (14) ÅCell parameters from 16062 reflections
b = 12.6178 (19) Åθ = 3.0–27.1°
c = 15.500 (2) ŵ = 2.33 mm1
α = 94.803 (2)°T = 110 K
β = 96.380 (2)°Flake, colorless
γ = 91.035 (2)°0.35 × 0.15 × 0.1 mm
V = 1892.1 (5) Å3
Data collection top
Rigaku Mercury
diffractometer
8131 independent reflections
Radiation source: fine-focus sealed tube6225 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 27.1°, θmin = 1.6°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 1212
Tmin = 0.933, Tmax = 0.975k = 1616
15893 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
8131 reflections(Δ/σ)max = 0.001
453 parametersΔρmax = 1.39 e Å3
0 restraintsΔρmin = 0.88 e Å3
Crystal data top
C18H23BrClN3O2γ = 91.035 (2)°
Mr = 428.75V = 1892.1 (5) Å3
Triclinic, P1Z = 4
a = 9.7728 (14) ÅMo Kα radiation
b = 12.6178 (19) ŵ = 2.33 mm1
c = 15.500 (2) ÅT = 110 K
α = 94.803 (2)°0.35 × 0.15 × 0.1 mm
β = 96.380 (2)°
Data collection top
Rigaku Mercury
diffractometer
8131 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
6225 reflections with I > 2σ(I)
Tmin = 0.933, Tmax = 0.975Rint = 0.036
15893 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 0.99Δρmax = 1.39 e Å3
8131 reflectionsΔρmin = 0.88 e Å3
453 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.30298 (4)0.50393 (3)0.45799 (2)0.02925 (12)
Cl10.17837 (8)0.99896 (6)0.02591 (5)0.02143 (18)
O10.2247 (2)0.80242 (16)0.06417 (15)0.0224 (5)
O20.9083 (2)1.48186 (17)0.40044 (15)0.0226 (5)
C80.4160 (3)1.0519 (2)0.0756 (2)0.0163 (6)
C120.5870 (3)1.3402 (2)0.2271 (2)0.0177 (6)
N30.4189 (3)1.14797 (19)0.04352 (18)0.0184 (5)
H30.36161.15920.00260.022*
N20.5283 (3)0.9306 (2)0.17251 (18)0.0200 (6)
N10.4273 (3)0.85810 (19)0.14458 (17)0.0185 (6)
C60.3153 (3)0.8731 (2)0.0839 (2)0.0179 (6)
C10.3895 (4)0.4850 (2)0.3507 (2)0.0221 (7)
H1A0.49030.48040.36510.027*
H1B0.35520.41730.31770.027*
C150.8034 (3)1.4410 (2)0.3407 (2)0.0183 (6)
C90.5230 (3)1.0221 (2)0.1399 (2)0.0183 (6)
H90.59471.07300.15990.022*
C170.6400 (3)1.4397 (2)0.2130 (2)0.0182 (6)
H170.60261.47360.16360.022*
C100.5136 (3)1.2340 (2)0.0825 (2)0.0195 (6)
H10A0.51811.28860.04060.023*
H10B0.60691.20550.09410.023*
C160.7462 (3)1.4910 (2)0.2694 (2)0.0181 (6)
H160.77911.55960.25910.022*
C70.3153 (3)0.9743 (2)0.0495 (2)0.0167 (6)
C140.7528 (3)1.3408 (2)0.3553 (2)0.0214 (7)
H140.79131.30630.40420.026*
C40.3957 (4)0.7748 (3)0.2796 (2)0.0288 (8)
H4A0.29540.78650.27570.035*
H4B0.44340.83960.31020.035*
C130.6468 (3)1.2917 (2)0.2989 (2)0.0210 (7)
H130.61401.22310.30930.025*
C20.3588 (3)0.5764 (2)0.2945 (2)0.0219 (7)
H2A0.38900.55790.23630.026*
H2B0.25810.58620.28640.026*
C30.4294 (4)0.6802 (3)0.3332 (2)0.0296 (8)
H3A0.53030.67080.33910.035*
H3B0.40230.69670.39240.035*
C110.4702 (3)1.2862 (2)0.1676 (2)0.0208 (7)
H11A0.39951.33920.15360.025*
H11B0.42741.23110.19870.025*
C180.9452 (4)1.5921 (2)0.4003 (2)0.0251 (7)
H18A0.98441.60390.34630.038*
H18B1.01351.61310.45030.038*
H18C0.86301.63480.40430.038*
C50.4380 (4)0.7591 (2)0.1882 (2)0.0225 (7)
H5A0.53410.73500.19120.027*
H5B0.37810.70310.15380.027*
Br21.17053 (4)0.11846 (3)0.48534 (2)0.03305 (12)
Cl21.32193 (8)0.51689 (6)1.02756 (5)0.02196 (18)
O31.2740 (2)0.29549 (18)0.94660 (16)0.0257 (5)
N61.0840 (3)0.64087 (19)0.95016 (17)0.0178 (5)
H61.14110.66500.99570.021*
N41.0735 (3)0.32485 (19)0.86383 (18)0.0185 (6)
N50.9745 (3)0.3881 (2)0.83069 (18)0.0197 (6)
O40.6028 (2)0.9151 (2)0.60480 (17)0.0309 (6)
C350.8609 (3)0.8865 (2)0.7875 (2)0.0195 (6)
H350.89140.92470.84190.023*
C261.1866 (3)0.4692 (2)0.9527 (2)0.0162 (6)
C251.0874 (3)0.5372 (2)0.9223 (2)0.0161 (6)
C271.1857 (3)0.3584 (2)0.9229 (2)0.0193 (6)
C201.1627 (4)0.0353 (3)0.6350 (2)0.0250 (7)
H20A1.13970.08790.59200.030*
H20B1.26420.03380.64710.030*
C240.9815 (3)0.4878 (2)0.8582 (2)0.0173 (6)
H240.91170.53200.83460.021*
C340.7561 (3)0.9263 (3)0.7332 (2)0.0228 (7)
H340.71600.99170.75020.027*
C280.9910 (3)0.7150 (2)0.9092 (2)0.0184 (6)
H28A0.98690.77970.94950.022*
H28B0.89730.68210.89800.022*
C320.7701 (4)0.7760 (3)0.6286 (2)0.0252 (7)
H320.74000.73820.57400.030*
C310.8749 (4)0.7375 (2)0.6842 (2)0.0230 (7)
H310.91540.67230.66720.028*
C291.0361 (3)0.7468 (2)0.8230 (2)0.0206 (7)
H29A1.11230.80050.83600.025*
H29B1.07210.68350.79170.025*
C300.9227 (3)0.7915 (2)0.7640 (2)0.0188 (6)
C330.7092 (3)0.8711 (3)0.6540 (2)0.0221 (7)
C231.0566 (3)0.2119 (2)0.8319 (2)0.0213 (7)
H23A0.95710.19420.81720.026*
H23B1.09220.16810.87910.026*
C221.1304 (3)0.1835 (2)0.7524 (2)0.0230 (7)
H22A1.23090.19540.76790.028*
H22B1.09970.23020.70620.028*
C211.1006 (4)0.0676 (2)0.7185 (2)0.0239 (7)
H21A1.13700.02150.76390.029*
H21B0.99960.05510.70810.029*
C360.5565 (4)0.8604 (4)0.5224 (3)0.0427 (10)
H36A0.63360.85350.48710.064*
H36B0.48350.90060.49240.064*
H36C0.52050.78950.53090.064*
C191.1062 (4)0.0739 (3)0.5981 (2)0.0277 (8)
H19A1.00430.07310.59090.033*
H19B1.13460.12660.64000.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0390 (2)0.02394 (19)0.0274 (2)0.00207 (15)0.01438 (16)0.00288 (14)
Cl10.0201 (4)0.0170 (4)0.0258 (4)0.0022 (3)0.0048 (3)0.0038 (3)
O10.0244 (12)0.0140 (10)0.0280 (13)0.0066 (9)0.0003 (10)0.0017 (9)
O20.0269 (12)0.0156 (11)0.0238 (12)0.0014 (9)0.0033 (10)0.0020 (9)
C80.0176 (15)0.0124 (13)0.0188 (16)0.0003 (11)0.0027 (12)0.0010 (11)
C120.0166 (15)0.0138 (14)0.0234 (17)0.0001 (12)0.0074 (12)0.0008 (12)
N30.0205 (13)0.0117 (12)0.0216 (14)0.0044 (10)0.0034 (11)0.0018 (10)
N20.0210 (14)0.0133 (12)0.0248 (15)0.0009 (10)0.0001 (11)0.0011 (11)
N10.0232 (14)0.0107 (12)0.0211 (14)0.0032 (10)0.0001 (11)0.0032 (10)
C60.0190 (15)0.0123 (14)0.0232 (17)0.0008 (12)0.0063 (12)0.0004 (12)
C10.0311 (18)0.0130 (14)0.0247 (18)0.0022 (13)0.0132 (14)0.0020 (12)
C150.0219 (16)0.0167 (14)0.0163 (16)0.0030 (12)0.0029 (12)0.0006 (12)
C90.0207 (15)0.0109 (13)0.0224 (17)0.0009 (12)0.0002 (13)0.0004 (12)
C170.0198 (15)0.0161 (14)0.0191 (16)0.0008 (12)0.0018 (12)0.0049 (12)
C100.0235 (16)0.0107 (13)0.0234 (17)0.0046 (12)0.0007 (13)0.0000 (12)
C160.0203 (15)0.0131 (14)0.0219 (17)0.0002 (12)0.0056 (12)0.0032 (12)
C70.0178 (15)0.0138 (14)0.0183 (16)0.0003 (12)0.0013 (12)0.0013 (12)
C140.0259 (17)0.0153 (15)0.0237 (17)0.0067 (13)0.0033 (13)0.0043 (13)
C40.047 (2)0.0127 (15)0.0263 (19)0.0006 (15)0.0004 (16)0.0043 (13)
C130.0306 (18)0.0107 (13)0.0219 (17)0.0010 (12)0.0055 (13)0.0004 (12)
C20.0279 (17)0.0167 (15)0.0203 (17)0.0012 (13)0.0022 (13)0.0029 (12)
C30.045 (2)0.0172 (16)0.0253 (19)0.0039 (15)0.0041 (16)0.0031 (14)
C110.0222 (16)0.0177 (15)0.0220 (17)0.0038 (12)0.0031 (13)0.0015 (13)
C180.0314 (18)0.0172 (15)0.0258 (18)0.0032 (13)0.0012 (14)0.0032 (13)
C50.0297 (18)0.0112 (14)0.0270 (18)0.0007 (12)0.0016 (14)0.0055 (12)
Br20.0400 (2)0.0281 (2)0.0312 (2)0.00742 (16)0.00531 (16)0.00060 (15)
Cl20.0204 (4)0.0195 (4)0.0244 (4)0.0012 (3)0.0046 (3)0.0026 (3)
O30.0289 (13)0.0178 (11)0.0300 (14)0.0055 (10)0.0025 (10)0.0075 (10)
N60.0200 (13)0.0139 (12)0.0179 (14)0.0004 (10)0.0042 (10)0.0011 (10)
N40.0208 (13)0.0114 (12)0.0233 (15)0.0018 (10)0.0018 (11)0.0027 (10)
N50.0212 (14)0.0158 (12)0.0221 (14)0.0003 (10)0.0000 (11)0.0051 (11)
O40.0274 (13)0.0332 (14)0.0315 (14)0.0042 (11)0.0053 (11)0.0107 (11)
C350.0220 (16)0.0149 (14)0.0215 (17)0.0038 (12)0.0020 (13)0.0023 (12)
C260.0169 (15)0.0146 (14)0.0172 (15)0.0004 (11)0.0014 (12)0.0026 (12)
C250.0165 (15)0.0132 (14)0.0193 (16)0.0000 (11)0.0030 (12)0.0029 (12)
C270.0249 (17)0.0180 (15)0.0156 (16)0.0024 (13)0.0038 (13)0.0047 (12)
C200.0243 (17)0.0181 (16)0.032 (2)0.0003 (13)0.0035 (14)0.0002 (14)
C240.0201 (15)0.0121 (13)0.0195 (16)0.0002 (11)0.0006 (12)0.0020 (12)
C340.0232 (17)0.0175 (15)0.0289 (19)0.0015 (13)0.0056 (14)0.0052 (13)
C280.0208 (16)0.0140 (14)0.0207 (17)0.0022 (12)0.0020 (13)0.0034 (12)
C320.0319 (19)0.0201 (16)0.0229 (18)0.0042 (14)0.0013 (14)0.0042 (13)
C310.0310 (18)0.0143 (14)0.0237 (17)0.0011 (13)0.0025 (14)0.0020 (13)
C290.0225 (16)0.0173 (15)0.0229 (17)0.0015 (12)0.0032 (13)0.0051 (12)
C300.0222 (16)0.0121 (14)0.0230 (17)0.0017 (12)0.0060 (13)0.0027 (12)
C330.0184 (16)0.0223 (16)0.0262 (18)0.0035 (13)0.0010 (13)0.0103 (13)
C230.0265 (17)0.0109 (14)0.0262 (18)0.0031 (12)0.0015 (14)0.0028 (12)
C220.0264 (17)0.0132 (14)0.0300 (19)0.0048 (13)0.0068 (14)0.0020 (13)
C210.0301 (18)0.0122 (14)0.0293 (19)0.0029 (13)0.0032 (14)0.0021 (13)
C360.033 (2)0.055 (3)0.038 (2)0.0014 (19)0.0101 (18)0.008 (2)
C190.038 (2)0.0203 (16)0.0257 (19)0.0001 (14)0.0077 (15)0.0003 (14)
Geometric parameters (Å, º) top
Br1—C11.947 (3)Br2—C191.964 (3)
Cl1—C71.728 (3)Cl2—C261.723 (3)
O1—C61.240 (4)O3—C271.230 (4)
O2—C151.365 (4)N6—C251.345 (4)
O2—C181.431 (4)N6—C281.451 (4)
C8—N31.350 (4)N6—H60.8800
C8—C71.378 (4)N4—N51.351 (4)
C8—C91.440 (4)N4—C271.383 (4)
C12—C131.392 (5)N4—C231.470 (4)
C12—C171.393 (4)N5—C241.293 (4)
C12—C111.501 (4)O4—C331.373 (4)
N3—C101.459 (4)O4—C361.423 (5)
N3—H30.8800C35—C341.381 (5)
N2—C91.297 (4)C35—C301.391 (4)
N2—N11.344 (3)C35—H350.9500
N1—C61.388 (4)C26—C251.376 (4)
N1—C51.470 (4)C26—C271.436 (4)
C6—C71.425 (4)C25—C241.446 (4)
C1—C21.517 (4)C20—C191.518 (4)
C1—H1A0.9900C20—C211.518 (5)
C1—H1B0.9900C20—H20A0.9900
C15—C161.388 (4)C20—H20B0.9900
C15—C141.394 (4)C24—H240.9500
C9—H90.9500C34—C331.387 (5)
C17—C161.392 (4)C34—H340.9500
C17—H170.9500C28—C291.535 (4)
C10—C111.530 (4)C28—H28A0.9900
C10—H10A0.9900C28—H28B0.9900
C10—H10B0.9900C32—C311.386 (5)
C16—H160.9500C32—C331.396 (5)
C14—C131.381 (5)C32—H320.9500
C14—H140.9500C31—C301.390 (5)
C4—C51.518 (5)C31—H310.9500
C4—C31.532 (5)C29—C301.505 (4)
C4—H4A0.9900C29—H29A0.9900
C4—H4B0.9900C29—H29B0.9900
C13—H130.9500C23—C221.517 (5)
C2—C31.515 (4)C23—H23A0.9900
C2—H2A0.9900C23—H23B0.9900
C2—H2B0.9900C22—C211.523 (4)
C3—H3A0.9900C22—H22A0.9900
C3—H3B0.9900C22—H22B0.9900
C11—H11A0.9900C21—H21A0.9900
C11—H11B0.9900C21—H21B0.9900
C18—H18A0.9800C36—H36A0.9800
C18—H18B0.9800C36—H36B0.9800
C18—H18C0.9800C36—H36C0.9800
C5—H5A0.9900C19—H19A0.9900
C5—H5B0.9900C19—H19B0.9900
C15—O2—C18117.8 (2)C25—N6—C28123.6 (3)
N3—C8—C7124.2 (3)C25—N6—H6118.2
N3—C8—C9121.2 (3)C28—N6—H6118.2
C7—C8—C9114.6 (3)N5—N4—C27125.5 (3)
C13—C12—C17117.5 (3)N5—N4—C23114.9 (3)
C13—C12—C11120.6 (3)C27—N4—C23119.6 (3)
C17—C12—C11121.9 (3)C24—N5—N4117.8 (3)
C8—N3—C10122.4 (3)C33—O4—C36116.8 (3)
C8—N3—H3118.8C34—C35—C30121.2 (3)
C10—N3—H3118.8C34—C35—H35119.4
C9—N2—N1118.1 (3)C30—C35—H35119.4
N2—N1—C6125.4 (2)C25—C26—C27122.8 (3)
N2—N1—C5114.3 (3)C25—C26—Cl2120.1 (2)
C6—N1—C5120.3 (2)C27—C26—Cl2117.1 (2)
O1—C6—N1120.7 (3)N6—C25—C26124.2 (3)
O1—C6—C7125.1 (3)N6—C25—C24121.2 (3)
N1—C6—C7114.3 (3)C26—C25—C24114.6 (3)
C2—C1—Br1111.3 (2)O3—C27—N4120.8 (3)
C2—C1—H1A109.4O3—C27—C26124.9 (3)
Br1—C1—H1A109.4N4—C27—C26114.3 (3)
C2—C1—H1B109.4C19—C20—C21109.5 (3)
Br1—C1—H1B109.4C19—C20—H20A109.8
H1A—C1—H1B108.0C21—C20—H20A109.8
O2—C15—C16125.3 (3)C19—C20—H20B109.8
O2—C15—C14115.1 (3)C21—C20—H20B109.8
C16—C15—C14119.5 (3)H20A—C20—H20B108.2
N2—C9—C8124.6 (3)N5—C24—C25125.0 (3)
N2—C9—H9117.7N5—C24—H24117.5
C8—C9—H9117.7C25—C24—H24117.5
C16—C17—C12121.9 (3)C35—C34—C33120.3 (3)
C16—C17—H17119.0C35—C34—H34119.9
C12—C17—H17119.0C33—C34—H34119.9
N3—C10—C11112.6 (3)N6—C28—C29112.3 (3)
N3—C10—H10A109.1N6—C28—H28A109.1
C11—C10—H10A109.1C29—C28—H28A109.1
N3—C10—H10B109.1N6—C28—H28B109.1
C11—C10—H10B109.1C29—C28—H28B109.1
H10A—C10—H10B107.8H28A—C28—H28B107.9
C15—C16—C17119.3 (3)C31—C32—C33119.1 (3)
C15—C16—H16120.3C31—C32—H32120.5
C17—C16—H16120.3C33—C32—H32120.5
C8—C7—C6123.1 (3)C32—C31—C30122.0 (3)
C8—C7—Cl1120.1 (2)C32—C31—H31119.0
C6—C7—Cl1116.8 (2)C30—C31—H31119.0
C13—C14—C15120.1 (3)C30—C29—C28113.9 (3)
C13—C14—H14119.9C30—C29—H29A108.8
C15—C14—H14119.9C28—C29—H29A108.8
C5—C4—C3113.0 (3)C30—C29—H29B108.8
C5—C4—H4A109.0C28—C29—H29B108.8
C3—C4—H4A109.0H29A—C29—H29B107.7
C5—C4—H4B109.0C31—C30—C35117.8 (3)
C3—C4—H4B109.0C31—C30—C29120.5 (3)
H4A—C4—H4B107.8C35—C30—C29121.7 (3)
C14—C13—C12121.6 (3)O4—C33—C34116.5 (3)
C14—C13—H13119.2O4—C33—C32123.8 (3)
C12—C13—H13119.2C34—C33—C32119.7 (3)
C3—C2—C1113.0 (3)N4—C23—C22113.1 (2)
C3—C2—H2A109.0N4—C23—H23A109.0
C1—C2—H2A109.0C22—C23—H23A109.0
C3—C2—H2B109.0N4—C23—H23B109.0
C1—C2—H2B109.0C22—C23—H23B109.0
H2A—C2—H2B107.8H23A—C23—H23B107.8
C2—C3—C4114.1 (3)C23—C22—C21110.6 (3)
C2—C3—H3A108.7C23—C22—H22A109.5
C4—C3—H3A108.7C21—C22—H22A109.5
C2—C3—H3B108.7C23—C22—H22B109.5
C4—C3—H3B108.7C21—C22—H22B109.5
H3A—C3—H3B107.6H22A—C22—H22B108.1
C12—C11—C10113.7 (3)C20—C21—C22113.7 (3)
C12—C11—H11A108.8C20—C21—H21A108.8
C10—C11—H11A108.8C22—C21—H21A108.8
C12—C11—H11B108.8C20—C21—H21B108.8
C10—C11—H11B108.8C22—C21—H21B108.8
H11A—C11—H11B107.7H21A—C21—H21B107.7
O2—C18—H18A109.5O4—C36—H36A109.5
O2—C18—H18B109.5O4—C36—H36B109.5
H18A—C18—H18B109.5H36A—C36—H36B109.5
O2—C18—H18C109.5O4—C36—H36C109.5
H18A—C18—H18C109.5H36A—C36—H36C109.5
H18B—C18—H18C109.5H36B—C36—H36C109.5
N1—C5—C4111.2 (3)C20—C19—Br2112.5 (2)
N1—C5—H5A109.4C20—C19—H19A109.1
C4—C5—H5A109.4Br2—C19—H19A109.1
N1—C5—H5B109.4C20—C19—H19B109.1
C4—C5—H5B109.4Br2—C19—H19B109.1
H5A—C5—H5B108.0H19A—C19—H19B107.8
C7—C8—N3—C10169.7 (3)C27—N4—N5—C242.6 (4)
C9—C8—N3—C1011.8 (4)C23—N4—N5—C24178.0 (3)
C9—N2—N1—C60.8 (4)C28—N6—C25—C26170.9 (3)
C9—N2—N1—C5177.0 (3)C28—N6—C25—C2411.1 (4)
N2—N1—C6—O1177.7 (3)C27—C26—C25—N6178.7 (3)
C5—N1—C6—O11.7 (4)Cl2—C26—C25—N63.2 (4)
N2—N1—C6—C71.5 (4)C27—C26—C25—C240.5 (4)
C5—N1—C6—C7177.5 (3)Cl2—C26—C25—C24178.6 (2)
C18—O2—C15—C1612.9 (4)N5—N4—C27—O3176.9 (3)
C18—O2—C15—C14167.0 (3)C23—N4—C27—O32.6 (4)
N1—N2—C9—C80.0 (5)N5—N4—C27—C263.9 (4)
N3—C8—C9—N2178.7 (3)C23—N4—C27—C26176.7 (3)
C7—C8—C9—N20.0 (5)C25—C26—C27—O3178.1 (3)
C13—C12—C17—C161.7 (4)Cl2—C26—C27—O30.1 (4)
C11—C12—C17—C16178.4 (3)C25—C26—C27—N42.7 (4)
C8—N3—C10—C1174.9 (4)Cl2—C26—C27—N4179.2 (2)
O2—C15—C16—C17179.4 (3)N4—N5—C24—C250.2 (5)
C14—C15—C16—C170.7 (4)N6—C25—C24—N5177.2 (3)
C12—C17—C16—C151.4 (5)C26—C25—C24—N51.1 (5)
N3—C8—C7—C6179.4 (3)C30—C35—C34—C330.7 (5)
C9—C8—C7—C60.8 (4)C25—N6—C28—C2975.2 (4)
N3—C8—C7—Cl12.5 (4)C33—C32—C31—C300.9 (5)
C9—C8—C7—Cl1178.9 (2)N6—C28—C29—C30160.2 (3)
O1—C6—C7—C8177.7 (3)C32—C31—C30—C350.4 (5)
N1—C6—C7—C81.5 (4)C32—C31—C30—C29179.6 (3)
O1—C6—C7—Cl10.4 (4)C34—C35—C30—C310.3 (5)
N1—C6—C7—Cl1179.6 (2)C34—C35—C30—C29179.5 (3)
O2—C15—C14—C13179.8 (3)C28—C29—C30—C31114.7 (3)
C16—C15—C14—C130.3 (5)C28—C29—C30—C3564.4 (4)
C15—C14—C13—C120.6 (5)C36—O4—C33—C34178.4 (3)
C17—C12—C13—C141.3 (5)C36—O4—C33—C321.8 (5)
C11—C12—C13—C14178.8 (3)C35—C34—C33—O4178.7 (3)
Br1—C1—C2—C369.2 (3)C35—C34—C33—C321.1 (5)
C1—C2—C3—C4177.7 (3)C31—C32—C33—O4178.6 (3)
C5—C4—C3—C260.4 (4)C31—C32—C33—C341.2 (5)
C13—C12—C11—C10101.8 (3)N5—N4—C23—C2291.8 (3)
C17—C12—C11—C1078.1 (4)C27—N4—C23—C2287.7 (4)
N3—C10—C11—C12156.1 (3)N4—C23—C22—C21175.9 (3)
N2—N1—C5—C475.2 (3)C19—C20—C21—C22169.8 (3)
C6—N1—C5—C4101.2 (3)C23—C22—C21—C20175.8 (3)
C3—C4—C5—N1169.8 (3)C21—C20—C19—Br2175.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O3i0.882.112.796 (3)135
N6—H6···O1ii0.882.062.815 (3)143
Symmetry codes: (i) x1, y+1, z1; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC18H23BrClN3O2
Mr428.75
Crystal system, space groupTriclinic, P1
Temperature (K)110
a, b, c (Å)9.7728 (14), 12.6178 (19), 15.500 (2)
α, β, γ (°)94.803 (2), 96.380 (2), 91.035 (2)
V3)1892.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.33
Crystal size (mm)0.35 × 0.15 × 0.1
Data collection
DiffractometerRigaku Mercury
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.933, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
15893, 8131, 6225
Rint0.036
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.143, 0.99
No. of reflections8131
No. of parameters453
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.39, 0.88

Computer programs: CrystalClear (Rigaku/MSC, 2001), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O3i0.882.112.796 (3)134.5
N6—H6···O1ii0.882.062.815 (3)143.3
Symmetry codes: (i) x1, y+1, z1; (ii) x+1, y, z+1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 30600776).

References

First citationCavalli, A., Lattion, A. L., Hummler, E., Pedrazzini, T., Aubert, J. F., Michel, M. C., Yang, M., Lembo, G., Vecchione, C., Mostardini, M., Schmidt, A., Beermann, F. & Cotecchia, S. (1997). Proc. Natl Acad. Sci. USA, 94, 11589–11594.  CrossRef CAS PubMed Web of Science Google Scholar
First citationGuderman, T., Nürnberg, B. & Schultz, G. (1995). J. Mol. Med. 73, 51–63.  CrossRef PubMed Web of Science Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationPallavicini, M., Budriesi, R., Fumagalli, L., Ioan, P., Chiarini, A., Bolchi, C., Ugenti, M. P., Colleoni, S., Gobbi, M. & Valoti, E. (2006). J. Med. Chem. 49, 7140–7149.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku/MSC, (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXi, B. M., Jiang, Z. Z., Wang, T. & Ni, P. Z. (2006). Chin. J. Org. Chem. 26, 1576–1583.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds